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Abstract
Functional connectivity, quantified using landscape genetics, can inform conserva-
tion through the identification of factors linking genetic structure to landscape 
mechanisms. We used breeding habitat metrics, landscape attributes, and indices of 
grouse abundance, to compare fit between structural connectivity and genetic dif-
ferentiation within five long-established Sage-Grouse Management Zones (MZ) I-V 
using microsatellite genotypes from 6,844 greater sage-grouse (Centrocercus uropha-
sianus) collected across their 10.7 million-km2 range. We estimated structural con-
nectivity using a circuit theory-based approach where we built resistance surfaces 
using thresholds dividing the landscape into “habitat” and “nonhabitat” and nodes 
were clusters of sage-grouse leks (where feather samples were collected using non-
invasive techniques). As hypothesized, MZ-specific habitat metrics were the best 
predictors of differentiation. To our surprise, inclusion of grouse abundance-
corrected indices did not greatly improve model fit in most MZs. Functional connec-
tivity of breeding habitat was reduced when probability of lek occurrence dropped 
below 0.25 (MZs I, IV) and 0.5 (II), thresholds lower than those previously identified 
as required for the formation of breeding leks, which suggests that individuals are 
willing to travel through undesirable habitat. The individual MZ landscape results 
suggested terrain roughness and steepness shaped functional connectivity across all 
MZs. Across respective MZs, sagebrush availability (<10%–30%; II, IV, V), tree canopy 
cover (>10%; I, II, IV), and cultivation (>25%; I, II, IV, V) each reduced movement be-
yond their respective thresholds. Model validations confirmed variation in predictive 
ability across MZs with top resistance surfaces better predicting gene flow than geo-
graphic distance alone, especially in cases of low and high differentiation among lek 
groups. The resultant resistance maps we produced spatially depict the strength and 
redundancy of range-wide gene flow and can help direct conservation actions to 
maintain and restore functional connectivity for sage-grouse.
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1  | INTRODUC TION

Functional connectivity describes how landscapes influence the 
movement of individuals between habitat patches (Tischendorf & 
Fahrig, 2000). Its conservation is fundamental to the protection of 
diverse and viable populations able to persist and adapt to changing 
conditions (Fahrig & Merriam, 1985; Lamy et al., 2013; Morrissey & 
de Kerckhove, 2009). The distribution of habitat on the landscape 
(i.e., structural connectivity) often does not correlate directly with 
functional connectivity, because it does not consider the behav-
ioral responses of individuals to habitat structure, nor their willing-
ness to disperse through undesirable habitats. Landscape genetic 
approaches compare gene flow (i.e., functional connectivity) to 
connectivity measures and yield direct insights into the relative 
importance of landscape features and their configuration (Manel, 
Schwartz, Luikart, & Taberlet, 2003; Row et al., 2015).

Landscape features influencing genetic structure can range from 
natural barriers, such as mountains or lakes, to more recent barriers 
such as roads and development. Thus, insight from landscape ge-
netics can help to guide management and conservation efforts by 
identifying specific features that reduce or facilitate gene flow and 
by identifying locations where mitigation of impedance is required 
(Epps et al., 2005; Roever, van Aarde, & Leggett, 2013). Despite 
the potential implications, the output from functional connectivity 
analyses is often omitted from conservation plans because they are 
not carried out in ways that are conducive to management objec-
tives (Keller, Holderegger, van Strien, & Bolliger, 2015). For exam-
ple, both the spatial extent of the study area and the resolution of 
landscape variables can influence the estimated importance of land-
scape features to functional connectivity (Anderson et al., 2010), 
which makes extrapolation across scales and comparison among 
studies challenging. Thus, conducting research at scales too large or 
too small for planning tools will hinder implementation (Keller et al., 
2015). Furthermore, investigating both landscape variables that can 
be actively managed and those that are likely to impact connectiv-
ity, but cannot be actively managed (e.g., elevation), will likely lead 
to biologically meaningful results that can also be incorporated into 
conservation plans.

Although functional connectivity is likely influenced by a mul-
titude of landscape features, it can prove challenging to disentan-
gle their relative effects (Row, Knick, Oyler-McCance, Lougheed, 
& Fedy, 2017). One way of modeling the biological importance of 
multiple landscape features is through the use of habitat indices. 
Habitat indices are typically derived from occurrence or radiotelem-
etry data and are used to predict the probability of occupancy across 
a landscape based on the suitability of habitat (Fedy et al., 2012; 
Phillips, Anderson, & Schapire, 2006) or the probability of selection 

for habitat types (Gubili et al., 2017; Shafer et al., 2012). Using hab-
itat indices in landscape genetic models can assist with establish-
ing a direct link between model results and management actions, 
and can alleviate some of the issues related to testing a multitude 
of landscape variables (i.e., type I error). If structural connectivity 
quantified using habitat indices proves to be a strong predictor of 
functional connectivity (Row, Blouin-Demers, & Lougheed, 2010; 
Row et al., 2015; Wang, Yang, Bridgman, & Lin, 2008), identifying re-
gions of importance to maintaining connectivity and predicting im-
pacts from changes to habitat suitability become more clear (Roever 
et al., 2013). However, in some cases, the relationship between hab-
itat indices and functional connectivity can be weak (Roffler et al., 
2016). This lack of relationship is likely the result of a mismatch 
between dispersal and the habitats modeled in the indices (Ribe, 
Morganti, Hulse, & Shull, 1998; Spear, Balkenhol, Fortin, McRae, & 
Scribner, 2010).

Habitat models used in landscape genetic analysis generally do 
not include, nor model, variation in local population abundance. 
However, local population abundance can influence dispersal 
(Matthysen, 2005; Pflüger & Balkenhol, 2014; Strevens & Bonsall, 
2011) and regional differences in population abundance can impact 
genetic drift and spatial genetic structure (Row, Wilson, & Murray, 
2016). Therefore, the inclusion of effective population sizes in land-
scape genetic models can improve the fit between genetic differ-
entiation and landscape variables hypothesized to affect genetic 
differentiation (Weckworth et al., 2013). For example, even when 
the probability of occupancy is high, low abundance could lead to in-
creased genetic differentiation. Therefore, including abundance es-
timates in habitat indices should improve the prediction of functional 
connectivity. However, due to the difficulty in obtaining abundance 
information at large spatial scales, abundance is rarely incorporated 
into landscape genetic models.

In this study, we establish the drivers of functional connectivity 
for the greater sage-grouse (Centrocercus urophasianus; hereafter 
sage-grouse) across the species’ range in North America. Sage-
grouse are distributed across eleven US states and two Canadian 
provinces in western North America. However, there has been a 
44% range contraction since European settlement and substantial 
declines in population size since the 1960s (Garton & Connelly, 2011; 
Schroeder et al., 2004). These decreases in range and population size 
have largely been attributed to habitat loss and fragmentation and 
have resulted in the species being petitioned for listing under the 
U.S. Endangered Species Act multiple times. Although populations 
are declining, there is a wealth of information available on the spe-
cies’ habitat utilization (Doherty, Naugle, & Walker, 2010; Doherty, 
Naugle, Walker, & Graham, 2008; Fedy et al., 2014) and range-wide 
estimates of abundance through counts of males at breeding leks 
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(Doherty, Evans, Coates, Juliusson, & Fedy, 2016; Garton et al., 
2011) where they congregate to attract and compete for access to 
females. Combining this habitat utilization and abundance informa-
tion with our range-wide genetic data makes sage-grouse an ideal 
candidate for exploration of the link between habitat, abundance, 
and functional connectivity.

