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Abstract
Functional	connectivity,	quantified	using	landscape	genetics,	can	inform	conserva-
tion through the identification of factors linking genetic structure to landscape 
mechanisms.	We	used	breeding	habitat	metrics,	landscape	attributes,	and	indices	of	
grouse	abundance,	to	compare	fit	between	structural	connectivity	and	genetic	dif-
ferentiation	within	five	long-	established	Sage-Grouse	Management	Zones	(MZ)	I-	V	
using	microsatellite	genotypes	from	6,844	greater	sage-	grouse	(Centrocercus uropha-
sianus)	collected	across	their	10.7	million-	km2 range. We estimated structural con-
nectivity using a circuit theory- based approach where we built resistance surfaces 
using thresholds dividing the landscape into “habitat” and “nonhabitat” and nodes 
were	clusters	of	sage-	grouse	leks	(where	feather	samples	were	collected	using	non-
invasive	 techniques).	 As	 hypothesized,	MZ-	specific	 habitat	 metrics	 were	 the	 best	
predictors	 of	 differentiation.	 To	 our	 surprise,	 inclusion	 of	 grouse	 abundance-	
corrected	indices	did	not	greatly	improve	model	fit	in	most	MZs.	Functional	connec-
tivity of breeding habitat was reduced when probability of lek occurrence dropped 
below	0.25	(MZs	I,	IV)	and	0.5	(II),	thresholds	lower	than	those	previously	identified	
as	required	for	the	formation	of	breeding	 leks,	which	suggests	that	 individuals	are	
willing	 to	 travel	 through	undesirable	 habitat.	 The	 individual	MZ	 landscape	 results	
suggested terrain roughness and steepness shaped functional connectivity across all 
MZs.	Across	respective	MZs,	sagebrush	availability	(<10%–30%;	II,	IV,	V),	tree	canopy	
cover	(>10%;	I,	II,	IV),	and	cultivation	(>25%;	I,	II,	IV,	V)	each	reduced	movement	be-
yond their respective thresholds. Model validations confirmed variation in predictive 
ability	across	MZs	with	top	resistance	surfaces	better	predicting	gene	flow	than	geo-
graphic	distance	alone,	especially	in	cases	of	low	and	high	differentiation	among	lek	
groups. The resultant resistance maps we produced spatially depict the strength and 
redundancy of range- wide gene flow and can help direct conservation actions to 
maintain and restore functional connectivity for sage- grouse.
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1  | INTRODUC TION

Functional	 connectivity	 describes	 how	 landscapes	 influence	 the	
movement	 of	 individuals	 between	 habitat	 patches	 (Tischendorf	&	
Fahrig,	2000).	Its	conservation	is	fundamental	to	the	protection	of	
diverse and viable populations able to persist and adapt to changing 
conditions	(Fahrig	&	Merriam,	1985;	Lamy	et	al.,	2013;	Morrissey	&	
de	Kerckhove,	2009).	The	distribution	of	habitat	on	the	 landscape	
(i.e.,	structural	connectivity)	often	does	not	correlate	directly	with	
functional	 connectivity,	 because	 it	 does	 not	 consider	 the	 behav-
ioral	responses	of	individuals	to	habitat	structure,	nor	their	willing-
ness	 to	 disperse	 through	 undesirable	 habitats.	 Landscape	 genetic	
approaches	 compare	 gene	 flow	 (i.e.,	 functional	 connectivity)	 to	
connectivity measures and yield direct insights into the relative 
importance	 of	 landscape	 features	 and	 their	 configuration	 (Manel,	
Schwartz,	Luikart,	&	Taberlet,	2003;	Row	et	al.,	2015).

Landscape	features	influencing	genetic	structure	can	range	from	
natural	barriers,	such	as	mountains	or	lakes,	to	more	recent	barriers	
such	 as	 roads	 and	 development.	 Thus,	 insight	 from	 landscape	 ge-
netics can help to guide management and conservation efforts by 
identifying specific features that reduce or facilitate gene flow and 
by	identifying	 locations	where	mitigation	of	 impedance	is	required	
(Epps	 et	al.,	 2005;	 Roever,	 van	 Aarde,	 &	 Leggett,	 2013).	 Despite	
the	potential	 implications,	the	output	from	functional	connectivity	
analyses is often omitted from conservation plans because they are 
not carried out in ways that are conducive to management objec-
tives	 (Keller,	Holderegger,	 van	Strien,	&	Bolliger,	2015).	For	exam-
ple,	both	the	spatial	extent	of	the	study	area	and	the	resolution	of	
landscape variables can influence the estimated importance of land-
scape	 features	 to	 functional	 connectivity	 (Anderson	 et	al.,	 2010),	
which	 makes	 extrapolation	 across	 scales	 and	 comparison	 among	
studies	challenging.	Thus,	conducting	research	at	scales	too	large	or	
too	small	for	planning	tools	will	hinder	implementation	(Keller	et	al.,	
2015).	Furthermore,	investigating	both	landscape	variables	that	can	
be actively managed and those that are likely to impact connectiv-
ity,	but	cannot	be	actively	managed	(e.g.,	elevation),	will	 likely	lead	
to biologically meaningful results that can also be incorporated into 
conservation plans.

