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Abstract
Link prediction plays an important role in both finding missing links in networked systems

and complementing our understanding of the evolution of networks. Much attention from the

network science community are paid to figure out how to efficiently predict the missing/

future links based on the observed topology. Real-world information always contain noise,

which is also the case in an observed network. This problem is rarely considered in existing

methods. In this paper, we treat the existence of observed links as known information. By fil-

tering out noises in this information, the underlying regularity of the connection information

is retrieved and then used to predict missing or future links. Experiments on various empiri-

cal networks show that our method performs noticeably better than baseline algorithms.

Introduction
About one and a half decades ago, Barabási and Albert pointed out that the property of scale-
invariance of many real networked systems originates from a specific growth process, named
preferential attachment [1]. Since then, the study of complex networks has led to dramatic
changes in many different fields [2–7], and also, many facets of node attractiveness in growing
networks, rather than preferential attachment, have been revealed, e.g. similarity [8]. Since dif-
ferent growing processes often result in networks with strikingly different macroscopic proper-
ties, how real-world networks are evolved is a fundamental question in understanding our
complex world. Link prediction, one of whose capabilities is to rank the best candidates of
future links, plays an important role in revealing the evolution processes of networks [9, 10].

On the other hand, many applications have to predict missing links in networked systems
[11–13]. Determining whether a link exists in such networks is usually very costly, yet the
answer is crucial. For example, knowing the map of protein-protein interactions will reveal
many aspects of the cellular function [14], but little has been studied. Link prediction are also
widely used in these applications [15, 16].

The problem of link prediction has received much attention from the network science com-
munity in the past few years [9, 12, 17, 18]. In general, both topological feature and node attri-
butes can be used in the prediction. However, the latter is usually unavailable or unreliable. For
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example, in online social networks, the personal information of users are inaccessible due to
privacy policies. Thus, many algorithms consider only topological features.

Basically, there are two classes of topological methods—similarity-based and likelihood-
based algorithms. Similarity based algorithms assume that two nodes are likely to be connected
if they are similar. It assigns a score sxy to each pair of nodes x and y, which is defined as the
similarity between them. All non-observed links are ranked according to their scores, and the
links connecting more similar nodes are supposed to be of higher existence likelihoods. A
wealth of methods of this type have been proposed. For example, CN (Common Neighbours)
[19] uses the number of common neighbours to rank the similarity of nodes and the likelihood
that they are/will be linked. Many variations of CN are also proposed: AA (Adamic-Adar) [20],
Resource Allocation (RA) [19] give more importance to common neighbours with lower
degree, and Jaccard’s index is a normalised CN. Only local structural information are used in
these methods. There are also methods utilizing quasi-global or global information. For exam-
ple, the Local Path method defines the similarity as the number of paths passing through two
nodes, whose length may be larger than 2.

Recently, the organization patterns existing in many real-world networks are utilized in pre-
dicting missing links. Likelihood-based methods make assumptions of the structure, with spe-
cific parameters obtained by maximising the likelihood of the known structure. Predictions of
the non-observed links are made based on the presumed pattern and the parameters. For
example, Ref. [21] utilizes the hierarchical structure existing in many networks to predict miss-
ing links. And Cannistraci et al. propose the local-community-paradigm to improve the perfor-
mance of classical predictors [13].

We know that real-world information always contains noise, which is also the case in an
observed network. However, this problem is rarely considered in existing methods. In Ref. [18],
the authors use the average of the eigen-decomposition of perturbed adjacency matrix (by
removing some links) to suppress the noise. However, the underlying physical meaning is not
clear, say, why should the eigenvectors of the adjacency matrix reflect the regularity of a network,
if they actually are sensitive to perturbation [22]? Besides, it has a high computational complexity.
In this paper, by treating the existence of observed links as known “information” (as in [23, 24]),
and filtering out the noise in it, we obtain similarity scores for all non-observed links. We give a
more theoretical analysis of the link prediction problem and a more meaningful demonstration
of the noise-filtering (NF) method. Our method outperforms the typical predictors.

Materials and Methods

Metrics
In this paper, two metrics are used to compare the performance of the base-line algorithms and
the proposed noise-filtering method.

Consider that we are given an simple network G(V, E), where V and E are the set of nodes
and links, respectively. By “simple”, we mean there are no self-loops or multi-links in the net-
work. In a similarity-based algorithm, for each pair of nodes x, y 2 V without a link, a similarity
score is assigned. Then all unlinked pairs are ranked in descending order according to their
scores, and the links on the top are considered as the ones with the highest likelihoods to be
connected.