The relationship between functional connectivity and landscape 
or habitat variables is often quantified using regression-based ap-
proaches in which pairwise genetic differentiation between groups 
or individuals is compared to pairwise landscape-based resistance 
(or landscape cost) distances derived from a variety of single or 
combined landscape features (Cushman & Landguth, 2010; McRae, 
2006; Van Strien, Keller, & Holderegger, 2012). Here, we used this 
approach to address three main questions. 1) Do habitat indices pro-
vide a better fit with genetic data than individual or combined land-
scape predictors? 2) Does the incorporation of abundance estimates 
improve the fit between genetic and habitat-based resistance dis-
tances? 3) How well do the best fitting resistance models predict ge-
netic differentiation across landscapes when compared to distance 
alone? Because the abundance and distribution of very low-quality 
habitat can be disproportionately important for functional connec-
tivity (Row et al., 2010, 2015), identifying these thresholds (Keller 
et al., 2015; Méndez, Vögeli, Tella, & Godoy, 2014) where functional 
connectivity is reduced could help focus conservation efforts on 
improving the habitat quality of landscapes to reach the necessary 

thresholds. Thus, we also determined whether there were consistent 
thresholds in habitat or landscape predictors which, when exceeded, 
resulted in disruption of functional connectivity for sage-grouse. 
Overall, our results should provide guidelines for large-scale evalua-
tions of functional connectivity and assist with management goalms 
of maintaining or restoring functional connectivity.

2  | MATERIAL S AND METHODS

2.1 | Study area and sample collection

Our study area includes nearly the entire range of sage-grouse in 
North America, with the exception of a few small, geographically 
disjunct portions of the range which include individuals within the 
Canadian provinces of Alberta and Saskatchewan and sage-grouse 
MZs VI and VII (Figure 1, Figure S1). The sage-grouse range largely 
coincides with the distribution of sagebrush (Artemisia spp.) in 
western North America, an ecosystem that has become increas-
ingly fragmented due to habitat conversion for agriculture, hous-
ing development, oil and gas development, wildfire, exotic grasses 
and invasive conifer encroachment (Knick et al., 2003). Within 
the range, we stratified our analysis based on long-standing Sage-
Grouse Management Zones (here after MZ; Figure 1), which were 
established using differences in environmental attributes that influ-
enced vegetation communities in each zone and were uninfluenced 

F IGURE  1 Locations (black circles) 
of 267 breeding lek clusters of greater 
sage-grouse samples (6,844 samples in 
total) collected from 2005 to 2014 and 
used to compare genetic differentiation 
and landscape resistance. Full distribution 
of all samples can be found in Figure S1. 
Shaded gray area represents the current 
distribution of greater sage-grouse, and 
dotted lines represent the extent of 
seven management zones for the species. 
Samples from management zones I–V 
were included in this analysis

MZ VII
MZ III

MZ V MZ II

MZ IV

MZ VI
MZ I
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by administrative or governmental boundaries (Stiver et al., 2006). 
This stratification ensured relevance to previous studies, ongoing 
management initiatives, and consistency with the development of 
existing habitat and abundance layers (Doherty et al., 2016).

We used 6,844 spatially referenced feather and tissue samples 
collected across the sage-grouse range (Figure 1, Table 1). Feather 
samples were collected noninvasively (Bush, Vinsky, Aldridge, & 
Paszkowski, 2005; Row et al., 2015) from leks, and blood samples 
were collected from captured sage-grouse during the breeding 
season as part of radiotelemetry research efforts. Samples were 
collected from 1,392 leks from 2005 to 2014 by field staff from a 
variety of state and federal management agencies and nongovern-
mental organizations.

2.2 | Derivation of microsatellite genotypes for 
unique individuals

Genetic analysis was conducted at two molecular biological labo-
ratories: the Molecular Ecology Lab at the U.S. Geological Survey 
Fort Collins Science Center (hereafter, FORT) and the National 
Genomics Center for Wildlife and Fish Conservation at the USFS 
Rocky Mountain Research Station (hereafter, NGC). DNA was ex-
tracted from feather and blood using previously described methods 
(Cross, Naugle, Carlson, & Schwartz, 2016; Row et al., 2015). Both 
FORT and NGC amplified 15 microsatellite loci in eight multiplex 
polymerase chain reactions (PCR) and genotypes were determined 
using electrophoresis (Cross et al., 2016; Row et al., 2015). Full ge-
netic methods can also be found in Appendix S1.

Feather DNA samples can have low-quality and quantity DNA. 
Therefore, to ensure correct genotypes from feather samples, each 
sample was PCR amplified at least twice across the 15 microsatellite 
loci to screen for allele dropout, stutter artifacts, and false alleles. 
Alleles for each locus were coded as missing if they did not match 
across at least two independent runs. Samples with missing geno-
types for more than five loci were removed. Genotypes were then 
screened to ensure consistency between allele length and length of 
the microsatellite repeat motif. We used program DROPOUT v2.3 
(McKelvey & Schwartz, 2005) and package ALLELEMATCH v2.5 
(Galpern, Manseau, Hettinga, Smith, & Wilson, 2012) in R (R Core 
Team, 2016) to screen for genotyping error and to identify and re-
move multiple captures of the same individual.

To combine the genotype data sets from both labs, we first gen-
otyped the same 70 individuals. Each laboratory’s genotypes for 
these individuals were compared, and shifts in allele size were imple-
mented to synchronize allele calls for all samples where necessary. 
Following the combination of samples, an additional ALLELEMATCH 
analysis was performed on the complete, combined data. Finally, we 
quantified the power of our microsatellite locus panel to discern in-
dividuals using probability identity (PID; Evett & Weir, 1998) which 
calculates the probability that two individuals drawn at random from 
the population could have the same genotype across all loci.

2.3 | Genetic differentiation within 
management zones

Sage-grouse have clustered distributions (Doherty et al., 2016), 
particularly during the breeding season when individuals attend 
centralized breeding leks where the majority of our samples were 
collected. Additionally, sage-grouse can have substantial within-
 and interseasonal movement distances (Cross, Naugle, Carlson, & 
Schwartz, 2017; Fedy et al., 2012), so we expected little differentia-
tion between spatially proximate leks and individual samples (Row 
et al., 2015). Thus, we used a clustered (i.e., “group-based”) approach 
to evaluate genetic differentiation as this likely best represents the 
ecology of the species at the spatial scale of this study and the sam-
pling scheme (i.e., multiple samples from each lek). We derived lek 
clusters by grouping spatially proximate sampling locations using 
hierarchical clustering (hclust function with complete method) in R 
(R Core Team, 2016). The algorithm iteratively joined each sampling 
location based on distance using the Lance–Williams dissimilarity 
formula (Legendre & Legendre, 2012). Subsequently, we used a cut 
distance to differentiate clusters separated by a distance >25 km, 
which represented the maximum average summer to winter move-
ment distance for any population in Wyoming (Fedy et al., 2012). We 
used a minimum sample size of eight individuals per genetic cluster 
for all subsequent analyses.

