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Treatment of male and female 
spontaneously hypertensive rats with TNF‑α 
inhibitor etanercept increases markers of renal 
injury independent of an effect on blood 
pressure
Elizabeth C. Snyder1, Mahmoud Abdelbary1, Ahmed El‑Marakby2 and Jennifer C. Sullivan1*   

Abstract 

Hypertension remains the leading risk factor for cardiovascular disease. Young females tend to be protected from 
hypertension compared with age-matched males. Although it has become increasingly clear that the immune system 
plays a key role in the development of hypertension in both sexes, few studies have examined how cytokines medi‑
ate hypertension in males versus females. We previously published that there are sex differences in the levels of the 
cytokine tumor necrosis factor (TNF)-α in spontaneously hypertensive rats (SHR). The goal of this study was to test the 
hypothesis that TNF-α inhibition with etanercept will lower BP in male and female SHR. However, as male SHR have 
a more pro-inflammatory status than female SHR, we further hypothesize that males will have a greater decrease 
in BP with TNF-α inhibition than females. Young adult male and female SHR were administered increasing doses of 
the TNF-α inhibitor etanercept or vehicle twice weekly for 31 days and BP was continuously measured via telemetry. 
Following treatment, kidneys and urine were collected and analyzed for markers of inflammation and injury. Despite 
significantly decreasing renal TNF-α levels, renal phospho-NFκB and urinary MCP-1 excretion, etanercept did not alter 
BP in either male or female SHR. Interestingly, treatment with etanercept increased urinary excretion of protein, creati‑
nine and KIM-1 in both sexes. These results indicate that TNF-α does not contribute to sex differences in BP in SHR but 
may be vital in the maintenance of renal health.

Highlights 

•	 Etanercept treatment successfully decreased renal TNF-α levels in male and female SHR.
•	 Inhibition of TNF-α did not alter BP in SHR of either sex.
•	 Inhibition of TNF-α significantly elevated creatinine and KIM-1 levels in both male and female SHR, indicating 

TNF-α may be necessary for maintaining renal health.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  jensullivan@augusta.edu
1 Department of Physiology, Medical College of Georgia at Augusta 
University, 1459 Laney Walker Blvd CB‑2204, Augusta, GA 30912, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0541-0247
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13293-022-00424-4&domain=pdf


Page 2 of 8Snyder et al. Biology of Sex Differences           (2022) 13:17 

Introduction
Although hypertension is a prominent risk factor for 
developing cardiovascular disease (CVD), the mecha-
nisms underlying the development of hypertension 
remain poorly understood. Hypertension is a common 
medical condition characterized by an increase in blood 
pressure (BP). An increasing number of studies have 
found pro-inflammatory cytokines produced by immune 
cells to be important contributors to the development of 
essential hypertension [1, 2], but few studies have exam-
ined the relative contribution of specific cytokines to BP 
control in males versus females.

Young females have a lower prevalence of hypertension 
compared to age-matched males both clinically and in 
numerous experimental models of hypertension, include 
spontaneously hypertensive rats [3] (SHR). Recent stud-
ies further indicate that while both sexes develop hyper-
tension, the physiological and molecular mechanisms 
through which it develops often differ between males 
and females [4]. Importantly, there is increasing evi-
dence that differing immunological profiles may contrib-
ute to sex differences in BP control. Sex differences in 
BP responses to angiotensin II and deoxycorticosterone 
acetate (DOCA)-salt administration have been shown 
to be mediated by immune cells [5–7]. Moreover, it has 
been suggested that the lower BP in females is related to 
the finding that females have a more anti-inflammatory 
and anti-hypertensive T cell profile than males in multi-
ple experimental models of hypertension [8–10]. Direct 
neutralization of numerous pro-inflammatory cytokines 
have been shown to decrease systolic BP in male angio-
tensin II hypertensive rodents and spontaneously hyper-
tensive models [1, 2, 11, 12]. However, there is less 
evidence available on the contribution of pro-inflamma-
tory cytokines to hypertension in females or the role of 
cytokines in sex differences in hypertension.

