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Abstract

Lung cancer is the most common fatal malignancy in adults worldwide, and non-small cell lung 

cancer (NSCLC) accounts for 85% of lung cancer diagnoses. Computed tomography (CT) is 

routinely used in clinical practice to determine lung cancer treatment and assess prognosis. Here, 

we developed LungNet, a shallow convolutional neural network for predicting outcomes of 

NSCLC patients. We trained and evaluated LungNet on four independent cohorts of NSCLC 

patients from four medical centers: Stanford Hospital (n = 129), H. Lee Moffitt Cancer Center and 

Research Institute (n = 185), MAASTRO Clinic (n = 311) and Charité – Universitätsmedizin 

(n=84). We show that outcomes from LungNet are predictive of overall survival in all four 

independent survival cohorts as measured by concordance indices of 0.62, 0.62, 0.62 and 0.58 on 

cohorts 1, 2, 3, and 4, respectively. Further, the survival model can be used, via transfer learning, 

for classifying benign vs malignant nodules on the Lung Image Database Consortium (n = 1010), 
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with improved performance (AUC=0.85) versus training from scratch (AUC=0.82). LungNet can 

be used as a noninvasive predictor for prognosis in NSCLC patients and can facilitate 

interpretation of CT images for lung cancer stratification and prognostication.

Introduction

Lung cancer is the most common fatal malignancy in adults worldwide, and non-small cell 

lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses1. Over 1.6 million people 

die per year as a result of lung cancer and the 5-year survival rates remain low2. Computed 

tomography (CT) has been a major diagnostic tool to enable risk assessment of lung cancer 

in both clinical trials and clinical practice3–5. CT imaging provides in vivo capabilities to 

measure the extent and location of lung lesions and information on morphological 

manifestation guiding therapeutic decisions for lung cancer patients6. Despite these 

advances, qualitative analysis of CT images is limited to what is visible by the human eye 

causing intra- and inter-reader variability influencing care across clinical centers. There 

remains an unmet need for robust, fast interpretation of CT images to improve patient 

stratification, accurate clinical prognostication and treatment selection.

Quantitative image analysis has demonstrated that radiological images, such as CT scans of 

lung cancer patients and beyond, contain more minable information than what is observed 

by radiologists7,8,17–19,9–16 Examples include lung nodule segmentation20, lesion 

detection21, and clinical outcome classification11,22,23. Recent advances in machine 

learning, especially convolutional neural networks (CNN)24–26, have led to a class of 

powerful models that show promise to achieve accurate diagnosis and improve medical 

decision-making27. The use of CNN-based models on imaging data can identify predictive 

features with clinical importance previously not appreciated or not visible by the human eye. 

However, to date, the lack of large publicly available clinical imaging cohorts with follow-up 

data has been an impediment the development and validation of CNN-based models. 

Recently, however, Ardila et al.28 has developed an end-to-end deep learning model for 

prediction of cancer risk using low-dose screening lung CTs using the very large National 

Lung Screening Trial (NLST)29,30 cohort and has shown performance at par or better than 

trained radiologists.

In this paper, we focus on a different problem – predicting overall survival for patients with 

confirmed NSCLC. To that end we develop a shallow convolutional neural network, 

LungNet, for analyzing CT images across multi-institutional cohorts. Our results show that 

LungNet can predict clinical outcome better than clinical models in multi-institutional 

cohorts enabling accurate stratification of patients. Through a transfer-learning framework 

(Fig. 1), we also show that a model pretrained on a survival prediction task can be useful on 

the nodule malignancy prediction task.
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Results

Patient demographics in all cohorts

Examination of the clinical characteristics of our four cohorts shows heterogeneity (Table 1): 

The four cohorts have different histology with Cohort 1 containing more adenocarcinoma 

(76.7%) than Cohort 2 (57.8%), Cohort 3 (10.3%) and Cohort 4 (42.9%), one-way chi-

square test with cohort 1 as reference p-values: 2.4e-6, 2.9e-58, 1.2e-16, and cohorts 1, 2 and 