We calculated pairwise genetic differentiation using Hedrick’s G′

ST
 

(Hedrick, 2005) among our clustered groups. This measure of genetic 
differentiation was highly correlated with GST (mean = 0.98 ± 0.02 
SD) and Jost’s Dest (mean = 0.94 ± 0.02 SD) and avoids problems as-
sociated with nonstandardized measures of genetic differentiation 
(Jost, 2008; Meirmans & Hedrick, 2011).

TABLE  1 Number of Greater Sage-Grouse samples, breeding leks and grouped lek clusters used to establish patterns of genetic diversity 
and population structure in each of five long-established management zones

Zone

Number of 
individuals 
included

Number 
of leks

Mean (SD) number 
samples per lek

Number of lek 
clusters

Mean (SD) 
individuals per 
cluster Mean G′

ST
 (SD) Max G′

ST

MZ I 2,095 419 4.77 (4.57) 81 25.85 (19.99) 0.14 (0.07) 0.43

MZ II 1,567 251 6.16 (3.74) 75 20.89 (13.45) 0.21 (0.10) 0.56

MZ III 558 174 3.89 (3.79) 29 19.24 (13.97) 0.36 (0.12) 0.66

MZ IV 1,507 483 3.60 (3.24) 67 22.49 (13.88) 0.15 (0.07) 0.48

MZ V 282 65 4.81 (9.36) 15 18.80 (13.05) 0.22 (0.09) 0.52
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2.4 | Landscape resistance within 
management zones

We quantified pairwise effective resistance among lek clusters 
using circuit theory. Landscape surfaces were coded such that each 
pixel was assigned a value representing resistance to gene flow. 
Subsequently, we used the gdistance package in R to quantify pair-
wise resistance between two groups as the expected correlate to 
the amount of gene flow between two groups (i.e., higher pairwise 
resistance equates to lower expected movement; McRae, 2006; 
McRae & Beier, 2007). Pairwise effective resistance values are a 
function of the flow of current—representative of gene flow—and 
therefore incorporate geographic distance (McRae & Beier, 2007).

We generated pairwise effective resistances from landscape 
resistance surfaces using three published models representing 
accepted abiotic and biotic variables influential in sage-grouse bi-
ology (Doherty et al., 2016; see below for specific predictors). For 

each resistance surface, we tested three threshold values above or 
below which the landscape is hypothesized to be resistant to grouse 
movements (Keller et al., 2015). In all cases, we used the thresholds 
to derive a binary resistance surface representing habitat and non-
habitat. For variables with a known negative association with sage-
grouse (e.g., human disturbance, tillage), raster pixel values below 
the thresholds were set as habitat and assigned a resistance of 1 
with nonhabitat cells receiving a higher value. When the landscape 
variable represented a positive association with sage-grouse (e.g., 
percentage sagebrush cover, habitat utilization), values above the 
threshold were classified as habitat (resistance of 1) and we assigned 
higher values to nonhabitat (below the threshold). By determining 
the threshold values that best describe functional connectivity, we 
can make specific predictions as to when landscape degradation 
will lead to decreased connectivity. Below, we describe each resis-
tance surface and their associated resistance and threshold values. 
All raster surfaces were resampled using bilinear interpolation to 

TABLE  2 Landscape variables used as resistance surfaces and associated thresholds used to delineate “habitat” and “nonhabitat” and the 
top selected resistance values. Additional details on habitat layers can be found in Doherty et al. (2016)

Description Abbrev
Native 
resolution (m)

Expected 
effect Thresholds Resistances

Breeding habitat utilization: Range-wide breeding habitat 
index developed independently for each management zone 
(Doherty et al., 2016)

BH 120 × 120 Positive 0.25, 0.50, 0.65 20, 200

Lek abundance quantified using kernel density estimation of 
lek counts in each management zone (Doherty et al., 2016).

KI 120 × 120 Positive 90%, 70%, 50% 10, 200

Breeding Population Index model combing breeding habitat 
utilization and lek abundance (BHU * KI; Doherty et al., 
2016)

BPI 120 × 120 Positive 90%, 70%, 50% 10, 200

Sagebrush cover: Mean percentage of all sagebrush species 
(LANDFIRE EVT 1.2 – 2010) within 6.44 km moving 
windows

sb 30 × 30 Positive 10%, 30%, 50% 5, 50

Canopy cover: mean percent cover of the total tree canopy 
(LANDFIRE Fuels 1.2 – 2010) within 6.44 km moving 
windows

cc 30 × 30 Negative 5%, 10% 15% 5, 200

Tilled agricultural: mean percentage of tilled agricultural 
fields within 6.44 km moving windows. National 
Agriculture Statistics Service 2008–2014

ti 30 × 30 Negative 5%, 15%, 25% 5, 50

Human disturbance: index to human disturbance on the 
landscape including population density, roads, energy 
development. 2011 National Landcover Database 
Disturbed Classes (Homer et al., 2015).

hd 30 × 30 Negative 0.03%, 0.06%, 
0.09%

5, 50

Steepness: Mean percentage of landscape classified as 
steep using Theobald LCAP tool. National Elevation Data 
(NED 2013, Data available from the U.S. Geological Survey)

st 30 × 30 Negative 5%, 10%, 15% 5, 200

Roughness: Standard deviation of elevation and averaged 
within 6.44 km moving windows (NED 2013)

ro 30 × 30 Negative 50, 100,150 5, 50

Annual Drought Index: Averaged across years and within 
6.44 km moving windows estimated from USFS 
(1961–1990)

adi 1 km × 1 km Negative 6,7,8 5, 50

Degree days above 5 C: The number of degrees that mean 
daily temperature is ≥5°C and averaged within 6.44 km 
moving windows

dd5 1 km × 1 km Positive or 
Negative

1,600, 1,850, 
2,050

5, 50
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a resolution of 1.2 km. Overall, changes in resolution should not 
have a strong effect on pairwise resistance values (McRae & Beier, 
2007; Row et al., 2015). In all cases, we compare results to resis-
tances derived from an undifferentiated landscape in which all cells 
had a resistance of one. Thus, only distance was considered in the 
derivation of resistances, which serves as a null model and is anal-
ogous to geographic distances, but limited to the same study area 
constraints as the resistances surfaces (Lee-Yaw, Davidson, McRae, 
& Green, 2009). Hereafter, we refer to these resistances as “geo-
graphic distances.”