To test the accuracy of a predictor, we randomly divide the observed links in the network
into a training set ET and a probe set EP. Here, ET is treated as known information while EP is
only used to test the accuracy. Clearly, we have ET[EP = E and ET\EP = ;.

In this study, we use two metrics, AUC (Area Under the Receiver operating characteristic
curve) and precision to evaluate the performance of a predictor. They are defined as follows.
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• AUC: AUC is a metric in the receiver operating characteristics (ROC) analysis [25]. Taking
the top L links as predicted links, a ROC curve is obtained by plotting true positive rates ver-
sus false positive rates for varying L values. Thus AUC can be interpreted as the probability
that a randomly chosen missing link (i.e., a link in EP) has a higher score than a randomly
chosen non-existent link (i.e., a link in U − E), in the rank of all non-observed links. In the
algorithmic implementation, if among n times of independent comparisons, there are n0

times in which the score of the missing link is higher than that of the non-existent link and
n00 times in which the two have the same score, then AUC can be expressed as

AUC ¼ n0 þ n00

n
: ð1Þ

If all the scores are generated from an independent and identical distribution, AUC will be
approximately 0.5. Therefore, the extent to which AUC exceeds 0.5 indicates how much bet-
ter the algorithm performs than pure chance.

• Precision: Given the ranking of the non-observed links, the precision is defined as the ratio of
relevant items selected to the number of items selected. Thus if we choose the top-L links in
the rank, and there are Lr links correctly predicted, then

Precision ¼ Lr=L : ð2Þ
Clearly, higher precision means higher accuracy. In this paper, L is always set to the size of
the probe set.

Data Description
Networks from different fields are considered in the experiment, including biological, social,
and technological networks. The original networks are turned into undirected, and simple
(with multiple links or loops removed) networks. These networks are described in the follow-
ing. i) Karate [26]: A social network of a university karate club. ii) FoodWeb [27]: A food web
in Florida Bay during the rainy season. iii) Jazz [28]: A collaboration network of jazz musicians.
iv) Neural [29]: The neural network of C.elegans. v) USAir [30]: The US Air transportation net-
work. vi) Metabolic: The metabolic network of C.elegans. vii) Email [31]: A network of Alex
Arenas’s email. viii) PB [32]: A network of US political blogs. ix) Yeast [33]: A protein-protein
interaction network. x) EPA [34]: A network of web pages linking to the website www.epa.gov.
xi) Router [35]: The router-level topology of the Internet. xii) WikiVote [36, 37]: The network
contains all the Wikipedia voting data from its inception till January 2008. Their basic topolog-
ical parameters are summarized in Table 1.

Baseline Algorithms for Comparison
In this paper, six representative similarity indices are considered for performance comparison,
including the Common Neighbours (CN), Adamic-Adar (AA) [20], Resource Allocation (RA)
[19], Preferential Attachment (PA) [38], Local Path (LP) [39], and Katz [40]. The first four are
local indices, the fifth is a quasi-local index, and the last is a global index. Some of them are
briefly introduced earlier. Here we present the details of these algorithms.

1. CN index. The CN index follows the intuition that two nodes x and y are more likely to have
connection if their nearest neighbours overlap substantially. The similarity score is obtained by

sxy ¼ jGðxÞ \ GðyÞj ; ð3Þ

where Γ(x) is the set of neighbours of x and | � | denotes the cardinality of a set.
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2. AA index. AA is a variation of CN: it gives less importance to common neighbours with
high degree:

sxy ¼
X

s2GðxÞ\GðyÞ

1

log jGðsÞj : ð4Þ

3. RA index. Similar to AA, the only difference is that RA punishes high-degree common
neighbours to a higher extent:

sxy ¼
X

s2GðxÞ\GðyÞ

1

jGðsÞj : ð5Þ

4. PA index. The PA index supposes that popular nodes are more likely to be connected to.
This index is defined as

sxy ¼ jGðxÞjjGðyÞj : ð6Þ

5. LP index. Unlike the previous indices, LP uses second order information (information
about neighbours of the neighbours) to improve performance. It is defined by

sxy ¼ ðA2Þxy þ �ðA2Þxy : ð7Þ

6. Katz index. This index sums over the number of paths (including loops) between two
nodes, with each number exponentially damped by the path length

sxy ¼ bAxy þ b2ðA2Þxy þ b3ðA3Þxy þ � � � ¼ ðI� bAÞ�1 � I : ð8Þ

Note that the LP index and Katz are both parameter-dependent.

