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Abstract: Kidney diseases form part of the major health burdens experienced all over the world.
Kidney diseases are linked to high economic burden, deaths, and morbidity rates. The great
importance of collecting a large quantity of health-related data among human cohorts, what scholars
refer to as “big data”, has increasingly been identified, with the establishment of a large group
of cohorts and the usage of electronic health records (EHRs) in nephrology and transplantation.
These data are valuable, and can potentially be utilized by researchers to advance knowledge in
the field. Furthermore, progress in big data is stimulating the flourishing of artificial intelligence
(AI), which is an excellent tool for handling, and subsequently processing, a great amount of data
and may be applied to highlight more information on the effectiveness of medicine in kidney-related
complications for the purpose of more precise phenotype and outcome prediction. In this article, we
discuss the advances and challenges in big data, the use of EHRs and AI, with great emphasis on
the usage of nephrology and transplantation.

Keywords: artificial intelligence; machine learning; big data; nephrology; transplantation; kidney
transplantation; acute kidney injury; chronic kidney disease

1. Introduction

Kidney diseases, such as acute kidney injury (AKI) and chronic kidney disease (CKD) are
major medical and public health issues worldwide, associated with high death and morbidity rates,
together with great economic loss [1–6]. CKD is linked with a higher danger of argumentative outcomes,
like cardiovascular complications, death, decreased quality of life, and substantial healthcare resource
utilization [7–11], and it has been assessed that around 850 million individuals suffer different types
of kidney diseases globally [12,13]. If left untreated, CKD may evolve into end-stage kidney disease
(ESKD), which is associated with high mortality [14–16]. It is well-known that kidney diseases are very
much multifactorial, with overlapping and complex clinical phenotypes, as well as morphologies [17].
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The global distribution of nephrologists usually differs from one country to another, with bigger
differences in its overall capacity [18]. Various nations across the world have established surveillance
systems for kidney-related infections. Despite such attempts, the literature highlights that surveillance
systems within third world countries are still not very strong [19]. In certain areas of some countries,
basic records offices for transplantation and dialysis, as well as expert pathologists, are not even
available [18,20]. Given how major gaps are always found in the main workforce in nephrology,
the current eminence of kidney health management and research evidence in nephrology needs to be
strengthened globally [21].

Traditionally, the randomized controlled trial (RCT) has always been used as the point of reference
for offering evidence-based treatment. The numerical formulae applied in analyzing randomized
control data have equally offered essential insights from numerous observational data. In the past
few years, great emphasis has been placed on the pragmatic RCT, an essential component of real
global research, which is applied when evaluating the great interventions within the actual clinical
setting based on a great amount of samples so as to stimulate their individual practical value. A great
amount of differences have been reported within nephrology, as well as some other relevant specialties.
For instance, the literature indicates that nephrology trials were very limited in number and possessed
minimally optimal features of high-quality designs [22]. Despite the fact that the already existing
studies, as well as implemented works, have made major additions to a highly reliable prognostication,
as well as an extensive understanding of the general histologic pathology, there is still a great amount
of work which needs to be undertaken, as well as specific problems to be solved. The general capacity
for undertaking cohort studies that involve a large sample size or Rapid Control trial is very much
present across various parts of the globe, and has thereby resulted in the absence of research evidence
within nephrology. In addition, limited activity in kidney research has impacted the evidence base for
the treatment of kidney diseases, resulting in a lack of useful surrogate end-points for progression
from the early stages of kidney disease-hindered trials [14,15]. On the same note, a great amount of
cohort data could also be applied in generating relevant hypotheses and provide major insights into
the etiology, pathogenesis, and prognosis of kidney diseases [23,24].

Those needs that are classified as unmet require provision of some ample spaces for the purpose of
imagination in relation to leveraging the strength associated with big data, as well as relevant artificial
intelligence (AI) to improve the overall status of patients with kidney diseases [25]. In this article,
we discuss the big data concepts in nephrology, describe the potential use of AI in nephrology
and transplantation, and also encourage researchers and clinicians to submit their invaluable
research, including original clinical research studies [26–30], database studies from registries [31–33],
meta-analyses [34–44], and artificial intelligence research [25,45–48] in nephrology and transplantation.