2.4.1 | Development of habitat predictors

Our first set of resistance surfaces were built on a breeding habi-
tat utilization model (BH) developed from landscape characteristics 
surrounding active breeding leks. The dominant variables varied for 
each MZ, but primarily included positive relationships with percent 
aerial coverage of sagebrush and negative relationships with increas-
ing tree canopy cover and anthropogenic variables such as cultiva-
tion and human disturbance (Table 2). Details on the development 
of the BH models and top variables for each MZ are presented in 
Doherty et al. (2016). Raster values associated with the BH model 
represent the predicted probability that the raster pixel contains 
sufficient breeding habitat to support sage-grouse lek formation. 
All active leks within the sage-grouse range occurred in areas with 
a predicted probability (p) ≥ .65, so we used this as one of three 
thresholds, classifying all raster cell values with p ≥ .65 as habitat 
and anything below as nonhabitat and, as such, resistant to dispersal 
(Table 2). We expected that not all nonlek habitat (e.g., p < .65) would 
reduce dispersal. Thus, we considered two lower probability thresh-
olds (p ≥ .5 and p ≥ .25) which split the distribution and in which all 
cells below the thresholds in p were assigned as nonhabitat to repre-
sent increased resistance to movement.

We also derived a set of resistance layers based on a kernel index 
(KI) of lek sizes and a breeding population index (BPI) model that 
combined estimates of breeding habitat (BH) and lek abundance (KI) 
estimates which represents areas that have both high-quality breed-
ing habitat and high lek abundances (KI * BH; Doherty et al., 2016). 
The distributions of predicted values for the KI and BPI were highly 
skewed toward zero. Thus, we used equally spaced percentiles (top 
90%, 70%, and 50% of the BPI and KI) as our thresholds. The land-
mass represented by the BPI thresholds represented approximately 
45%, 20% and 10% of the active sage-grouse range included as 
habitat.

2.4.2 | Development of landscape predictors

We used eight landscape variables to develop landscape resistance 
surfaces independent of breeding habitat and abundance (Table 2). 
We used a subset of the variables that proved most important in 
Doherty et al. (2016) and which have previously been shown to in-
fluence sage-grouse habitat. Landscape predictors included features 
that could be managed through protection (e.g., percent sagebrush 

cover) and restoration (e.g., canopy cover, tilled agriculture) and 
those that would be impossible to manage but have existed as 
barriers or which have restricted movement for a longer period of 
time (e.g., terrain topology, measured by steepness and roughness). 
Environmental conditions can also limit dispersal (Row et al., 2012). 
Thus, we also included two relevant environmental predictors: 
Annual Drought Index and degree days above 5°C (Doherty et al., 
2016). In both cases, thresholds were primarily derived based on the 
distribution of values and values that split the distribution of values 
into evenly spaced bins to minimize correlation between resistance 
distances within a predictor (Table 2).

2.4.3 | Resistance values of nonhabitat

It is difficult to differentiate among a set of resistance surfaces that 
represent hypotheses of functional connectivity if they are highly 
correlated with each other or with distance (Row et al., 2017). To 
reduce correlations, we tested a range of resistances and choose 
values that would result in pairwise resistances that were not cor-
related with each other after increasing resistances. The resulting 
values were not the same for each surface. Thus, for all resistance 
surfaces, we tested increasing resistance values for nonhabitat (5, 
10, and 20), and we calculated the correlation between the resulting 
pairwise resistance matrices and distance after each iteration. We 
chose our first nonhabitat resistance value when the average corre-
lation (r) for the three derived resistance matrices (i.e., one for each 
threshold) was ≤0.7 for at least one of the MZs. We used a similar ap-
proach to choose a second resistance value by considering a new set 
of resistance values (50, 100, and 200) and selected the value when 
correlations averaged ≤0.7 from the first set for any MZ. Overall, this 
approach generated six resistance surfaces (3 thresholds * 2 resist-
ance values) for each variable.

2.5 | Within-variable resistance thresholds

We identified the top resistance surfaces using maximum-likelihood 
population-effects models (MLPE), which is a mixed modeling ap-
proach that accounts for nonindependence in pairwise datasets 
(Clarke, Rothery, & Raybould, 2002; Van Strien et al., 2012). For each 
of the individual habitat, abundance, and landscape predictors, we 
used two analyses for each MZ to determine (i) the thresholds and 
resistance values that produced resistance distances (RD) that were 
best correlated with genetic differentiation, and (ii) whether that cor-
relation was significantly greater than its correlation with distance. 
We determined the top model with Akaike’s information criteria 
(AIC; Akaike, 1973) and estimated relative support using ΔAIC values 
compared with a model including only distance (i.e., the null model). 
We also determined the significance of standardized coefficients for 
the underlying model (GenDist ~ RD1) and a model that also includes 
geographic distance (GenDist ~ RD1 + RDdistance). When the resist-
ance coefficient confidence intervals were positive in both models, 
we considered the variable to have had a significant effect on gene 
flow over-and-above distance alone (Row et al., 2017).
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2.6 | Relative importance of landscape and 
habitat predictors

Within each MZ, we compared all of the models with significant 
resistance variables against each other using ΔAIC in a between-
variable analysis. There is some difficulty in identifying the correct 
multivariate models when resistance values are at different scales 
and have different distributions, but these results can be improved by 
calculating resistances from single landscapes that summarize mul-
tiple variables (Row et al., 2017). Therefore, in addition to compar-
ing the univariate landscape predictors, we developed a combined 
landscape surface using all of the significant landscape predictors 
summed together. Cells with increased resistance for more than one 
landscape variable had an additive resistance value. We calculated 
pairwise resistances using this new combined additive surface and 
compared the fit with genetic differentiation to the fit for values de-
rived from individual landscape variables and to the retained habitat 
predictors for each MZ.

2.7 | Resistance model validations

2.7.1 | Individual-based genetic differentiation

Although using a population-based evaluation is most appropriate 
for our species and sampling regime, using an individual-based ap-
proach in landscape genetics may influence the resulting perceived 
influence of landscape features (Prunier et al., 2013). Therefore, as 
a first validation of our results, we repeated the between-variable 
analysis using an individual-based approach and compared the re-
sults. We calculated individual-based genetic differentiation using 
Bray–Curtis percentage dissimilarity among an individual’s alleles, 
which reflects more recent changes in genetic differentiation when 
compared to other measures of individual differentiation (Landguth 
et al., 2010).

2.7.2 | Cross-validation of predictive G′

ST

We validated our top selected resistance surface for each MZ 
using a Monte Carlo cross-validation approach within each MZ. 
For each of 100 iterations, we split the data set into a training 
and testing dataset. Using the training dataset (80% of the data), 
we developed an MLPE model predicting genetic differentiation 
from the best resistance surface (GenDist ~ RD1) and distance 
alone (GenDist ~ RDdistance). Subsequently, we predicted genetic 
differentiation based on the model, and we performed a cross-
validation using the testing dataset (the remaining 20% of the 
data) by determining the absolute difference between the pre-
dicted and actual genetic differentiation for both models using 
100 iterations. We grouped differences into predictions ranging 
across five increasing categories of genetic differentiation to 
evaluate the ability of the model to predict genetic differentiation 
across a range of values.

2.8 | Range-wide connectivity

We used Circuitscape 4.0.1 (McRae & Shah, 2009) to derive and map 
predicted dispersal range-wide by quantifying gene flow among all 
grouped locations, using the top validated surface for each MZ. We 
treated each lek cluster as a node and calculated average overall flow 
using the all-to-one mode. Thus, gene flow was estimated for each 
lek cluster to all others sequentially and then averaged.