4 have longer average survival follow-up times (889 days 1021 days, and 944 days, 

respectively) compared to Cohort 3 (609 days), Welch t-test p-values: 3.0e-4, 9.1e-19 and 

5.0e-5. Next, the coefficient of variation of survival times in cohort 2 (0.49) is quite different 

from that of the remaining cohorts (0.75 in each case). For the benign vs malignant 

classification task, we used the LIDC-IDRI cohort of lung lesions, which contains 

malignancy scores annotated by radiologists, for n=1010 patients. For a subset of these 

patients (n=131), the diagnosis was confirmed by biopsy; therefore the ground truth labels 

for malignancy are available in these cases. In this subset of LIDC-IDRI cohort with biopsy-

proven diagnosis, there were 37 benign cases and 94 malignant cases. Malignant cases 

included NSCLC patients (n = 43) and malignant metastases (n = 51) from 11 cancer types, 

including head and neck cancer, colon cancer and metastatic melanoma. The LIDC-IDRI 

contains lung nodules with diameters ranging from 3 mm to 30 mm. The inclusion of 

survival cohorts and malignancy labels of LIDC-IDRI allows us to comprehensively evaluate 

the predictive performance for diagnosis and prognosis of lung cancer patients (Fig. 1).

LungNet predicts survival outcome across institutions

First, we evaluated whether CNNs can be built to predict overall survival across multiple 

cohorts. We built two versions of LungNet, one using images only as the input, and the other 

incorporating clinical variables of age, sex, histology and cancer stage along with the CT 

images. Both versions of LungNet were evaluated in two stages. First, the model was trained 

on two cohorts and tested on the third in a round robin fashion. The smaller Cohort 4 was 

kept aside in this phase. Next, the model was trained on cohorts 1, 2 and 3 together, and 

tested on Cohort 4. In the first phase, with round robin training and evaluation, LungNet 

achieved validation CI of 0.62 on cohorts 1, 2 and 3. In comparison, a Cox proportional 

hazards model trained using clinical features of age, sex, histology and cancer stage with 

one-hot encoding for sex, histology and stage as covariates, achieved CIs of 0.69, 0.58 and 

0.55, respectively. The risk scores predicted by LungNet also stratified patients into high risk 

and low risk groups. The groups showed significant separation in terms of Kaplan-Meier 

curves for all three cohorts, with two-sided log-rank P values: 2.59e-03, 7.82e-05, 1.10e-05 

on cohorts 1, 2 and 3, respectively. The clinical features only model, by comparison, 

achieved much poorer stratification, with log-rank P values: 7.92e-03, 9.98e-03, and 

6.90e-01 on cohorts 1, 2 and 3, respectively (Fig. 2b). While the clinical only model 

outperformed the images-only LungNet on cohort 1 in terms of CI, the LungNet model 

incorporating clinical features performed better, achieving CI of 0.73 with P=5.97e-03 on 

cohort 1. In cohorts 2, and 3, however, incorporating clinical features did not improve the 

performance of the images-only LungNet model. In the second stage in Cohort 4, we 

obtained similar results: the images-only LungNet model achieved CI of 0.58 with 

significant stratification into high and low risk categories (log-rank P value: 5.15e-02), 
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outperforming a clinical only model (CI = 0.52, log-rank P value: 9.33e-01) and thus adding 

clinical data did also not improve the prognostic performance in Cohort 4.

Prediction of survival for early stage cancers

LungNet was effective in predicting survival for early stage cancers, defined as stage 1 and 

stage 2 NSCLC. Using the images-only LungNet model on Cohort 1, LungNet achieved CI 

of 0.59 (log-rank P value= 2.81e-02 in stratifying high risk vs low risk patients), and 

incorporating the clinical features improved the performance to CI = 0.74 (log-rank P = 

3.92e-03). On cohorts 2 and 3, the images-only LungNet model achieved CIs of 0.61 

(P=9.24e-03) and 0.67 (P=1.70e-05) on cohorts 2 and 3, respectively (Fig. 3), while adding 

clinical features did not improve performance of LungNet on these cohorts. Since the 

number of early stage cancers was only 15 in Cohort 4, we did not assess its performance on 

early stage cancers for Cohort 4.