2. Big Data in Nephrology and Transplantation: Registries and Administrative Claims

Table 1 demonstrates known and commonly used databases that have provided big data in
nephrology and transplantation [49–51]. For example, the United States Renal Data System (USRDS)
is recognized as a state reconnaissance system that has the responsibility of collecting, analyzing,
and subsequently distributing information regarding CKD and ESKD, all based on numerous big
datasets. By delivering the yearly data report, the USRDS continuously tracks both the epidemiologic
and economic burden linked to kidney diseases [52]. An important database in transplantation
in the United States is the United Network for Organ Sharing (UNOS). The Organ Procurement
and Transplantation Network (OPTN) data are linked by UNOS to the Social Security Death Master
File for the purpose of augmenting ascertainment of different groups of candidates, as well as relevant
deaths. The final data are attainable by different groups of researchers, and have always been applied
in various studies regarding transplantation [50]. In addition to these databases in the United States,
other countries worldwide also have big data within nephrology for researchers, such as the National
Kidney Disease Surveillance Program in Ireland [53], the surveillance project on CKD management in
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Canada [54], and the China Kidney Disease Network (CK-NET), a comprehensive CKD surveillance
system for China [55].

Table 1. Nephrology and transplant databases and organizations.

Renal and Transplant Databases Organizations

• United States Renal Data System (USRDS)
(https://www.usrds.org)

• Organ Procurement and Transplantation Network (OPTN)
(https://optn.transplant.hrsa.gov)

• United Network for Organ Sharing (UNOS)
(https://unos.org)

• Scientific Registry of Transplant Recipients (SRTR)
(https://www.srtr.org)

• National Health and Nutrition Examination Survey Database
(NHANES) (https://www.cdc.gov/nchs/nhanes/index.htm)

• Chronic kidney disease database (CKDd)
(http://www.padb.org/ckddb/)

• National Death Index (NDI)
(https://www.cdc.gov/nchs/ndi/index.htm)

• Nephrotic Syndrome Study Network (NEPTUNE)
(https://nephcure.org/2015/12/nephrotic-syndrome-study-
network-neptune/)

• National Inpatient sample (NIS) (https://www.hcup-us.ahrq.
gov/news/exhibit_booth/nis_brochure.jsp)

• Polycystic Kidney Disease Consortium Data Base (PKD)
(https://pkdcure.org/research-medical-professionals/pkdoc/)

• Kidney Early Evaluation Program Data base (KEEP)
(https://www.kidney.org/news/keep)

• Diabetes mellitus Treatment for Renal Insufficiency
Consortium Database (DIAMETRIC)
(https://www.diametric.nl/diametric-database/)

• Center for Medicare And Medicaid Services (CMS)
(https://www.cms.gov)

• Jackson Heart Study (JHS)
(https://www.jacksonheartstudy.org)

Gene Based Databases:

• CKD- Gen Consortium Database
(https://ckdgen.imbi.uni-freiburg.de)

• Genome Wide Association Studies (GWAS)
(https://dceg.cancer.gov/research/how-we-study/genomic-
studies/gwas-overview)

• Nephro Seq (https://www.nephroseq.org/resource/login.html)
• Renal gene Expression Database (http://rged.wall-eva.net)
• Humana Kidney and Urine Proteome Project (HKUPP)

(http://www.hkupp.org)
• Urine protein Biomarker Database

(http://122.70.220.102/biomarker)
• Urinary Peptidomics and Peak- maps

(http://www.padb.org/updb/)
• Kidney and Urinary Pathway Knowledge Database (KUPKB)

(http://www.kupkb.org)

• ESRD Networks (https://esrdnetworks.org)
• American Society of Nephrology (ASN)

(https://www.asn-online.org)
• National Kidney Foundation (NKF)

(https://www.kidney.org)
• International Society of Nephrology (ISN)

(https://www.theisn.org)
• American Transplant Congress (ATC)

(https://atcmeeting.org)
• Renal Physician Association (RPA)

(https://www.renalmd.org)
• International Society of Peritoneal Dialysis (ISPD)

(https://ispd.org)
• National Renal Administrators Association (NRAA)

(https://www.nraa.org/home)
• Kidney and Urology Foundation of America

(http://www.kidneyurology.org)
• American Kidney Fund

(https://www.kidneyfund.org/about-us/)
• American Society of Artificial Internal Organs

(https://asaio.org/about/)
• Organ Procurement Organization (OPO) (https:

//unos.org/transplant/opos-increasing-organ-donation)
• Acute Dialysis Quality Initiative (ADQI)

(http://www.adqi.net/)
• National Institute of Health (NIH)

(https://www.nih.gov)
• National Institute of Diabetes and Digestive

and Kidney Diseases (https://www.niddk.nih.gov)
• National Center for Health Statistics (NCHS)

(https://www.cdc.gov/nchs/about/index.htm)