3  | RESULTS

3.1 | Genetic differentiation within management 
zones

The number of lek clusters within MZs ranged from 15 to 81, and 
the mean number of individuals sampled per lek cluster was rela-
tively consistent: ranging from 18.8 to 25.9 (Table 1). MZ III had the 
highest mean and maximum G′

ST
, while all the other MZs exhibited 

less differentiation among clusters (Table 1). As expected, genetic 
differentiation (G′

ST
) was positively correlated with distance for all 

MZs (Figure S2).

3.2 | Within-variable resistance surface analyses

3.2.1 | Landscape resistance surfaces

Effects of changing thresholds and resistance values on pairwise 
resistance varied among the MZs (Table S1). Most of this variation 
was tied to the abundance of the landscape classified as habitat, 
which varied between each MZ (Table S1). When a given landscape 
variable was rare on the landscape (e.g., tillage in MZ III and MZ V), 
changing the threshold or resistance had little effect on the pair-
wise resistance, resulting in high correlations in resistance across the 
thresholds. In most cases, changes in thresholds had a greater effect 
on resulting pairwise resistances than changes in resistance values 
(Table S1).

The importance of each landscape variable to functional con-
nectivity varied across MZs. Terrain ruggedness was an important 
component of functional connectivity across the range as indicated 
by roughness (ro) and/or steepness (st) being significant for all MZs 
(Figure 2). Sagebrush cover was significant for functional connec-
tivity in three of the five MZs with the selected threshold being 
either 10% (MZ V) or 30% (MZ II, IV) cover; values below these 
thresholds resulted in increased landscape resistance for “nonhab-
itat” (Figure 2). Sagebrush cover was not significant for functional 
connectivity in MZ I or MZ III, where mean sagebrush cover was 
the lowest (Table S1). Tree canopy cover reduced functional con-
nectivity: >10% threshold had the highest ΔAIC value compared to 
geographic distance for MZs I, II, and IV. Changing thresholds or re-
sistance values had little effect on pairwise resistance values in MZ 
V despite high canopy cover values that were clustered along MZ V 
boundaries.
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Anthropogenic landscape disturbances also had consistent 
negative influences on functional connectivity. Human distur-
bance, tillage, or both human disturbance and tillage had signifi-
cant effects on functional connectivity in all but MZ III (Figure 2). 
In MZ I, II, and IV, the thresholds for tillage were all 25% (Figure 2), 
suggesting disrupted functional connectivity on landscapes where 
row crops and small grain fields composed a greater percentage of 
the landscape than this threshold. In MZ V, the selected threshold 
was only 5%, but the overall percentage of the tilled agricultural 
in the landscape was also low (~2% on average; Table S1), and 
pairwise resistances were highly correlated (.99) with geographic 
distance. In MZ III, tilled agricultural similarly represented a small 
percentage of the landscape.

Landscape variables derived from environmental variables ap-
peared to have little effect on functional connectivity for most 
MZs. Annual drought index (adi) was not significant for any MZs, 
and degree days above 5 (dd5) was only significant for MZ II 
(Figure 2).

3.2.2 | Breeding habitat utilization and abundance 
resistance surfaces

Similar to the landscape variables, the effects of changing thresh-
olds and resistance values for habitat surfaces on pairwise resist-
ances varied among the MZs, but was much greater for changes 
in thresholds overall (Table S1). In three of the five MZs, breeding 

habitat utilization (BH) improved model performance over undif-
ferentiated landscapes, with ΔAIC values >100 when compared 
to geographic distance (Figure 2). The selected threshold for BH 
was either 0.25 (MZ I) or 0.5 (MZ II and IV), suggesting that when 
breeding habitat estimates dropped below these values in the re-
spective zones, functional connectivity was reduced. In MZ IV, the 
correlation between resistances from a threshold of 0.25 and 0.50 
was high (0.86), and the difference in model fit between the top 
two thresholds was less than the other two zones (ΔAIC = 10.42), 
suggesting the selection of the exact threshold may be less robust 
for this zone.

Univariate abundance alone (KI) performed better than distance 
in four of the five MZs, but ΔAIC values were not as high as BH in 
all of the MZs where they were both included in Figure 2. The com-
bined abundance and breeding habitat layer (BPI) increased ΔAIC 
over an undifferentiated landscape and BH in MZ IV and MZ V. In 
MZ III, resistance values from an undifferentiated landscape had 
the lowest AIC, but the BPI model was similar with a small ΔAIC 
of 0.56 and the BPI coefficient confidence intervals in the model 
GEN ~ BPI + UNDIFF were significantly above zero (CI: 0.013–0.16).

3.3 | Relative importance of landscape and 
habitat predictors

In four of the five MZs, resistance values derived from BH or BPI pro-
vided the best fit with genetic differentiation (Appendix S2). In MZ 

F IGURE  2 Top univariate coefficients for each landscape and habitat variable (see details in Table 2) in each management zone as 
compared to model fit with distances. Higher ∆ AIC values suggest a greater fit for the landscape surface as compared to distance alone. The 
top chosen threshold used to define habitat and nonhabitat and the level of correlation for resistances from that surface and distance are 
also shown
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TABLE  3 Top models predicting pairwise genetic differentiation from pairwise resistance between lek groups of sage-grouse samples. 
Resistance surface codes are a combination of the base predictor (Table 2), threshold value and assigned resistance