Table 1. Topological parameters of the real-world networks.

|V| |E| C r hki H

Karate 34 78 0.571 -0.476 4.588 1.693

FoodWeb 128 2075 0.335 -0.112 32.422 1.237

Jazz 198 2742 0.617 0.020 27.697 1.395

Neural 297 2148 0.292 -0.163 14.465 1.801

USAir 332 2126 0.625 -0.208 12.807 3.464

Metabolic 453 2025 0.646 -0.226 8.940 4.485

Email 1133 5451 0.220 0.078 9.622 1.942

PB 1490 16715 0.263 -0.221 22.436 3.622

Yeast 2361 6646 0.130 -0.099 5.630 2.944

EPA 4772 8909 0.064 -0.303 3.734 7.573

Router 5022 6258 0.012 -0.138 2.492 5.503

WikiVote 8297 100762 0.121 -0.083 24.289 5.985

|V| and |E| are the number of nodes and links. C is the clustering coefficient and r the degree-degree correlation coefficient. hki is the average degree, hdi
is the average shortest distance, and H is the degree heterogeneity H = hk2i/hki2.

doi:10.1371/journal.pone.0146925.t001
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Results

Link Prediction via Noise Filtering
In many networks, the formation of links usually embodies both regularities and irregularities.
Only the former shows a uniform pattern, which is called the intrinsic pattern. For a specific
link, if its existence does not correspond with this pattern, then its existence should be treated
as noise. For a specific link, if its existence does not correspond with the connection pattern of
the whole network, then its existence is treated as noise. A large body of link prediction meth-
ods (i.e. common neighbor method) assumes that nodes are linked if they are similar. Follow-
ing this assumption, we treat links connecting dissimilar nodes as noise. By filtering out the
noise, we can obtain the intrinsic connection pattern, which can be further used to predict
missing or future links.

To this end, one has to define a measure to quantify the degree to which a link connects dis-
similar nodes.

For every node in the network, assume that its topological features are captured by some
vectors in R

m. Define the feature matrix X to be an n-by-mmatrix whose rows are the feature
vectors of nodes. Thus, Xik is the k-th feature of node i, and X•k, the k-th column vector of X, is
the k-th feature of all nodes. In real-world cases, features usually contain noise.

In some typical link prediction methods (i.e. common neighbor method), nodes are
assumed to be linked because they are similar. Now focusing on the k-th feature, we may mea-
sure to what degree dissimilar nodes are linked in the whole network by

D0
k ¼

X

i�j

ðXik �XjkÞ2 ¼ XT
�kLX�k ;

where i* j indicates that i and j are neighbors, and L is the Laplacian matrix [41]. However,
this measure is biased. In the rhs of the first equation, the feature Xik of node i appears in di dif-
ferent terms in the summation, where di is the degree of node i. So features of high-degree
nodes dominate the value of D0

k, while in many real-world networks, most nodes are of low
degree [1]. Thus the value of D0

k does not properly count the similarity of the features from the
majority.

The rightmost term in the above equation is the quadratic form of the Laplacian. To treat
features from different nodes equally, a natural alternative is using the quadratic form of the

normalised Laplacian matrix ~L [41],

Dk ¼ XT
�k
~LX�k : ð9Þ

The quadratic form of ~L has similar interpretation of that of L, so larger Dk indicates to a larger
extent, dissimilar nodes are linked together. Thus Dk can be used as a non-biased dissimilarity
measure of the k-th feature.

In signal processing, to filter out noise, the signal is decomposed into a set of sine waves
with different frequencies. For higher frequencies, the sine waves oscillate much more rapidly.
Then the waves with frequencies that are considered within the band of noise are filtered out.
In our case, the eigenvectors of the normalised Laplacian provide a similar notion of frequency.
To understand this, denote by λ1 < λ2 < � � �< λn the eigenvalues of the normalised Laplacian

matrix ~L, and v1, v2, � � �, vn the corresponding eigenvectors. The Courant-Fischer Theorem
[42] tells us that

v1 ¼ arg min
x:kxk2¼1

xT ~Lx ; ð10Þ
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and

vl ¼ arg min
x:kxk2¼1;x?spanfv1 ;...vl�1g

xT ~Lx ð11Þ

So, if X•k = v1, then Dk achieves its smallest, which indicates that v1 oscillates slowly among
connected nodes (since Dk is a dissimilarity measure). The eigenvectors associated with larger
eigenvalues oscillate more rapidly.