The pro-inflammatory cytokine TNF-α has been impli-
cated in BP control in angiotensin II, Dahl salt-sensitive, 
DOCA-salt male rat models of hypertension [13–16], 
and male SHR [12]. TNF-α has also been implicated in 
the development of hypertension in rodent models of 
preeclampsia [17] and in a female mouse model of sys-
temic lupus erythematosus [18], supporting the hypoth-
esis that TNF-α also mediates hypertension in females. 
Our group has previously published that female SHR 
have greater TNF-α levels in urine and mesenteric arter-
ies compared to males [19], while circulating levels of 
TNF-α are higher in male SHR [20]. Despite data indi-
cating TNF-α is a potent moderator of the processes 

governing hypertension development [21–24], the role of 
TNF-α in BP control in female SHR has not previously 
been examined. The current study was designed to test 
the hypothesis that TNF-α inhibition with etanercept 
will lower BP in male and female SHR. However, as male 
SHR have a more pro-inflammatory status than female 
SHR [4, 8, 25], we further hypothesize that males will 
have a greater decrease in BP with TNF-α inhibition than 
females.

Materials and methods
Animals
Nine-week-old age-matched male and female SHR were 
received from Envigo Laboratories (Indianapolis, IN). 
Rats were housed in temperature- and humidity-con-
trolled, light-cycled quarters and fed standard rat chow 
ad  libitum. All experiments were conducted in accord-
ance with the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals and with the 
approval of the Augusta University Institutional Animal 
Care and Use Committee. At 10  weeks of age, subsets 
of rats were implanted with intra-arterial telemeters for 
the measurement of mean arterial pressure (MAP) and 
allowed 5 days to recover before a baseline measure-
ment was taken. At 12 weeks of age, rats began treatment 
with either the TNF-α inhibitor etanercept or vehicle via 
intraperitoneal injection twice weekly for 31 days. Based 
on previous studies in the literature, rats were treated 
with increasing doses of etanercept as follows: 0.4 mg/kg 
from days 1 to 12 [26], 0.8 mg/kg from days 13 to 22 [17], 
and 1.6 mg/kg from days 23 to 31 [15, 27, 28]. Rats were 
placed in metabolic cages to allow for a 24-h urine collec-
tion prior to initiating treatment with etanercept and at 
the end of the study. Rats were then anesthetized with 2% 
isoflurane and euthanized by aortic exsanguination. Kid-
neys were harvested and snap-frozen in liquid nitrogen 
and stored at −80 °C for later analysis.
Cytokine quantification
Cytokine levels were determined by ELISA in whole kid-
ney homogenate. Levels of TACE (LSBio F22349), TGF-β 
(MyBioSource 260302), TNF-α (MyBioSource 2507393) 
and phospho-NFκB (RayBiotech, PEL-NFKBP65-S536) 
were quantified in renal homogenates of etanercept-
treated or vehicle control SHR and assayed according to 
the manufacturer’s instructions. Urinary MCP-1 excre-
tion levels were determined by ELISA (BD Biosciences 
555130).
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Assessment of renal injury
Creatinine and kidney injury molecule 1 (KIM-1) excre-
tion were measured by ELISA (creatinine: Cayman 
Chemical 500701; KIM-1: MyBioSource MBS355395) in 
terminal 24-h urine samples according to manufacturer 
instructions. Proteinuria was measured using a Bradford 
assay using bovine serum albumin as a standard. Albu-
minuria was measured by Nephrat II ELISA (Ethos Bio-
sciences NR002).

Statistical analysis
All data are expressed as means ± SE. For all compari-
sons, P < 0.05 was considered statistically significant. 
Renal cytokines and markers of renal injury were com-
pared using two-way ANOVA. BP data were analyzed 
by two-way repeated-measures ANOVA. Analyses were 
performed using GraphPad Prism version 9.2 software 
(GraphPad Prism Software, La Jolla, CA).

Results
Etanercept had no effect on BP in male or female SHR
To determine the relative contribution of TNF-α on BP 
control in male and female SHR, rats were treated with 
increasing doses of the TNF-α inhibitor etanercept or 
vehicle and BP was continuously measured by telemetry 
(Fig. 1). Baseline BP data were as follows: BP in vehicle-
treated males was 142 ± 2  mmHg, BP in etanercept-
treated males was 141 ± 1  mmHg, BP in vehicle-treated 
females was 132 ± 1  mmHg, BP in etanercept-treated 

females was 134 ± 3  mmHg (two-way ANOVA: 
Psex < 0.0001, Ptreatment = 0.54, Pinteraction = 0.086). BP at 
the end 0.4 mg/kg dose of etanercept was 145 ± 1 mmHg 
in vehicle-treated males, 141 ± 2  mmHg in etanercept-
treated males, 133 ± 4 mmHg in vehicle-treated females, 
and 135 ± 2  mmHg in etanercept-treated females (two-
way ANOVA: Psex = 0.0014, Ptreatment = 0.14, Pinterac-