Comparison of LungNet with radiomics

Next, we compared LungNet with prediction of overall survival using radiomics features. 

Under the same experimental setting, our models based on radiomics features performed 

worse than LungNet for each of the three cohorts, achieving CI = 0.52, 0.53 and 0.55 for the 

cohorts 1, 2 and 3 respectively.

Transfer learning between lung cancer overall survival and lung lesion malignancy

We assessed if transfer learning – fine-tuning the model pretrained for the survival 

prediction task for predicting nodule malignancy – improves the performance of the model 

in the malignancy prediction task. Our experimental results showed that applying LungNet 

via transfer learning led to a significant improvement (P = 0.05 31) for predicting 

malignancy scores (AUC = 0.85) over the result without applying transfer-learning (AUC = 

0.82) (Fig. 4). Choosing a threshold to ensure sensitivity of 0.8, we obtain a specificities of 

0.3 and 0.36 with and without transfer learning, respectively. Next, using transfer learning 

we achieved an AUC of 0.70 for predicting biopsy proven malignancy significantly 

outperforming (P = 0.0326) the model without transfer learning (AUC = 0.64). Again, 

choosing a threshold to ensure sensitivity of 0.8, we obtain a specificities of 0.54 and 0.64 

with and without transfer learning, respectively. Overall, we found that transfer learning is 

effective and helpful in improving prediction performance. Note that our tasks of survival 

prediction and malignancy prediction are likely strongly related to each other; however the 

outputs (hazard ratio for survival prediction, class probability for malignancy prediction) and 

loss metrics used for training are very different (Cox regression loss for survival, cross-

entropy loss for malignancy prediction).

Visualization of LungNet in 2D space

To better understand the predictions of LungNet, we used t-SNE32 to visualize the decision 

map of LungNet (Fig. 5). We observed that high-risk patients are clustered away from the 

low-risk patients. Visual inspection of representative cases showed that low-risk lung cancer 

patients appeared to contain lesions with larger regularity and uniformity around nodule 

edges compared to high-risk patients who exhibited lesions with sharp and irregular margins. 
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Overall, note that the decision boundary between high risk and low-risk samples in the 2D t-

SNE embedding is highly nonlinear, and there is significant overlap among them, pointing to 

significant heterogeneity in lung cancer appearance between patients10,33,34.

Discussion

We developed and validated a shallow CNN, LungNet, to automatically predict the overall 

survival of individuals using pre-treatment CT images. Despite being trained on cohorts 

from various clinical centers with demographical differences, the outcome of LungNet 

successfully stratified the overall survival of patients in each survival cohort. Additionally, 

we evaluated LungNet using transfer learning and we demonstrated that pre-training a model 

for prognostication improves the performance of the malignancy prediction task.

We propose LungNet as a shallow CNN with only seven layers, in contrast to many previous 

approaches developed on non-biomedical images from the ImageNet database24,27,35. 

Previous CNN architectures such as Inception36, ResNet and Inception-ResNet37 and 

DenseNet38 have shown good performance for image classification; however, these deep 

models also require large databases for training millions of parameters (e.g. Inception has 22 

layers and ResNet can have up to 152 layers) from scratch. 3D variants of these networks 

require even more data, and even large datasets such as UCF-101 (>13,000 action instances), 

HMDB-51 (>7,500 videos) and ActivityNet (>28,000 action instances) may not be sufficient 

to train them from scratch 39, These are typically not available for most biomedical 

applications.

Transfer learning can be an effective tool for addressing the dearth of data. However, it has 

been demonstrated in the literature that transfer learning from natural images to medical 

images may not provide much benefit over training a smaller network from scratch 40. 