Numerous networks of international collaboration, like the International Network of CKD
cohorts [56], the Therapeutic Evaluation of Steroids in IgA Nephropathy Global study [57],
and the Chronic Kidney Disease Prognosis Consortium [58] have grown immensely within the last few
years. There are possible advantages of introducing a traditional data element that are linked to kidney
infections, like escalating the overall power of the groups which are under-represented [59]. There is,
however, great need to address numerous challenges, like standardization of data, identification of
the patient, plus some other additional infrastructure-related challenges. Additionally, the cadre of
genomics is developing at a very rapid rate towards realizing an analysis of single cells, and subsequent
great advances within metabolomics and proteomics have been developed within the past few years.
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A great amount of progress has equally been realized within technological developments within
the areas of large-scale molecular data generation in various databases that are gene-based (Table 1).
The most recent advancements in technology have made it possible for us to produce larger amounts
of data, more specifically regarding the omics data. Further development of somehow less expensive
genotype arrays and the subsequent presence of samples within biobanks made it possible to undertake
genome-wide association studies among numerous groups of patients, offering highly essential insights
into the great risk factors and the pathogenesis of multiple kidney diseases [60–63].

Within nephrology, numerous consortia-collecting biopsy biobanks of kidney tissue have been
started to undertake such forms of collaborative study. Several initiatives that are aimed at extensive
characterization of the relevant kidney biopsies for various groups of kidney diseases subtypes
have subsequently been launched, comprising of the NEPTUNE (Nephrotic Syndrome STudy
Network), ERCB (European Renal cDNA Bank), EURenOmics, C-PROBE (Clinical Phenotyping
and Resource Biobank), PKU-IgAN, and more recently, TRIDENT (for diabetic nephropathy), CureGN
(for glomerulopathies), and the NIDDK (National Institute of Diabetes and Digestive and Kidney
Diseases) Kidney Precision Medicine Project (KPMP) [64].

Big data within the medicine field might offer the opportunity to envision patients suffering from
kidney diseases in a more holistic manner, using numerous lenses, each of which adequately presents
the great opportunity of studying various scientific queries. Such data within the big databases might
subsequently comprise of the general administrative health-related data, biometric data, biomarker
data, as well as imaging, and might subsequently come from various sources, comprising of electronic
health records, biobanks, reports in the internet, and various clinical registries [65]. These data
from the large databases are collected and updated overtime. These data are valuable and can be
used by researchers to answer numerous research questions and advance knowledge in nephrology
and transplantation [66–68].

3. Using Electronic Health Record Data in Nephrology

Two major events have been reported within the last 10 years that seem to have changed the whole
situation. To begin with is making it possible to digitalize all relevant medical information—more specifically,
the initiation of EHRs that have the medical histories of the patients—and facilitate the processing of
medical information using computers. This helps to make information-processing become automated
by the use of given specialized software. EHRs have been greatly utilized with major regularity, clinical
informatics strategies have subsequently been refined, and subsequently, the EHR field enabled [69,70].

The wide application of EHRs, when put together with the relevant novel of big data, tends
to create some forms of unique opportunities for the purpose of nephrology research, as well
as improvement in care for individual patients who might be suffering from kidney complications
and transplantation. The data which is there within the EHR is considered big insofar as its volume is
concerned. Such interventions have resulted in a new era of big data which has subsequently fueled
precision medicine. These types of approach have already indicated an improved level of diagnosis,
risk assessment, as well as treatment and management of numerous health conditions. With medicine
getting digitalized, a great amount of data has since been developed from all aspects of health care,
comprising the laboratory tests, EHR, together with medical imaging.

For instance, in the instance of electronic AKI, the automated diagnostic strategy tends to create
a great opportunity to initiate predictive strategies, optimize the relevant AKI alerts, and subsequently
trace AKI events across various institutions, as well as administrative datasets. The growth in
the adoption of EHR and subsequent maturation of the relevant clinical informatics techniques might
provide some sort of unique opportunity to advance the general predictive capabilities. Immediately,
AKI has been properly diagnosed within real time, and several EHR-enabled interventions have
become so viable. One of such great prospects is actually the prediction of detecting events prior to
their occurrence [71]. AKI events might temporarily get anchored within the EHR, which develops
a pre-disease phase of care, having the information which had accumulated before the development of
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AKI. With a greater amount of content, high-throughput strategies can be applied to such a group of data
so as to help in identifying a form of pre-AKI signal, which can subsequently assist in discriminating
between patients who are of high risk and low risk for the AKI. The capability to predict AKI risk in this
manner might subsequently have some forms of dramatic impact, as presently there is no scientifically
proven treatment for AKI once one develops such conditions [72]. As patients who are considered
to be of high risk get identified, the extent of care can get modified, and further strategies for harm
prevention implemented. In the long run, such groups of patients, institutions, and population-based
techniques will result in better long- and short-term outcomes for the respective hospitals, patients,
and the whole of the healthcare system. Despite the fact that potential barriers are always there,
and several nuanced groups need to be taken into consideration, such approaches that are EHR-enabled
have the ability to greatly improve AKI-associated knowledge and care.