tion = 0.64). BP at the end 0.8 mg/kg dose of etanercept was 
147 ± 1  mmHg in vehicle-treated males, 144 ± 1  mmHg 
in etanercept-treated males, 132 ± 1  mmHg in vehi-
cle-treated females, and 130 ± 2  mmHg BP in etaner-
cept-treated females (two-way ANOVA: Psex < 0.0001, 
Ptreatment = 0.062, Pinteraction = 0.88). BP at the end of the 
1.6  mg/kg dose of etanercept was 149 ± 1  mmHg in 
vehicle-treated males, 146 ± 2  mmHg in etanercept-
treated males, mmHg in vehicle-treated females, and 
133 ± 2  mmHg in etanercept-treated females (two-way 
ANOVA: Psex < 0.0001, Ptreatment = 0.94, Pinteraction = 0.16). 
Males had a higher BP than females throughout the study 
(P < 0.05). Treatment with etanercept did not significantly 
lower BP in either male or female SHR. Indeed, BP of 
male SHR progressively increased over the course of the 
study in both vehicle control and etanercept-treated rats. 
BP of female SHR remained constant throughout the 
study regardless of treatment.
Treatment with etanercept decreased renal TNF‑α
To confirm the effectiveness and specificity of etaner-
cept to inhibit TNF-α, TNF-α, NFκB, TACE and TGF-β 
were measured in renal homogenates and MCP-1 was 
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Fig. 1  Male and female SHR were implanted with intra-arterial telemeters at 10 weeks of age, allowed to recover for 5 days, and then baseline 
measurements were taken for 1 week. Animals were then randomized to treatment with vehicle (n = 5/group) or increasing doses of etanercept 
(n = 5/group) and mean arterial pressure (MAP) was measured over a 31-day period. Comparisons were made using a two-way repeated-measures 
ANOVA
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measured in urine from vehicle and etanercept-treated 
male and female SHR (Fig.  2). Renal TNF-α levels were 
greater in males compared to females (Psex = 0.0023). 
Etanercept lowered TNF-α levels in both sexes (Ptreat-

ment = 0.024), and the decrease was comparable in males 
and females (Pinteraction = 0.64). TNF-α induces the 
phosphorylation of NFκB leading to translocation to 
the nucleus and increased transcription of inflamma-
tory cytokines, including MCP-1. Etanercept decreased 
NFκB activation in male, but not female SHR (Ptreat-

ment = 0.0153; Psex  = 0.317; Pinteraction  = 0.038) and 
MCP-1 excretion in both sexes (Ptreatment  = 0.0059; Psex 
= 0.15; Pinteraction  = 0.937). Renal TACE levels were 
comparable between all groups (Psex = 0.6858, Ptreatment 
= 0.2052, Pinteraction  = 0.3750). Males had higher renal 
TGF-β levels than females (Psex = 0.0209), but TGF-β 
was not impacted by treatment with etanercept (Ptreat-

ment  = 0.7834, Pinteraction = 0.3164).

Etanercept treatment increases indices of renal tubular 
injury
Markers of renal injury were assessed by measuring uri-
nary excretion of total protein, albumin, creatinine, and 
KIM-1, a marker of renal tubular injury (Fig.  3). Male 
SHR excreted more total protein (Psex < 0.0001), albumin 
(Psex < 0.0001), and creatinine (Psex = 0.0002) than female 
SHR. KIM-1 excretion was comparable between the sexes 
(Psex = 0.1054). Etanercept treatment did not affect total 
protein excretion (Ptreatment = 0.1489; Pinteraction = 0.1449) 

or albumin excretion in either male or female SHR (Ptreat-

ment = 0.1287; Pinteraction = 0.8334). In contrast, etaner-
cept increased creatinine (Ptreatment < 0.0001) and KIM-1 
excretion (Ptreatment < 0.0001) in both sexes to a compa-
rable degree (Pinteraction = 0.0873 and Pinteraction = 0.6842, 
respectively).