Transfer learning within the ambit of medical images can, however, be beneficial. For 

example, the task of predicting biopsy-proven malignancy using deep learning can be 

difficult due to the scarcity of ground-truth labels. In this paper, we demonstrated the use of 

transfer learning, leveraging the survival data in one cohort for improving the prediction of 

malignancy in another cohort (Fig 4). Specifically, we found that training LungNet on 

overall survival data of 625 patients resulted in improved accuracy for malignancy 

classification on a different lung lesion cohort of 1010 patients using 10-fold cross 

validation. Although previous work with dedicated models for malignancy classification 

have higher predictive performance41, this use of transfer learning shows that a model can be 

trained on the prognosis task and subsequently improve the performance when tested on the 

malignancy prediction task.

Recently, Ardila et al.28 has developed an end-to-end deep learning model for prediction of 

cancer risk using low-dose screening lung CTs using the very large National Lung Screening 

Trial (NLST)29,30 cohort and has shown performance at par or better than trained 

radiologists. In our work, we did not consider the problem of nodule detection and 

segmentation, which has been extensively studied in the literature in recent years 42–46, 

instead relying instead on segmentations done by radiologists. We focus on a different 

problem – predicting overall survival for patients with confirmed NSCLC. In addition, we 
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show that the model pretrained on the survival prediction task can also be useful for the 

malignancy prediction task as well.

Hosny et al.47 explored the use of deep learning for a coarse prognostication task: predicting 

dead or alive status for lung cancer patients 2 years after start of treatment, showing AUC 

around 0.70, with a retrospective multi-center cohort (n=1194). In contrast, our paper 

focuses on the more challenging task of predicting hazard ratios for each patient. Of course, 

the predicted hazard ratios can be used to stratify patients into high and low risk groups and 

the corresponding KM curves showed significant separation for every cohort. Overall, the 

images-only LungNet model shows consistent performance across the different cohorts, 

outperforming a clinical only model; however, in cohorts where the clinical variables are 

strongly predictive of survival, they can be effectively incorporated into LungNet to achieve 

better performance for prognostication than a clinical only model. Overall, we found that the 

results of LungNet were predictive of overall survival on all four survival cohorts.

Currently, molecular profiles are used for lung cancer prognostication48–51. LungNet 

however may be used as a noninvasive, fast and cost-effective complement to the use of 

molecular biomarkers in predicting prognosis, especially since lung CT scans are typically 

available and they may be able to capture intratumor heterogeneity better than single 

biopsies. Thus, quantitative imaging can complement molecular phenotypes obtained from 

biopsies, and in situations where biopsies are not possible, quantitative imaging can be an 

alternative.

In this paper, we have focused our efforts on predicting overall survival. Other oncological 

endpoints such as progression free survival, local control and metastases free survival are 

also of interest in treating cancer patients. LungNet can be extended to predict other 

endpoints using transfer learning. If patients can be accurately stratified into high and low 

risk categories with respect to overall survival or other oncological endpoints, their treatment 

can be tailored to their predicted risks. For example, treatment may be intensified for high 

risk patients with higher radiation doses or additional cycles of chemotherapy, while de-

intensifying treatment for low risk patients. This can lead to improved quality of life and 

better clinical outcomes for both high and low risk patients.

Our study has the following limitations. First, one of the inputs to our models is a binary 

nodule mask created by manual nodule segmentation. The tumor mask delineations for 

patients in different cohorts were done by different radiologists. We did not assess the 

impact of inter-reader variability of segmentations on our performance. However, we use 

random crops as a data augmentation step during training, which introduces variation in 

segmentations, and therefore, we expect our models to be robust to minor variability of 

segmentations. Secondly, we did not assess the effect of variability in CT acquisition 

parameters across patients and institutions on the performance of our models. However, the 

data augmentation step of random brightness shifts during training is expected to make our 

models robust to variability in CT acquisition parameters. Indeed, the results we obtain with 

our rigorous validation strategy with round-robin training and validation on cohorts 1, 2 and 

3, followed by validation on a fourth external cohort, suggests that our models are robust to 

variation in segmentations and CT acquisition parameters.
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In conclusion, we developed LungNet, a CNN that uses pretreatment CT imaging for 

prediction of lung cancer overall survival and nodule malignancy. The performance of 

