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More than 85% of pre-clinically tested drugs fail during clinical trials, which results
in a long, inefficient and costly process, suggesting that animal models are often poor
predictors of human biology [1]. The ability to perform research on humans is limited by
the lack of physiologically relevant cells (especially the development and assessment of
human brain cells and human heart cells). Currently, there are technologies to reprogram
adult somatic cells (e.g., skin biopsy, blood cells, etc.) back into a pluripotent stage, termed
induced pluripotent stem cells (iPSCs), and to differentiate pluripotent cells in vitro into
many cell types of the body such as heart, muscle, brain cells, etc. [2]. These capabilities
open a new era in human disease modeling [3].

The research topic of this issue is aimed at providing further context to the use
of iPSC-derived cells (cardiomyocytes, fibroblasts, glial cells, neurons, astrocytes, brain
microvascular endothelial cells and more) as disease models (“disease in a dish” models)
for screening leads for drugs.

In this context, Trudler et al. [4], Lu Qian et al. [5], Rosner at al. [6], Zahumenska et al. [7]
and Li et al. [8] reviewed recent models that further illuminate the potential of using
iPSC-based platforms for drug discovery.

Wang et al. [9] describe strategies for assessing iPSC-derived cells’ therapeutic effects
via transdifferentiation ability and exosomes through a paracrine mechanism. The review
summarized the therapeutic effects of iPSC-derived exosomes on various disease models
such as angiogenesis, cell proliferation and anti-apoptosis, with the hopes of improving
their potential roles in clinical applications and functional restoration [9]. According to
Tamo et al. [10], Induced pluripotent stem cell secretome (iPSC-CM) helps macrophages in
tissue repair and regeneration. They identified Amyloid precursor protein (APP) and ELAV-
like protein 1 (ELAVL-1), both present in the iPSC-CM, as the main players in regulating
the function of macrophages in tissue repair.

According to Vokner et al.’s [11] review, studies of Niemann–Pick disease Type C1
(NPC1) iPSCs-based models in comparison to to commonly used NPC1 models identify
impaired autophagy as a central element in the pathogenesis of NPC1.

Interestingly, iPSC-based models can also serve for screening potential drugs against
complex diseases such as Parkinson’s disease [12], Alzheimer’s disease [13,14], Amy-
otrophic lateral sclerosis (ALS [15,16]) and for screening drug toxicity in iPSC 2D and 3D
platforms [17,18].

The model of iPSC-derived cardiomyocytes with very long-chain acyl-CoA dehydro-
genase deficiency (VLCADD), studied by Knottnerus et al. [19], implies that accumulation
of fatty acid oxidation intermediates leads to cardiac arrhythmias. This study suggests
that agents that will enhance fatty acid oxidation flux through increased mitochondria
biogenesis or by inhibition of fatty acid transport into the mitochondria are potential drugs
for VLCADD-CMs.

iPSC-derived cardiomyocytes also serve as attractive models for dilated cardiomyopa-
thy, such as propionic acidemia (PA), caused by mutations in either the PCCA or PCCB
genes encoding both subunits of the mitochondrial propionyl-CoA carboxylase (PCC)
enzyme [20] and in Coxsackievirus B3 (CVB3) infection [21].
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Urea cycle disorders are enzymopathies resulting from inherited deficiencies in any
genes of the cycle. Zabulica et al. [22] demonstrated the use of iPSCs of patients with a
urea cycle defect for correcting their genetic mutation. In the edited cells, the defect was
corrected, suggesting that this approach can serve as an in vitro model to advance the
corrective cell-based therapy.

To study the rare disease riboflavin transporter deficiency (RTD), Marioli et al. [23]
used iPSC-derived neurons. This model can also shed light on the pathogenesis of neurode-
generative disorders. In these pathologies, the mitochondria do not function well. Among
the tested antioxidants, EPI-743 restored the redox status, improved neurite length and
ameliorated intracellular calcium influx into RTD motoneurons, suggesting that antioxidant
supplementation may have a role in RTD treatment.

Among the applicative future goals in studying iPSCs is the potential to generate
patient specific organs such as liver, hearth patch, etc. Olgasi et al. [24] describe the impor-
tance and potential of generating liver organs based on knowledge from iPSC tissue culture
and emphasis its important implications for organ transplantation. Van Duinen et al. [25]
established iPSC-based endothelial microvessels that closely mimic the process of angio-
genesis in vivo and they develop a perfused 3D robust and scalable angiogenesis assay
that is amenable for screening of anti-angiogenic compounds.

Pregnancy miscarriages have many unknown causes and are complex processes
that require solution. Bohnke et al. [26] were able to mimic pregnancy complications
associated with the enterovirus family that lead to miscarriages by infecting iPSC-derived
primary germ-layer cells with coxsackievirus B3 (CVB3). Among iPSC-derived germ-layer
cells, mesodermal cells were especially vulnerable to CVB3 infection. These cells can be
considered as an in vitro platform for further consideration of members of the enterovirus
family in the screening program of human pregnancies.
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