Discussion
Despite an increasing number of studies implicating pro-
inflammatory cytokines in the development of essential 
hypertension [1, 2], few studies have examined the rela-
tive contribution of specific cytokines to BP control in 
males versus females. The pro-inflammatory cytokine 
TNF-α has been implicated in BP control in both male 
[12–14, 16, 28] and female [17, 18] experimental mod-
els of hypertension. However, the main finding of the 
current study is that despite successfully decreasing 
renal TNF-α levels and downstream signaling cascades, 
etanercept did not alter BP in young, mature male or 
female SHR. Surprisingly, etanercept treatment was asso-
ciated with increases in renal tubular injury as evidenced 
by increases in creatinine and KIM-1 in both male and 
female SHR. Our data suggest that renal tubular TNF-α 
is important in maintaining renal health and function in 
SHR.

While not intensively studied in animal models of 
hypertension, clinical studies have consistently found 
men to have higher circulating TNF-α levels compared to 
women [29, 30]. In line with this data, T cells from female 
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Fig. 2  Quantification of TNF-α signaling and inflammatory cytokines in whole kidney homogenates of SHR. Rats were euthanized at 16 weeks of 
age following a 31-day treatment regimen of either vehicle (n=6/group) or increasing doses of etanercept (n=6/group). Kidneys were snap-frozen 
and homogenized for biochemical analysis of renal TNF-α (panel A), renal phosphorylation of NFκB (panel B), excretion of MCP-1 (panel C), renal 
TACE (panel D), and renal TGF-β (panel E). Data were compared using a two-way ANOVA. Values are mean ± SEM
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mice demonstrate lower secretion of TNF-α than T cells 
from male mice in vitro [5], and we previously published 
that there are sex differences in TNF-α in SHR. Female 
SHR have greater TNF-α in the mesenteric arterial bed 
and urine versus males [19], while circulating levels of 
TNF-α are higher in male SHR [20]. As indicated in the 
current study, male SHR also have greater renal levels of 
TNF-α compared to female SHR. Based on known sex 
differences in BP in SHR, where males have a higher BP 
compared to females [4, 31], additional studies examined 
the contribution of TNF-α to BP control in SHR.

To assess the contribution of TNF-α on BP control in 
young, adult male and female SHR, rats were randomized 
to increasing doses of etanercept. Etanercept is a widely 
prescribed therapeutic which directly binds to TNF-α 
and prevents it from activating relevant cellular receptors 
[32]. The dose of etanercept was chosen based on previ-
ous studies in the literature, which have shown that daily 
treatment with 1.25  mg/kg etanercept decreases renal 
TNF-α levels and downstream inflammation in male 
DOCA-salt rats [15], attenuates angiotensin II-induced 

increases in MCP-1 [28], and attenuates hypertensive 
middle cerebral artery remodeling in male stroke-prone 
SHR [27]. Lower doses of etanercept (0.3  mg/kg/day) 
have also been shown to decrease relative heart wall 
thickness and increased cardiac reserve and BP in male 
SHR when measured via tail-cuff [26]. However, a noted 
limitation of the current study was the lack of measure-
ment of circulating TNF-α levels.

Treatment with etanercept did not lower BP in young, 
adult SHR with established hypertension. There is some 
controversy in the literature regarding anti-hypertensive 
effects of etanercept. Etanercept, 1.25 mg/kg per day via 
subcutaneous osmotic minipump, delays the develop-
ment of hypertension in male mice receiving angiotensin 
II plus a high-salt diet, although the effect is lost by day 
12 of treatment [28]. Renal interstitial infusion etanercept 
(0.25 mg/kg/day) also attenuates high-salt diet induced 
increases in BP in male Dahl salt sensitive rats [14]. 
Etanercept (0.8 mg/kg weekly via ip or sc injection) also 
significantly lowered BP in 30-week-old female NZBWF1 
mice, a model of systemic lupus erythematosus [18] and 
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Fig. 3  Quantification of renal injury in 16-week-old male and female SHR after a 31-day treatment regimen of either vehicle (n = 6/group) or 
increasing doses of etanercept (n = 5–6/group). Terminal urine samples were collected and assayed for common markers of renal damage, 
including proteinuria (panel A), albumin excretion (panel B), creatinine excretion (panel C), and KIM-1 excretion (panel D). Data were compared 
using a two-way. ANOVA. Values are mean ± SEM
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resulted in a small, but significant decrease in systolic but 
not diastolic BP pregnant female SHR stroke-prone rats, 
evident following 12 days of pregnancy [17]. However, 
1.25 mg/kg per day etanercept via subcutaneous osmotic 
minipump did not alter the development of hypertension 
in male Sprague–Dawley rats in response to DOCA [15], 
and consistent with our findings, treatment of male SHR-
stroke prone rats with etanercept (1.25 mg/kg ip daily) 
from 6 to 12 weeks of age did not alter systolic BP [27]. In 
addition, etanercept (0.3 mg/kg and 1 mg/kg; three times 
per week) did not alter BP in male 2-kidney and 1-Clip 
rats [33]. Taken together, these findings make it tempting 
to speculate that a BP phenotype in response to etaner-
cept may be unveiled in SHR exposed to an additional 
stressor, such as salt.