LungNet highlights the potential of using CNNs to stratify patients into high and low risk 

groups based on their CT images. While we have focused on the stratification of patients 

into only two risk groups, the output of LungNet is a risk score which can be used to stratify 

patients into three or more risk groups (e.g., high, medium, low) as well, depending on 

clinical need and setting. Moreover, our transfer learning strategy offers an efficient means 

to model multiple patient cohorts to address two different tasks: the diagnostic task of 

malignancy prediction and the prognostic task of survival prediction. Based on its 

performance on multiple cohorts, we expect LungNet to generalize to other institutional 

cohorts as well.

Materials and Methods

Study cohorts

This multi-institutional study was approved by the institutional review board of each 

participating institution, and conducted in compliance with the Health Insurance Portability 

and Accountability Act (HIPAA), with all patient records deidentified before analysis. For 

model development and validation, we obtained pretreatment CT images from three 

unrelated institutions: Cohort 1 from Stanford Hospital (n = 129 patients), Cohort 2 from H. 

Lee Moffitt Cancer Center and Research Institute (n = 185 patients) and Cohort 3 from 

MAASTRO Clinic, The Netherlands (n = 311 patients).. The subjects in Cohort 1 were 

selected from a pool of NSCLC patients referred for surgical treatment between 2008 and 

2012 with diagnostic CT performed prior to surgical procedures. Cohort 2 included patients 

with diagnosed primary tumors who underwent surgical resection and collected contrast-

enhanced CT scans obtained within 60 days of the diagnosis between years 2006 and 2009. 

Cohort 3 comprised patients with confirmed primary tumors who received surgery. We also 

obtained CT images from a fourth independent institution: Cohort 4 from Charité – 

Universitätsmedizin, Berlin (n = 84 patients) for final external validation of a fully 

developed model. For all these cohorts, patients with synchronous malignancies or receiving 

palliative treatment were excluded. Patients’ overall survival, age, histological subtypes, 

cancer staging (I, II, III, and IV), and gender information were collected from respective 

institutions. The CT acquisition parameters in the different cohorts are summarized in Table 

2.

Next, the public Lung Image Database Consortium image collection (LIDC-IDRI)52 cohort 

was included to measure the performance of malignancy prediction using transfer learning. 

The LIDC-IDRI cohort provides lung nodule CT images with malignancy scores (i.e., 0 to 4, 

indicating an increasing degree of malignancy status) assessed by four radiologists (n = 

1010). For a subset of patients (n=131), the diagnosis was confirmed with biopsy, and 

therefore, the ground truth labels for malignancy are available for these cases. We 

dichotomized the radiologists’ malignancy scores into malignant (score 3 or 4) and benign 

(score 0 and 1) as previously described22, resulting in 880 benign nodules and 495 malignant 

nodules. These binary labels (benign vs malignant) were used for training the LungNet 

model for malignancy prediction.
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LungNet: a convolutional neural network for analyzing lung CT imaging

LungNet is a shallow convolutional neural network (CNN) that extracts discriminative CT-

based features (Fig. 6). The CNN architecture incorporates three 3D convolutional layers 

with size 16×3×3 along with a 3D max-pooling layer with kernel size = 2, stride = 2. Three 

fully connected layers with decreasing sizes of feature vectors (i.e. 128, 64, and 64) were 

concatenated to reduce feature dimensions towards convergence of model training. The 

network architecture of LungNet, including the defined 3D convolutional filters and fully-

connected layers, were empirically tested on all three survival cohorts towards the shallowest 

model without overfitting. The output of LungNet is a “risk score”, which represents the 

logarithm of the ratio of the individual hazard to the baseline hazard. Recall that in the usual 

Cox Proportional-hazard model, this is assumed to be a linear function of the input 

covariates; here, it can be a highly non-linear function represented by the CNN. Cox 

Proportional-hazard loss53 and cross-entropy loss54 functions were used for the survival 

prediction and the malignancy prediction tasks, respectively.