Surface AICc ΔAICc AICc weight Cumulative weight Residual log-likelihood

MZ I

BH_25_020 −13,309.79 0.00 0.98 0.98 6,658.90

BPI_10_010 −13,301.86 7.93 0.02 1.00 6,654.94

landsum −13,227.99 81.80 0.00 1.00 6,618.00

KI_10_020 −13,215.14 94.65 0.00 1.00 6,611.58

ro_150_005 −13,201.90 107.89 0.00 1.00 6,604.96

cc_10_005 −13,199.10 110.69 0.00 1.00 6,603.56

st_10_005 −13,194.98 114.81 0.00 1.00 6,601.50

adi_08_050 −13,183.16 126.63 0.00 1.00 6,595.59

ti_25_005 −13,177.29 132.51 0.00 1.00 6,592.65

distance −13,171.60 138.19 0.00 1.00 6,589.81

hd_09_005 −13,168.67 141.12 0.00 1.00 6,588.34

MZ II

BH_50_020 −10,116.80 0.00 0.99 0.99 5,062.41

BPI_10_010 −10,108.30 8.50 0.01 1.00 5,058.16

KI_10_020 −10,059.24 57.56 0.00 1.00 5,033.63

landsum −10,059.15 57.65 0.00 1.00 5,033.58

ro_150_005 −10,005.27 111.53 0.00 1.00 5,006.64

sb_30_005 −9,996.98 119.82 0.00 1.00 5,002.50

st_10_005 −9,980.62 136.19 0.00 1.00 4,994.32

cc_10_005 −9,978.64 138.17 0.00 1.00 4,993.33

dd5_2050_005 −9,969.67 147.14 0.00 1.00 4,988.84

ti_25_050 −9,939.34 177.47 0.00 1.00 4,973.68

MZ III

distance −1,068.57 0.00 0.41 0.41 538.33

BPI_30_010 −1,068.00 0.56 0.31 0.71 538.05

landsum −1,066.50 2.07 0.14 0.86 537.30

ro_050_005 −1,066.50 2.07 0.14 1.00 537.30

MZ IV

BPI_10_010 −8,805.11 0.00 1.00 1.00 4,406.56

BH_50_020 −8,785.28 19.83 0.00 1.00 4,396.65

cc_10_005 −8,732.80 72.31 0.00 1.00 4,370.41

landsum −8,724.33 80.78 0.00 1.00 4,366.17

KI_10_020 −8,715.78 89.33 0.00 1.00 4,361.90

sb_30_005 −8,701.29 103.83 0.00 1.00 4,354.65

ti_25_005 −8,621.57 183.54 0.00 1.00 4,314.80

st_15_005 −8,618.20 186.91 0.00 1.00 4,313.11

ro_150_005 −8,602.39 202.72 0.00 1.00 4,305.20

hd_09_005 −8,596.51 208.60 0.00 1.00 4,302.26

distance −8,594.59 210.52 0.00 1.00 4,301.30

MZ V

landsum −335.76 0.00 0.60 0.60 172.08

BPI_50_010 −333.15 2.61 0.16 0.77 170.77

st_15_005 −332.72 3.04 0.13 0.90 170.56

(Continues)
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I and II, BH was the best model and ΔAIC values over the second-
best model were 7.93 and 8.50, respectively (Table 3). In both cases, 
BPI was the second-best model. BPI was the best fit in MZ IV with 
a ΔAIC value of 19.83 over the second-best model (BH), suggesting 
the incorporation of abundance significantly improved the model fit 
for this zone. In MZ III, the top model was an undifferentiated land-
scape, but as noted above, the second-best model (BPI) had a low 
ΔAIC (0.56) and performed better in the prediction validation (see 
below). In MZ V, the combined landscape had the best fit, but again, 
the second-best model was the BPI model with a relatively low ΔAIC 
of 2.61 (Table 3).

3.4 | Resistance model validations

3.4.1 | Individual-based genetic differentiation

The individual-based analysis produced results similar to the 
population-based results presented above. Using the individual-
based analysis, BH or BPI was the top model in all zones with the 
exception of MZ V, where the summed landscape layer was the 
top surface as in the population-based analysis (Table S2). In MZ I 
and MZ II, the order of the top two surfaces was switched from the 
population-based analysis and BPI provided a better fit than BH. In 

Surface AICc ΔAICc AICc weight Cumulative weight Residual log-likelihood

ti_05_050 −330.89 4.87 0.05 0.95 169.65

sb_10_050 −329.96 5.80 0.03 0.98 169.18

KI_50_020 −326.44 9.32 0.01 0.99 167.42

distance −325.98 9.78 0.00 0.99 167.19

BH_65_020 −324.98 10.78 0.00 1.00 166.69

hd_09_050 −324.77 10.99 0.00 1.00 166.58

ro_050_005 −322.80 12.96 0.00 1.00 165.60

cc_15_005 −321.68 14.08 0.00 1.00 165.04

TABLE  3  (Continued)

F IGURE  3 Absolute difference between predicted and actual pairwise genetic differentiation for groups of greater sage-grouse samples 
with increasing levels of differentiation. Predictions for resistances from the top resistance model (see Table 3) and distance alone are 
compared
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MZ III, BPI provided a better fit over distance. In MZ IV, BH was the 
top surface over BPI—the best fit in the population-based analysis—
which was the second-best fitting model.

3.4.2 | Cross-validation of predictive G′

ST

In all zones, the top resistance model was better able to predict G′

ST
 

than distance alone (Figure 3). The overall differences between the 
top model and geographic distance and the predictive ability of the 
top model varied among the MZs. In MZ I, IV and V, the top surface did 
not predict genetic differentiation better than geographic distance 
for clusters with low differentiation (<0.3 G′

ST
), but had improved pre-

diction for clusters with high differentiation (>0.3 G′

ST
). In MZ II, the 

top model predicted G′

ST
 better than distance for clusters with low 

and high G′

ST
, but not for intermediate values of G′

ST
 (Figure 3). In MZ 

III, the top surface only predicted G′

ST
 better than geographic distance 

for clusters with low overall differentiation (<0.2 G′

ST
).

3.5 | Range-wide patterns of gene flow

Average gene flow between clusters identified connectivity be-
tween populations at local scales and at some regional scales within 

MZs (Figure 4). At the range-wide scale, connectivity was more vari-
able with large areas of low modeled gene flow separating some 
large population centers (Figure 4). Redundancies in high modeled 
gene flow throughout Wyoming and Colorado suggest that MZ II, 
which contains ~40% of range-wide populations, is also the most 
connected of the five zones. Pathways of modeled gene flow sug-
gest that eastern Montana and the Dakotas connect to MZ II via 
Wyoming’s Powder River Basin in the southern extent of MZ I 
(Figure 4). North-central Idaho and southwest Montana popula-
tions display ample gene flow between lek groups, but appear to 
lack regional connectivity to surrounding populations; mountain-
ous terrain and intensive cultivation of Idaho’s Snake River Plain are 
obvious barriers to gene flow. Similar breaks in modeled gene flow 
appear between MZ II and MZ III, but our current results highlight 
two potential paths of lowest resistance that bridge Rocky Mountain 
populations to those in the Great Basin. One that runs through the 
Three Creeks watershed near the town of Randolph in northeast 
Utah, and the other, a more southern loop of flow through central 
Utah. Farther west, multiple paths of potential gene flow connect 
southwest Idaho with Oregon and northeast California populations. 
On the California/Nevada border, two weak and diffuse paths con-
nect the Bistate population to others to the north and east. Given 

F IGURE  4 Range-wide gene flow map 
describing low (dark blue) to high (yellow) 
connectivity between greater sage-grouse 
lek groups used in landscape genetic 
analysis. For display flow was split into 
percentiles with bin labels representing 
the upper bound
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that many of these paths span between management zones, more 
research is required in these regions to test the extent to which they 
represent areas of active gene flow.

4  | DISCUSSION

Our landscape genetic analysis of gene flow and causal resistance 
surfaces represents one of the largest single evaluations of func-
tional connectivity for a wild terrestrial vertebrate. Our primary 
advancements herein include accounting for regional variation in fac-
tors driving functional connectivity, deriving thresholds in functional 
connectivity for a species at risk, and depicting those responses as 
spatially explicit resistance surfaces for use in range-wide conserva-
tion evaluations. Through noninvasive sampling techniques, the fea-
sibility of developing broad-scale range-wide datasets is increasing. 
Furthermore, ever-improving molecular genetic technologies are 
making it possible to generate large amounts of genotypic informa-
tion from individuals in these datasets. Our findings can serve as 
a roadmap for other large-scale evaluations in landscape genetics 
aimed at identifying connectivity thresholds and validating estab-
lished resistance surfaces within regions of importance to wildlife 
management.