In contrast to our findings in the current study, TNF-α 
blockade with infliximab (1.5 mg/kg/week, sc injection), 
a mouse chimeric neutralizing antibody, was found to 
decrease BP in male SHR compared to SHR receiving 
vehicle control [12]. However, treatment with infliximab 
did not significantly lower systolic BP until the 6th week 
of treatment. It is, therefore, possible that a longer regi-
men of etanercept treatment would decrease BP in male 
and female SHR. However, it has been demonstrated 
that infliximab does not bind directly to TNF-α in mice 
[34], suggesting that the anti-inflammatory and beneficial 
effects may be off-target. Therefore, etanercept may be 
preferred to study the contribution of TNF-α in preclini-
cal models, since it has been shown to decrease TNF-α 
levels.

TNF-α induces inflammation, in part, via activation of 
NFκB signaling leading to increases in pro-inflammatory 
mediators, such as monocyte chemoattractant protein-1 
(MCP-1). Therefore, the effectiveness and specificity of 
etanercept in the current study was confirmed by meas-
uring decreases in TNF-α and MCP-1 with no effect on 
TACE or TGF-β. The impact of etanercept on immune 
cells and the source of TNF-α were not investigated in 
the current study. However, etanercept has been shown 
to decrease renal monocyte/macrophage infiltration in 
hypertension [18], and consistent with this we observed 
a decrease in MCP-1 excretion. T cells have also widely 
been linked to the development of hypertension and T 
cell production of TNF-α has been linked to the devel-
opment of angiotensin II-dependent hypertension [13]. 
Etanercept has been shown to both increase pro-hyper-
tensive Th17 cells [35, 36] and drive the expansion of 
anti-hypertensive T regulatory cells [37]. This differential 
impact on the T cell profile may account for the lack of a 
BP effect of etanercept in SHR.

Despite having no effect on BP, treatment with etaner-
cept markedly increased urinary excretion of creatinine 
and KIM-1, suggesting a role for TNF-α in the control 

of renal tubular health and function in male and female 
SHR. Consistent with our finding, etanercept treatment 
has been associated with at least three clinical cases 
of acute kidney injury and subsequent renal damage 
[38–40]. TNF-α is involved in regenerative processes as 
well as inflammatory, thus its inhibition may be blunt-
ing regenerative mechanisms which typically protect 
against injury [16, 41]. Interestingly, renal TNF-α has 
been shown to be important in limiting increases in BP 
responses to salt and Ang II [42, 43], further supporting 
a key role for renal TNF-α in maintaining homeostasis. 
TNF-α suppresses intra-renal angiotensinogen expres-
sion via miR-133a, a salt-sensitive microRNA [43]. Addi-
tional studies have further shown that TNF-α receptor 
type 1 (TNFR1) mitigates intra-renal angiotensinogen 
production in response to Ang II plus high-salt [44]. 
Therefore, increases in renal tubular injury may be medi-
ated by the loss TNF-α modulation of the intra-renal 
renin angiotensin system under normal physiological 
conditions in the SHR. Alternatively, this may be related 
to the effect of TNF-α on renal hypofiltration and diure-
sis [45]. Additional studies are needed to further under-
stand the role of TNF-α and etanercept on renal health 
and function.

In summary, while we did not observe the hypothe-
sized decrease in BP in SHR administered increasing dos-
ages of etanercept, we found indications of renal damage 
in both male and female receiving etanercept treatment. 
Etanercept (i.e., Enbrel) is a common pharmaceuti-
cal approved for the treatment of rheumatoid arthritis. 
Therefore, even a slim probability for renal injury among 
a large patient population represents a risk of morbidity 
for a substantial number of patients. Further investiga-
tion is required to better understand how etanercept is 
increasing creatinine and KIM-1 excretion.
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