Training, evaluation, and comparison of LungNet

We used a rigorous two-stage evaluation strategy for validating our models, first, using 

cohorts 1, 2 and 3, we trained our model on two of the cohorts and tested on the third cohort, 

measuring prediction performance in a round robin fashion. Next, we trained our model on a 

combination of cohorts 1, 2 and 3 and tested it on cohort 4 for external validation of the 

developed model.

The input to LungNet is based on 3D volume-of-interest (VOI) regions centered on lung 

lesions and lesion masks. For patients with multiple lesions, only the largest lesion (by 

volume) was included. The VOIs were extracted from the original chest CT scans by 

centering at the nodule location and cropping and resizing to a fixed size (i.e., 64×64×64) 

using interpolation. Nodule mask delineations for cohorts 1, 2, 3 and 4 were provided by 

radiologists with manual annotation. We used VOI cropping and random flipping to augment 

the training data as follows: the 64×64×64 input images were randomly cropped to size 

60×60×60 during model training. We also used random left-right and up-down flips and 

random brightness shifts (between 0.5 and 1) for further data augmentation during training. 

While training, 20% of the training samples were used as a validation set for monitoring 

validation loss. We used a cyclic learning rate policy55 (triangular2) for training, and 

continued the training for 100 epochs with no early stopping. Along the way, we saved the 

model weights with the lowest validation loss. The whole training process was repeated 20 

times, and the model with the lowest validastion loss was chosen as the final trained model, 

which was then evaluated on the testing cohort. Weight decay was used as L2 regularization. 

For the survival prediction task, Cox regression loss was used for training.

Regarding the task of malignancy prediction, we kept the same network architecture, but 

used cross-entropy loss for training. We trained LungNet by applying 10-fold cross-

validation on the LIDC-IDRI cohort. We report the average area-under-the-curve (AUC) 

after repeating the experiment 20 times. The training of network layers was performed by 

stochastic gradient descent in batch with a learning rate of 0.001. LungNet was implemented 

in TensorFlow (v 1.4)56 and we used an NVIDIA Titan X GPU for training and testing.
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We compared our survival findings with a clinical-only model. We used clinical data 

including age, histology type (squamous cell carcinoma, small cell carcinoma, or 

adenocarcinoma), cancer staging (I, II, III, and IV), and sex information to train a Cox 

Proportional Hazard (C-PH) regression model for survival prediction.

Besides the clinical-only model, we additionally compared with conventional radiomics7,57 

analysis, which defined and extracted hand-crafted quantitative features for clinical outcome 

prediction. We followed the usual radiomics workflow as in prior studies58. We used the 

same resized VOIs (64×64×64) and the corresponding segmentation masks that were used as 

input for the LungNet model for feature extraction. We extracted 2131 radiomic features, 

including intensity-based features, shape and size features, texture features as well as filter-

based features, using an in-house radiomics features pipeline 16,59,60 (available at: https://

github.com/gevaertlab/radiomics_pipeline). Description of all features and their feature 

classes are provided in the Supplement S1. These features were used to build a multivariate 

Cox proportional hazards regression model. Due to the high dimensionality of the feature 

space, we imposed an l1 penalty on the feature weights for feature selection and 

regularization, following Goeman61. The l1 penalty tends to assign non-zero weights to a 

small number of features and set the weights of remaining features to zero.

Transfer learning

In this study, transfer learning was employed to improve the performance on the prediction 

of nodule malignancy. For this, we first pretrained LungNet on all three survival cohorts 

combined, with CT images and survival labels (Fig. 6), until convergence. The weights of 

convolutional layers were frozen and used as fixed feature extractors. Next, this initialized 

CNN model was further trained on the LIDC-IDRI cohort to predict malignancy using a 10-

fold cross-validation evaluation strategy (Fig. 6). The retraining process fine-tunes the 

weights of the convolutional layers by unfreezing and updating network weights for the 

malignancy prediction task. We did not try to use the malignancy classification model for 

survival prediction via transfer learning.