As hypothesized, MZ-specific habitat metrics were the best pre-
dictors of differentiation. However, to our surprise, contributions 
of bird abundance-corrected indices were equivocal to model fit. 
Collectively, these findings suggest that maintenance of breeding 
habitat above critical thresholds so as not to reduce genetic ex-
change is fundamental to conservation of connected populations. 
Our inferences also add to a body of literature suggesting that struc-
tural connectivity estimated from habitat indices can be a strong 
predictor of functional connectivity for many species (Hagerty, 
Nussear, Esque, & Tracy, 2011; Row et al., 2010, 2015; Shafer et al., 
2012; Wang et al., 2008), but we stress the importance of including 
model validations to have a clear understanding of the predictive 
capabilities of landscape genetic models.

Herein, BH models in each zone were developed independently 
and the relative importance of the variables underlying each breeding 
habitat model varied. Broadly speaking, the variables with the great-
est importance were a positive association with sagebrush cover and 
a negative association with increased tree canopy cover for most 
zones. When resistance surfaces from these landscape variables 
were compared independently to genetic differentiation, they were 
similarly found have a greater fit than distance alone, demonstrat-
ing their overall importance. Interestingly, the distribution of Annual 
Drought Index (MZ II, MZ IV, MZ V) and degree days >5°C (MZ II, MZ 
III, MZ IV) were prominent variables in some of the habitat models, 
but when analyzed independently they had little explanatory power 
in our assessment of functional connectivity. Thus, their importance 
may be connected or correlated with other variables.

Using our threshold approaches, we found that landscapes with 
a probability of occurrence for breeding leks <0.25 or 0.5 reduced 
functional connectivity. These values are likely below the threshold 

for persistence, as all known active breeding leks are present in re-
gions with values >0.65 (Doherty et al., 2016). The lower value for 
functional connectivity is not surprising, as individuals are often will-
ing to disperse through undesirable habitat (Tischendorf & Fahrig, 
2000), but has important conservation implications on how to man-
age landscapes to preserve functional connectivity for sage-grouse. 
For example, although the habitat may be degraded below the 0.65 
threshold for breeding lek formation, it will still be important to 
maintain habitat above the lower thresholds identified here in order 
to maintain functional connectivity.

It is important to point out that landscape genetic results can 
vary at different spatial scales (Anderson et al., 2010) and habitat 
configuration can influence both dispersal (D’Eon, Glenn, Parfitt, 
& Fortin, 2002) and habitat selection (Wisdom, Meinke, Knick, & 
Schroeder, 2011). Furthermore, different threshold values had dif-
ferent overall effects on pairwise resistance and on model fit for 
each management zone. Thus, in planning for conservation, con-
ducting analyses at different spatial extents and testing the effect of 
the different thresholds identified here (0.5, 0.25) and the resulting 
habitat configuration will provide valuable insights.

How individuals respond to habitat structure will vary between 
species. Thus, comparing other species that overlap our study area, 
especially other sagebrush obligate species, could provide insight 
into the generality of the results found here. We are not aware of 
other studies that have utilized a threshold approach. However, both 
Wang et al. (2008) and Row et al. (2010) found that the best fitting 
resistance models assigned very low-quality habitat disproportion-
ately higher resistances or set these habitats as absolute barriers. 
These results suggest that thresholds in habitat indices may be an 
effective approach for other species. Yet, in some cases, continu-
ous habitat surfaces have performed better than discrete values 
(Hagerty et al., 2011), or individual landscape predictors have per-
formed better than combined habitat indices altogether (Roffler 
et al., 2016; Wasserman, Cushman, Schwartz, & Wallin, 2010). A 
weak association between habitat and functional connectivity is 
likely when there are large differences between daily use and dis-
persal habitat or when one or a few landscape components are the 
primary drivers of functional connectivity. It is also hard to compare 
between studies when different approaches are used to derive re-
sistance surfaces. For example, both Wasserman et al. (2010) and 
Roffler et al. (2016) only tested habitat resistance surfaces with a 
direct linear relationship between habitat and landscape resistance. 
In contrast, discrete values (tested here and by Wang et al., 2008 
and by Row et al., 2010) or the exponential relationships between 
habitat and resistance (Row et al., 2015) often appear to provide 
better model fit.

We predicted that the inclusion of abundance information would 
improve the fit between habitat and genetic differentiation. Local 
population size has long been linked to patterns of dispersal and 
can influence source-sink dynamics (Matthysen, 2005; Ozgul, Oli, 
Armitage, Blumstein, & Van Vuren, 2009). Furthermore, population 
size will influence the effects of genetic drift and have impacts on 
spatial patterns of genetic differentiation (Hutchison & Templeton, 
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1999). However, contrary to our predictions including abundance in-
formation into the resistance surfaces did not improve the model fit 
for most MZs. In our analysis, inclusion of abundance indices acted 
to decrease resistance around population centers and increase the 
resistance in areas with low abundance, but our approach could not 
test the effect of population size on the attractiveness of individual 
locations to dispersers. Thus, using models where local abundance 
can modify the number of dispersers into, or out of, a population 
(Murphy, Dezzani, Pilliod, & Storfer, 2010; Row, Oyler-McCance, & 
Fedy, 2016), might provide more insight into the effects of abun-
dance on differentiation. We only included abundance estimates of 
males during the breeding season, but it is possible that abundance 
during other seasons or estimates of effective population size may 
be of greater importance to functional connectivity.

4.1 | Resistance thresholds and spatial variation in 
landscape predictors

Terrain roughness shaped functional connectivity across all MZs, 
and sagebrush availability (+) or tree canopy cover (−), and extent of 
cultivation (−) were influential in all but MZ III, the most highly frag-
mented zone. Time lags exist from when a barrier to dispersal first 
arises on the landscape and when the influence of that barrier on 
functional connectivity can be detected (Landguth et al., 2010). For 
sage-grouse, the topography of the terrain can have a strong influ-
ence on habitat use and distribution (Davis, Reese, Gardner, & Bird, 
2015; Fedy et al., 2014), and these imposed restrictions to move-
ment or barriers have likely remained static for millennia. Indeed, 
in other large-scale landscape genetic evaluations of sage-grouse, 
areas with higher landscape ruggedness, a measure of sharp changes 
in elevation, restricted gene flow (Row et al., 2015). Similarly, in our 
individual landscape analysis, we found increases in steepness or 
roughness reduced functional connectivity in all of the five MZs, 
likely resulting from avoidance of these areas by dispersing sage-
grouse. Although these are natural landscape features and will not 
be the target of conservation initiatives, it is clear that they impact 
dispersal and so it is important to consider and control for terrain in 
future evaluations.

In contrast to terrain topography, the current distribution of 
sagebrush has been modified through development and land con-
version (Davies et al., 2011; Welch, 2005). Thus, many resistance 
features have likely been created or modified since human settle-
ment. Sage-grouse rely on sagebrush for both food and shelter and 
sagebrush is a strong predictor of sage-grouse habitat across sea-
sons and spatial scales (Connelly, Knick, Schroeder, & Stiver, 2004; 
Doherty et al., 2016; Fedy et al., 2014), and it influences functional 
connectivity (Row et al., 2015). Similarly, we found that areas with 
low sagebrush cover impeded gene flow in three of the five MZs. In 
two cases, we found that sagebrush cover <30% impacted dispersal, 
with a 10% threshold in the third, suggesting that sagebrush cover 
<10%–30% reduces gene flow. As with the habitat thresholds, sage-
grouse are capable of dispersal through habitats in which they are 
unlikely to persist (suggested persistence thresholds are in the range 

of 40%–65% sagebrush cover; Aldridge, Nielsen, & Boyce, 2008; 
Wisdom et al., 2011; Knick, Hanser, & Preston, 2013).