Patients suffering from kidney complications are reported to have the highest level of heterogeneity
in manifestation of the disease, treatment response, and overall progression. The growth in big data
actually tends to stimulate the general boom of artificial intelligence that is a perfect tool that
helps in handling, and also processing the big data. AI can assist in shedding light on the specific
accuracy of medicines used to treat kidney diseases, for outcome prediction, and also to gain a more
precise phenotype.

4. Artificial Intelligence in Nephrology and Transplantation

AI presently shows a very important function in nearly all areas of the day-to-day lives of human
beings, as well as within different academic disciplines. Based on the fact that there has been growth in
the power of computers, developments in techniques and methods, and the overall blast of the quantity
of medicine, data has never been an exemption. Literature clarifies that artificial intelligence can be
used in disease risk assessment. Actually, disease risk assessment has a very important influence on
the general prognosis, as well as clinical intervention strategies. Accurate and rapid assessment can
assist clinicians in determining the conditions of the patient, out of which optimal treatment strategies
can be implemented. Links between prognosis and risk factors of the diseases are very complex.
The same risk factors can be experienced within different groups of diseases, and a single disease can
actually be composed of several risk factors. In such case, the links between the known risk factors
and the disease has very strong correlativity, instead of simple causality. Artificial intelligence can hence
be applied in doing disease risk assessment in order to understand the main factors linked to disease
prognosis so as to offer effective treatment for tertiary prevention of the disease. One of the important
sections of AI is machine learning, which is characterized as the study of algorithms and statistical
models that computer systems utilize to learn from sample data and previous experience without being
explicitly programmed to achieve particular assignments. With the ability to identify obscure patterns in
the data, we can use machine learning to solve many problems, including assessing relationships of two
variables, creating predictions based on baseline characteristics, identifying objects with comparable
patterns, and incorporating subjects by specific criteria. Machine learning techniques have the capacities
of managing complex datasets and tremendous numbers of variables that are exceeding the capability
of classical statistical methods [17]—see Figure 1A. Machine learning algorithms are usually utilized
without initiating as many presumptions of the underlying data. In addition, a machine-learning
method can determine complex patterns of health trajectories of immense numbers of characteristics
and patients, which has exhibited high predictive certainty, and been confirmed and replicated with
various validation investigations [73]. Well-known machine-learning algorithms include the artificial
neural network (ANN), random forest, gradient boosting trees, and support vector machine [17].
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Figure 1. (a) Relationships between artificial intelligence, machine learning, and deep learning.
(b) Types of machine learning. CNN, convolutional neural network; RNN, recurrent neural network.

Inspired by the idea of mimicking the biological structure of human brains, deep learning is
a subfield of machine learning based on ANN [74]. Deep-learning models can learn many levels
of data design with a multiple-processing-layers model structure, attaining more powerful model
performance. This cutting-edge technology has significantly changed the paradigm of visual object
recognition, speech recognition, and many other domains, such as genomics and drug discovery.
Deep learning techniques are increasingly being applied to biomedical data, from image processing
to genomic data analysis [75]. Such methods might outperform pathologists’ fibrosis scores from
histological renal biopsy images [76]. Well-known techniques include the convolutional neural network
(CNN), fully connected neural network, generative adversarial network (GAN), deep reinforcement
learning, and recurrent neural network (RNN) [17,77], shown in Figure 1B. AI-based clinical decision
support systems (CDSS) can be implemented employing the expert system strategy, data-driven
approach, or an ensemble approach by coupling both. An expert system consolidates a knowledge
base containing a set of rules for specific clinical scenarios, and the initial rule set may be acquired
from domain experts or learned from data through machine learning algorithms [72,78–80].