Visualization

To illustrate LungNet, we visualized the decision map of LungNet in 2D. We used the output 

of the penultimate layer of LungNet as the extracted output features, which were then 

projected into a two-dimensional manifold via a t-distributed stochastic neighbor embedding 

(t-SNE)32. Next, we used a two-color scheme to refer to high risk (i.e. red) and low risk (i.e. 

blue) based on the median survival time. Selected 2D CT image patches were sampled from 

the patient’s 3D VOI.

Statistical analysis

Statistical analysis was conducted using Python 3.6. Statistical significance levels were all 

two-sided, with statistical significance set at P < 0.05. Evaluation metrics include the 

Concordance Index (CI) and the Log-rank p-value in combination with Kaplan-Meier 

survival analysis using the Lifelines62 package (v 0.8.0.1). Receiver operating characteristics 

(ROC) and the area under the curve (AUC) in ROC were used to measure classification and 

prediction performance. ROC curves display the true positive (sensitivity) versus the false 
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positive rate (1 – specificity) over the 10-fold cross-validation on LDIC-IDRI cohort. ROC 

were generated using classification probabilities of malignant labels versus benign labels of 

total number of testing images with Python scikit-learn library (v 0.19.1). ROC curves were 

compared statistically according to Hanley and McNeil method31.

Data Availability

• Cohort 1 (Stanford Hospital, n=129): The data is publicly available on The 

Cancer Imaging Archive (TCIA) at: http://doi.org/10.7937/K9/

TCIA.2017.7hs46erv 63

• Cohort 2 (H. Lee Moffitt Cancer Center and Research Institute, n=185): A 

portion of the data (54/185) is available from TCIA at:

– http://doi.org/10.7937/K9/TCIA.2015.NPGZYZBZ 64

– http://doi.org/10.7937/K9/TCIA.2015.A6V7JIWX 65

• Cohort 3 (MAASTRO Clinic, The Netherlands, n=311): The data is publicly 

available on TCIA1,5 at http://doi.org/10.7937/K9/TCIA.2015.PF0M9REI 66

• Cohort 4 (Charité – Universitätsmedizin, Berlin, n=84): This data is not publicly 

available yet.

• LIDC-IDRI (n=1010): The data is available on TCIA at http://doi.org/

10.7937/K9/TCIA.2015.LO9QL9SX 67

Code Availability

Code for the LungNet is available at https://doi.org/10.24433/CO.0612256.v1 68.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of the proposed computational framework: (a) Input data for the two transfer 

learning tasks: CT images with survival time and CT images with malignancy scores and for 

a subset of patients the biopsy proven malignancy. (b) Training and validation of LungNet, a 

convolutional neural network model including transfer learning between the two tasks. (c) 

Evaluation of the two tasks using Kaplan Meier survival curves, and ROC curves.
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Fig. 2. 
Kaplan-Meier analysis of LungNet. (a) Kaplan-Meier survival performance of LungNet on 

four lung cancer survival cohorts. For Cohort 1, the LungNet model incorporates clinical 

features; for the other cohorts, the images-only version of LungNet was used. LungNet 

demonstrates stratification of low- and high-risk survival subgroups on four independent 

cohorts. (b) Kaplan-Meier survival performance of clinical-only models on four lung cancer 

survival cohorts. The median of the predicted risk scores was used to stratify patients into 

high and low risk groups.
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Fig. 3. 
Kaplan-Meier survival performance of LungNet on early stage cancers. It shows that 

LungNet can stratify low- and high-risk survival subgroups on three independent cohorts for 

early stage cancers. For cohort 1, the LungNet model incorporates clinical features; for the 

other cohorts, the images-only version of LungNet is used.
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Fig. 4. 
Receiver operating characteristic (ROC) curves for maligancy outcome prediction 

comparison with and without transfer learning for (a) magliancy by radiologist assessment 

and (b) biopsy-proven for the LIDC-IDRI cohort.