Given the importance of sagebrush to sage-grouse, it is surpris-
ing that the distribution of sagebrush cover was not a significant pre-
dictor of genetic differentiation in two of the MZs. Variation in the 
importance of a predictor can be related to its abundance and distri-
bution, but this does not seem to be the case here, as mean values 
were similar across all zones. In MZ I, where individuals have been 
shown to move far distances (Cross et al., 2017; Newton et al., 2017), 
isolation by distance appeared to drive differentiation. None of the 
landscape predictors were very strong in MZ III, a zonal boundary 
spanning multiple populations and/or habitat–population relation-
ships. Perhaps this should be expected as MZ III is set in basin and 
range topography with this natural fragmentation exacerbated by 
conifer encroachment and land-use change (Chambers et al., 2017). 
In both of these zones, sagebrush was an important component of 
the derived habitat indices suggesting that its distribution is import-
ant in combinations with other landscape variables.

A long history of fire control has enabled encroaching conifer 
woodlands to degrade sagebrush habitats into areas with higher 
amounts of tree canopy cover. Sage-grouse avoid canopy cover at 
low levels (<4%, Miller, Naugle, Maestas, Hagen, & Hall, 2017) or stay 
and suffer demographic impacts (Coates et al., 2017). In conifer re-
moval areas, females readily nested in restored sites (Coates et al., 
2017; Severson et al., 2017) and were more successful in raising their 
broods (Sandford et al., 2017). We build on this knowledge to add 
that connectivity among population centers is reduced when conifer 
expansion exceeds a 10% threshold in canopy cover. Connectivity is 
relevant to management because conifer-encroached habitats stim-
ulate faster yet riskier movements, especially in juveniles, that may 
make sage-grouse more vulnerable to visually acute predators with 
demonstrated fitness consequences (Prochazka et al., 2017). Future 
restoration planning with the goal of improving genetic connectivity 
can use our range-wide resistance surfaces to select areas where the 
greatest benefit may be found.

Cultivation is known to reduce breeding populations (Doherty 
et al., 2016; Smith et al., 2016). Findings here further suggest that 
cultivation reduces gene flow when >25% of the landscape is con-
verted to cropland in three of five MZs tested. In eastern Montana, 
where cultivation is most prevalent, 70% of the best sage-grouse 
habitat is privately owned. Therefore, activities that keep sagebrush 
habitats intact (such as large working cattle ranches) as opposed to 
those that do not (such as agriculture) should help maintain connec-
tivity between population strongholds. Cultivation land use was not 
prevalent in the other two zones (MZ III, V) so we had low power to 
determine its effects on functional connectivity therein.

4.2 | Resistance model validation

Landscape genetic studies typically quantify correlations between 
patterns of genetic differentiation or gene flow with landscape re-
sistance (or cost) distances and provide insight into the relative im-
portance of landscape variables influencing functional connectivity 
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(Manel et al., 2003). Here, we not only evaluated these common 
objectives, but also tested the ability of the top linear mixed mod-
els to predict genetic differentiation among populations based on 
landscape resistance. Predictive ability of our resistance maps varied 
quite dramatically among MZs and also with the level of differentia-
tion between the populations considered. In most cases, improve-
ment in predictive ability of our models when compared to the null 
distance model was greatest when pairwise comparisons had little 
(MZ III) or much (MZ IV, MZ V, MZ I) differentiation among popu-
lations and in one case where differentiation among populations 
varied (MZ II). Where our models did not perform better, results 
indicated that distance was the predominate driver of differentia-
tion and that our models did not add much predictive improvement. 
For example, in MZ IV, plots of genetic differentiation and distance 
(Figure S2) reveal that highly differentiated populations are not ex-
plained well by distance alone due to the high value of residuals; the 
resistance models for this zone have much better predictive power 
for these highly differentiated groups. Conversely, in MZ III, the 
residuals are larger for populations with low differentiation, which 
corresponds to the improved performance of the resistance models.

Comparing performance of our models to other studies is not 
possible as we are unaware of others who have validated the pre-
dictive power of their landscape resistance models. The potential 
power of landscape genetics for informing management will be 
greatly improved if the model results can be used to predict genetic 
differentiation between regions where genetic data are lacking or to 
predict how changes to the landscape are likely to impact functional 
connectivity. Predictions backed by any confidence require more 
validation than is current practice, and we present a novel frame-
work for providing this necessary model validation.

4.3 | Implications for sage-grouse management

Currently, sage-grouse conservation is largely focused on imple-
menting beneficial conservation measures within population strong-
holds (e.g., Priority Areas of Conservation; U.S. Fish and Wildlife 
Service 2013) and around known sage-grouse leks as they represent 
areas of importance for breeding and early brood rearing habitat 
(Doherty et al., 2016; Fedy et al., 2014). However, our analyses and 
resulting resistance surfaces point to several measures that can be 
taken to help improve and maintain functional connectivity for sage-
grouse. First, although population strongholds likely have much 
higher suitability values, maintaining areas outside of these regions 
above habitat thresholds of 0.5, or potentially 0.25 in some man-
agement zones, should help maintain connectivity between these 
existing protection areas. Secondly, our models could help identify 
landscapes where targeted conservation would maximize conserva-
tion return on investment. For example, a 100-year history of fire 
suppression has enabled conifer expansion into sagebrush habitats, 
reducing lek attendance, breeding habitat quality and survival of 
sage-grouse (Coates et al., 2017; Miller et al., 2017). We found that 
functional connectivity appeared to drop at around 10% and, thus, 
a conifer removal strategy incorporating known dispersal pathways 

from our current flow map (Figure 4) may help to maintain connec-
tivity between population strongholds.

In addition to the thresholds we identified, the resistance sur-
faces and gene flow maps we generated help identify areas within 
which to prioritize management actions. Resistance maps identify 
areas that are above and below threshold values that obstruct gene 
flow and direct conservation actions within these areas where it is 
possible to maintain or improve habitat above or below a targeted 
threshold. Furthermore, because the nodes in our analysis represent 
clusters of active sage-grouse leks, the modeled gene flow should 
reflect movement from these high density areas and, as such, can be 
used to help locate and protect dispersal corridors. Additional gene 
flow maps can be produced among management areas of particular 
interest to managers and used to target conservation initiatives that 
will maintain connectivity among population strongholds.

It was clear from our cross-validation that the predictive ability 
of our resistance models varied with the levels of genetic differenti-
ation and among management zones. Even when our results strongly 
suggested an improvement in model fit when compared to the null 
distance model, the overall predictive ability of our models was at 
times marginal or poor depending on the amount of genetic differen-
tiation among populations. Without our cross-validation to provide 
an estimate of predictive ability, conservation initiatives could direct 
actions that will not have the desired improvement on connectivity. 
Overall, our cross-validated approach used in developing our thresh-
old resistance surfaces for sage-grouse should initiate a new era of 
spatial analyses which emphasizes the value of functional connectiv-
ity and the identification of habitats supporting it.
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