Similar to filtering noise in signal processing, we can project X•k onto {vi}, and filter out the
components with high “frequency”, i.e., the components on vi with large subscript i, since we
treat the existence of links connecting dissimilar nodes as noise. Denote the cut-off threshold
by t, the noise-filtered X•k reads

X̂�k ¼ ðvT
1X�kÞv1 þ ðvT

2X�kÞv2 þ � � � þ ðvT
t X�kÞvt ¼ VtV

T
t X�k ; ð12Þ

in which Vt = [v1, v2, � � �, vt] is a matrix whose columns are the first t eigenvectors of L with the
smallest eigenvalues.

Since no prerequisite is required for k, we can easily generalise the above derivation for the
k-th feature to any other feature. Then we obtain the noise-filtered features for the whole net-
work

X̂ ¼ VtV
T
t X : ð13Þ

For any node i, its connections with all other nodes in the same network are totally charac-
terized by the corresponding rows in the adjacency matrix A. So one may use these rows as the
feature vectors for nodes, as in [43, 44], and interpret the k-th feature of node i as whether it is
a neighbour of k. But there are some minor issues with this choice. Recall that the above deriva-
tion is based on the minimisation of the dissimilarity measure of all linked nodes (see Eq (9)).
We now consider two linked nodes i and j, which have exactly the same neighbourhoods, so we
expect the dissimilarity of them is 0. However, their i-th feature will not be the same, since the
i-th feature of i is 0 while the i-th feature of j is 1. This is the same with the j-th feature. We can
see from this analysis that one can use the rows of A + I rather than A as the feature vectors for
nodes. So the k-th feature of node i can be interpreted as whether its to node k is no more than
1. This is further demonstrated in Fig 1.

Apply the above methodology, we have

Ŝ ¼ VtV
T
t ðAþ IÞ : ð14Þ

Entries of Ŝ reflect the intrinsic connection pattern, so they can be used to predict missing
links. However, since we are focusing on undirected networks, there is still one problem with

Ŝ. We can see that according to Eq (14), it might not be symmetric. So we will make predic-

tions based on entries of 1
2
ðŜ þ ŜTÞ instead of Ŝ.

Experimental Results
To compare the performance of the Noise-Filtering (NF) method and some well-known algo-
rithms, 12 real-world networks, including biological, social, and technological networks, are
considered in the experiments. They are transformed into undirected, and simple (with multi-
ple links or loops removed) networks. The resulting networks are summarized in Table 1.

Table 2 shows the prediction accuracy measured by AUC. Results measured by another
widely used metric, precision, is presented in Table 3. These metrics are introduced in the
Methods section. The highest AUC/precision for each network (in each column) is shown in

A Noise-Filtering Method for Link Prediction in Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0146925 January 20, 2016 6 / 12



boldface. Under the AUC metric, NF performs best in 7 out of 12 networks, while under the
precision metric, NF performs best in 9 of them. Figs 2 and 3 compare prediction accuracy of
different algorithms under varied partitioning ratio. It can be seen that the proposed method is
either the best or very close to the best, except for only one network—PB. Moreover, the
robustness of the proposed method can also be verified by Figs 2 and 3. Since in most networks,
the accuracy of the proposed method is either the best or very close to the best, even with the
size of training sets varied.

Intuitively, the more the amount of known information, the higher the prediction accuracy.
But in Fig 3, we see that most of the time, the precisions do not increase with the size of training
sets. This is due to different sizes of probe sets (follow a conventional way, we always set L in

Fig 1. Demonstration of using rows of A + I as the feature vectors for nodes. In the network, nodes 4 and 5 are topologically equivalent. However, the
4th row ofA reads [0, 1, 1, 0, 1], and the 5th reads [0, 1, 1, 1, 0], which are different. By adding I, the 4th and 5th rows of A + I now are both [0, 1, 1, 1, 1], which
is exactly what we want. This is also the case for nodes 2 and 3. The k-th feature of a node can be interpreted as whether the distance between it and node k
is no more than 1. For example, the distance between node 1 and 4 is greater than 1, while the distance between all the other nodes and node 4 are within 1,
so the 4th feature is [0, 1, 1, 1, 1]T.

doi:10.1371/journal.pone.0146925.g001

Table 2. Comparison of the prediction accuracy under the AUCmetric in real-world networks.