Mukherjee et al. Page 17

Nat Mach Intell. Author manuscript; available in PMC 2021 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Visualization of lung nodules and their survival outcomes in 2D space using t-SNE. The 

output features of LungNet are embedded into a two-dimensional manifold via a t-

distributed stochastic neighbor embedding (t-SNE). The color-coded map is created based 

on the median survival time. High-risk patients (below the median survival threshold) are 

highlighted in red and clustered to the far right while low-risk patients (above the median 

survival threshold) are blue and clustered in the bottom left.

Mukherjee et al. Page 18

Nat Mach Intell. Author manuscript; available in PMC 2021 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Illustration of LungNet’s convolutional neural network (CNN) architecture. LungNet is a 

CNN architecture that is designed to address the survival prediction task. In addition, we 

show that LungNet can be used for the malignancy prediction task using transfer learning. It 

consists of three 3D convolutional layers with along with a 3D max-pooling layer. Three 

fully-connected layers were concatenated to reduce feature dimensions. Cox Proportional-

hazard loss and Cross-entropy loss functions were used for the survival prediction and 

malignancy prediction tasks, respectively.
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Table 1.

Patient demographics: the number in parentheses represents percentage.

Characteristic cohort 1 cohort 2 cohort 3 cohort 4

Number of patients 129 185 311 84

Age (yrs., Mean ± SD) 69.4 ± 8.47 67.65 ± 10.13 67.05 ±9.07

Sex (n Male, %) 101 (78.3) 83 (44.3) 220 (70.7) 64(76.2)

Smoking history 20(15.5) 38(20.5)

Histology

Adenocarcinoma 100(77.5) 107 (57.8) 32(10.3) 36 (42.9)

Squamous Carcinoma 29(22.5) 50 (27) 84 (27) 44 (52.4)

Other histology type(s) 28(15.2) 195(62.7) 4 (4.8)

Survival time (days, Mean) 889 1021 609 944

Survival time (days, SD) 671 504 457 710

Staging Status

Stage 1 67 (51.9) 97(52.4) 81 (26.0) 5 (6.0)

Stage 2 42 (32.6) 32(17.3) 26(8.4) 10(11.9)

Stage 3 15(11.6) 38(20.5) 73 (23.5) 69 (82.1)

Stage 4 5(3.9) 17(9.7) 131 (42.1)
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Table 2.

CT acquisition parameters: the number in parentheses represents percentage.

CT parameters cohort 1 cohort 2 cohort 3 cohort 4

Convolution Kernel

STANDARD 43 (37.2) 6(3-2) 4(4.8)

BONEPLUS 21(16.3)

LUNG 26 (20.2) 1 (0.5) 4 (4.8)

B45f 12(9.3)

BONE 5(3.9)

B40f 1(0.8) 83 (44.9)

B41f 59 (31.9) 12 (3.9)

B30f 13 (7.0) 67 (21.5) 13(15.5)

B19f 66 (21.2)

BBlf 1 (0.8) 25 (8.0) 2 (2.4)

B31s 2(1.1) 29 (9.3) 26(31.0)

B18f 17(5.5)

Other/NA 15(11.6) 21(11.3) 95 (30.5) 35 (41.7)

Peak Kilovoltage

120 119 (92.2) 154(83.2) 155(49.8) 81 (96.4)

130 4(2.2) 3(3.6)

140 27 (14.6) 67 (21.5)

Other/NA 10 (7.8) 89 (28.6)

Manufacturer

GE 97(75.2) 8(4.3) 6(7.1)

Siemens 13(10.1) 169 (91.4) 222 (71.4) 50(59.5)

Philips 2 (1.6) 4(2.2) 20(23.8)

Toshiba 1(0.8) 4(2.2) 8(9.5)

Other/NA 89 (28.6)

Slice Thickness

≤1mn 21 (16.3) 12 (14.3)

ϵ (1, 2] mm 75 (58.1) 47 (56.0)

ϵ (2, 3] mm 15 (11.6) 18 (9.7) 311 (100) 11 (13.1)

ϵ (3, 4] mm 7 (5.4) 19 (10.3) 4 (3.1)

ϵ (4, 5] mm 7 (5.4) 122 (65.9) 10 (11.9)

> 5 mm 4 (3.1) 26 (14.1)
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