AI has recently been adopted for the prediction, diagnosis, and treatment of kidney
diseases [76,81–85], as shown in Table 2. For example, a prediction model based on the combination
of a machine learning algorithm and survival analysis has recently developed and can stratify
risk for kidney disease progression among patients with IgA Nephropathy [86]. For AKI research,
Tomasev et al. [83] recently used deep-learning methods to make a continuous prediction of AKI by
developing a RNN model on the sequential health record data of >700,000 veterans, allowing physicians
to practise with adequate data and sufficient time. In addition, regarding utilization of ANN and CNN
methods, Kolachalama et al. [76] recently provided a perspicacity into the association of pathological
fibrosis identified from histologic images with clinical phenotypes for patients with CKD, helping
the diagnostics and prognostics of these phenotypes. Subsequently, there has been an increasing
number of AI studies, with great emphasis on the usage of nephrology and transplantation [85,87–89].
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Table 2. Selected articles reporting the utilization of artificial intelligence, machine learning, or deep learning in the field of nephrology and kidney transplantation.

Study Country Study Type N Subjects Intervention

Zhou, 2020 [90] China R 212 Prediction of ARF and paraplegia after TAAAR Machine learning classification models

Xu, 2020 [91] USA R 37,486 Identification the sub-phenotypes of AKI Memory network-based deep learning approach

Song, 2020 [92] USA R 14,039 Longitudinal Risk Prediction of CKD in Diabetic Patients Temporal-enhanced gradient boosting machine

Rashidi, 2020 [93] USA P, R 101 Early recognition of burn- and trauma-related AKI Artificial intelligence /machine learning algorithms

Morid, 2020 [94] USA R 22,542 Prediction of adverse events in critical patients with AKI Temporal pattern detection

Luo, 2020 [95] China R 519 Prediction of severe pneumonia during post-transplant hospitalization
in recipients of a deceased-donor kidney transplant Machine learning

Li, 2020 [96] China P 1952 Accuracy improvement of GFR estimation Artificial neural network

Lei, 2020 [97] China R 1173 Prediction of AKI after liver cancer resection Machine learning algorithms

Kate, 2020 [98] USA R 44,691 Prediction of AKI in hospitalized patients Machine learning predictive models

Kang, 2020 [99] South Korea R 1571 Prediction of mortality in CRRT patients Machine learning algorithms

Zimmerman, 2019 [100] USA R 23,950 Prediction of AKI following ICU admission Machine learning models

Zhang, 2019 [101] China R 2456 Prediction of volume responsiveness in oliguric AKI Machine learning models

Xu, 2019 [102] USA R 58,976 Prediction of mortality in patients with AKI in the ICU Machine learning models

Xiao, 2019 [103] China R 551 Prediction of CKD progression Machine learning tools

Mark, 2019 [104] USA R 100,000 Prediction of survival of kidney transplant recipients from UNOS Machine learning models

Bae, 2019 [105] USA R 120,818 Prediction of survival after deceased donor kidney transplant from
OPTN database Machine learning methods

AKI, acute kidney injury; ARF, acute renal failure; AUC, area under curve; CKD, chronic kidney disease; CRRT, continuous renal replacement therapy; GFR, glomerular filtration rate; ICU,
intensive care unit; OPTN, Organ Procurement and Transplantation Network; P, prospective; R, retrospective; TAAAR, thoracoabdominal aortic aneurysm repair; UNOS, United Network
for Organ Sharing.



J. Clin. Med. 2020, 9, 1107 8 of 14

5. Potential Directions and Future Scope

In order to reinforce the usage and subsequent transformation of AI as well as data–based
CDSSs in nephrology, AI, as well as big data, offers the chance to actually source knowledge from
expert knowledge and big data and subsequently transform it into some form of intelligent system,
which can be applied in risk classification, disease diagnosis, drug discovery, and prognostic evaluation,
among some other things. AI might be useful in establishing the type of kidney disease and subsequently
help in solving problems related to survival analysis of the patients who have gone through kidney
transplants [106–114]. Renal biopsy images may be a good data base for application of machine
learning algorithms.

Despite having numerous imperfections, big data, as well as artificial intelligence have been
applied in the field of medication from numerous parts [115,116]. There are numerous possible
guidelines of using big data and artificial intelligence in nephrology that requires greater attention,
as well as further consideration [74,78,117–125].

6. Conclusions

In summary, the present status of kidney health care, and subsequently, research evidence in
nephrology requires strengthening. Big data research that is problem-driven in nephrology is very
much essential in promoting the interdisciplinary incorporation and subsequent improvements in
kidney disease, and it may subsequently offer some greater insights to further studies in the future.
Within the present era of using big data, it is strongly believed that big data and artificial intelligence
will greatly reshape research done on kidney disease and consequently improve the general clinical
practice of nephrology in the near future.
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