CN AA RA PA LP Katz NF

Karate 0.6994(162) 0.7338(202) 0.7281(182) 0.7006(297) 0.7206(200) 0.7375(284) 0.8113(211)

FoodWeb 0.6104(11) 0.6094(11) 0.6120(8) 0.7332(9) 0.6235(11) 0.6770(10) 0.8150(8)

Jazz 0.9545(2) 0.9619(2) 0.9701(1) 0.7668(8) 0.9591(1) 0.9485(2) 0.9663(1)

Neural 0.8441(4) 0.8589(4) 0.8644(4) 0.7529(7) 0.8595(6) 0.8575(5) 0.8847(4)

USAir 0.9359(3) 0.9477(3) 0.9537(2) 0.8856(5) 0.9427(3) 0.9242(3) 0.9599(2)

Metabolic 0.9198(3) 0.9506(2) 0.9544(2) 0.8172(7) 0.9233(3) 0.9195(4) 0.9319(2)

Email 0.8442(1) 0.8464(1) 0.8467(1) 0.7779(3) 0.8974(1) 0.8942(2) 0.8973(1)

PB 0.9368(0) 0.9396(0) 0.9398(0) 0.9325(0) 0.9495(0) 0.9500(0) 0.9336(1)

Yeast 0.7061(0) 0.7066(0) 0.7061(1) 0.7865(3) 0.8357(1) 0.8184(2) 0.7989(3)

EPA 0.5860(0) 0.5865(0) 0.5868(0) 0.7371(2) 0.7855(0) 0.7376(1) 0.7915(2)

Router 0.5580(0) 0.5579(0) 0.5579(0) 0.4694(3) 0.6320(0) 0.3738(3) 0.6654(6)

Wikivote 0.9337(0) 0.9347(0) 0.9344(0) 0.9484(0) 0.9616(0) 0.9584(0) 0.9646(0)

Each value is obtained by averaging over 100 implementations with independent random divisions of the training set(90%) and the probe set(10%). The

method proposed in this paper is in the last column, NF (Noise Filtering). The best result achieved for each network data is in boldface. The numbers in

the brackets denote the standard deviations. For example, 0.6994(162) means that the AUC value is 0.6994 and the standard deviation is 162 × 10−4.

doi:10.1371/journal.pone.0146925.t002
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Table 3. Comparison of the prediction accuracy under the precisionmetric in real-world networks.

CN AA RA PA LP Katz NF

Karate 0.1525(96) 0.1538(156) 0.1538(146) 0.0863(68) 0.1750(100) 0.1613(123) 0.1487(93)

FoodWeb 0.0707(2) 0.0755(2) 0.0754(3) 0.1607(4) 0.0758(2) 0.1023(3) 0.1762(5)

Jazz 0.5044(6) 0.5244(6) 0.5393(5) 0.1300(4) 0.5120(7) 0.4920(6) 0.6225(5)

Neural 0.0962(2) 0.1039(3) 0.1025(3) 0.0575(2) 0.0985(3) 0.1027(2) 0.1262(3)

USAir 0.3730(8) 0.3898(8) 0.4505(9) 0.3164(7) 0.3738(9) 0.3695(8) 0.3905(9)

Metabolic 0.1378(4) 0.1932(4) 0.2680(5) 0.0999(4) 0.1449(5) 0.1408(4) 0.2113(6)

Email 0.1392(2) 0.1552(2) 0.1400(2) 0.0174(0) 0.1469(1) 0.1355(2) 0.1503(2)

PB 0.1729(0) 0.1716(0) 0.1493(0) 0.0652(0) 0.1735(0) 0.1744(0) 0.0861(11)

Yeast 0.0924(0) 0.0912(0) 0.0736(0) 0.0093(0) 0.0950(1) 0.0925(0) 0.1070(1)

EPA 0.0090(0) 0.0148(0) 0.0198(0) 0.0044(0) 0.0135(0) 0.0136(0) 0.0642(0)

Router 0.0166(0) 0.0162(0) 0.0096(0) 0.0096(0) 0.0212(0) 0.0226(0) 0.0253(0)

Wikivote 0.1009(0) 0.0999(0) 0.0833(0) 0.0616(0) 0.1005(0) 0.1028(0) 0.1352(0)

Each value is obtained by averaging over 100 implementations with independent random divisions of the training set(90%) and the probe set(10%). The

method proposed in this paper is in the last column, NF (Noise Filtering). The best result achieved for each network data is in boldface. The numbers in

the brackets denote the standard deviations. For example, 0.1525(96) means that the precision value is 0.1525 and the standard deviation is 96 × 10−4.

doi:10.1371/journal.pone.0146925.t003

Fig 2. Comparison of prediction accuracy under the AUCmetric. The fraction of training sets f is varied from 0.5 to 0.9.

doi:10.1371/journal.pone.0146925.g002
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Eq (2) to the size of the probe set). Thus with different sizes of training set, the precisions can-
not be compared [45].

For all the parameter dependent methods considered in the experiment, i.e., LP, Katz, and
NF, the results correspond to the optimal parameter, subject to the highest prediction accuracy.
The optimal parameter can be found through a process similar to the K-fold validation. For
example, in the proposed method NF, the training set is first partitioned into K units, a single
unit is retained as the validation data for testing the method with specific t, and the remaining
K − 1 units are used as known information. The cross-validation is then repeated K times (the
folds), with each of the K units used exactly once as the validation data. The K results from the
folds are then averaged. This whole process is repeated several times to find the optimal value
of t (the value of optimal t is manually bounded in the range [1, 125], so the computation com-
plexity is relatively small). In Fig 4, we see that for the two metrics considered here, the optimal
t is robust, since the value of t where the prediction accuracy peaks does not change with the
choice of the size of the training set. So there is no need to search for an optimal t in every sin-
gle run of the simulation. Once the optimal t is found, it is set to this same value in all subse-
quent simulations, even with the size of the training set varied.

The experiments are conducted on a workstation with 64 GB RAM and an Intel (R) Xeon
(R) E5-2687W@ 3.10 GHz 8-core processor. The comparison of computational time is sum-
marized in Table 4. We see that the proposed method NF has similar run time with the global
index Katz, especially on large networks, but having better performance.

Fig 3. Comparison of prediction accuracy under the precision metric. The fraction of training sets f is varied from 0.5 to 0.9.

doi:10.1371/journal.pone.0146925.g003
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Discussion
Real-world information always contains noise. This is also the case when making observation
of a network structure. This problem is rarely considered in existing link prediction methods.
To address this issue, we treat the connection of a given network as known information, and
filter out the noises in it, based on an assumption that connected nodes should have similar
neighbourhoods. The underlying regularity of the connection information is then retrieved
and used to predict missing or future links. Experimental results show that it performs better
than typical algorithms. Future works include how to improve the performance of existing
methods based on the same idea of noise filtering.
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Fig 4. Prediction accuracy with different cutoff threshold t in the proposed noise-filtering method. The
symbol f denotes the fraction of links in the training sets.
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Table 4. Comparison of the computational efficiency in real-world networks.

CN AA RA PA LP Katz NF

Karate 0.2722 0.0863 0.0794 0.0741 0.0765 0.0767 0.3953

FoodWeb 0.1265 0.1332 0.1319 0.1408 0.1511 0.1659 0.2652

Jazz 0.1928 0.1939 0.2207 0.2117 0.2357 0.2596 0.4017

Neural 0.2041 0.2295 0.2302 0.2499 0.2491 0.3566 0.4580

USAir 0.2428 0.2789 0.2220 0.2788 0.3358 0.3118 0.5731

Metabolic 0.3635 0.3644 0.3881 0.4841 0.5499 0.5712 0.6719

Email 1.3969 1.6700 1.5221 3.2462 2.4013 5.0422 3.1099

PB 4.5587 5.0003 5.1569 6.0813 6.8293 9.7084 6.0244

Yeast 4.9859 6.8925 6.1101 13.9745 7.1093 21.4607 12.9680

EPA 20.3863 29.6148 26.7357 53.4191 24.4295 89.9699 50.5754

Router 19.2990 33.6029 25.6877 64.5513 23.8481 72.9081 89.1175

WikiVote 366.9862 387.7545 386.7545 447.2611 453.6359 704.4210 526.8122

Each value is the total time (in seconds) for 100 runs, with independent random divisions of the training set(90%) and the probe set(10%). The method

proposed in this paper is in the last column, NF (Noise Filtering).
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