Although	 functional	 connectivity	 is	 likely	 influenced	by	 a	mul-
titude	of	 landscape	 features,	 it	 can	prove	challenging	 to	disentan-
gle	 their	 relative	 effects	 (Row,	 Knick,	 Oyler-	McCance,	 Lougheed,	
&	Fedy,	2017).	One	way	of	modeling	 the	biological	 importance	of	
multiple landscape features is through the use of habitat indices. 
Habitat	indices	are	typically	derived	from	occurrence	or	radiotelem-
etry data and are used to predict the probability of occupancy across 
a	 landscape	 based	 on	 the	 suitability	 of	 habitat	 (Fedy	 et	al.,	 2012;	
Phillips,	Anderson,	&	Schapire,	2006)	or	the	probability	of	selection	

for	habitat	types	(Gubili	et	al.,	2017;	Shafer	et	al.,	2012).	Using	hab-
itat indices in landscape genetic models can assist with establish-
ing	 a	 direct	 link	 between	model	 results	 and	management	 actions,	
and can alleviate some of the issues related to testing a multitude 
of	 landscape	variables	 (i.e.,	 type	 I	 error).	 If	 structural	 connectivity	
quantified	using	habitat	 indices	proves	 to	be	a	strong	predictor	of	
functional	 connectivity	 (Row,	 Blouin-	Demers,	 &	 Lougheed,	 2010;	
Row	et	al.,	2015;	Wang,	Yang,	Bridgman,	&	Lin,	2008),	identifying	re-
gions of importance to maintaining connectivity and predicting im-
pacts	from	changes	to	habitat	suitability	become	more	clear	(Roever	
et	al.,	2013).	However,	in	some	cases,	the	relationship	between	hab-
itat	 indices	and	functional	connectivity	can	be	weak	(Roffler	et	al.,	
2016).	 This	 lack	 of	 relationship	 is	 likely	 the	 result	 of	 a	 mismatch	
between	 dispersal	 and	 the	 habitats	modeled	 in	 the	 indices	 (Ribe,	
Morganti,	Hulse,	&	Shull,	1998;	Spear,	Balkenhol,	Fortin,	McRae,	&	
Scribner,	2010).

Habitat	models	used	in	landscape	genetic	analysis	generally	do	
not	 include,	 nor	 model,	 variation	 in	 local	 population	 abundance.	
However,	 local	 population	 abundance	 can	 influence	 dispersal	
(Matthysen,	2005;	Pflüger	&	Balkenhol,	2014;	Strevens	&	Bonsall,	
2011)	and	regional	differences	in	population	abundance	can	impact	
genetic	drift	and	spatial	genetic	structure	(Row,	Wilson,	&	Murray,	
2016).	Therefore,	the	inclusion	of	effective	population	sizes	in	land-
scape genetic models can improve the fit between genetic differ-
entiation	 and	 landscape	 variables	 hypothesized	 to	 affect	 genetic	
differentiation	 (Weckworth	 et	al.,	 2013).	 For	 example,	 even	when	
the	probability	of	occupancy	is	high,	low	abundance	could	lead	to	in-
creased	genetic	differentiation.	Therefore,	including	abundance	es-
timates in habitat indices should improve the prediction of functional 
connectivity.	However,	due	to	the	difficulty	in	obtaining	abundance	
information	at	large	spatial	scales,	abundance	is	rarely	incorporated	
into landscape genetic models.

In	this	study,	we	establish	the	drivers	of	functional	connectivity	
for	 the	 greater	 sage-	grouse	 (Centrocercus urophasianus; hereafter 
sage-	grouse)	 across	 the	 species’	 range	 in	 North	 America.	 Sage-	
grouse	 are	 distributed	 across	 eleven	US	 states	 and	 two	Canadian	
provinces	 in	 western	 North	 America.	 However,	 there	 has	 been	 a	
44%	 range	 contraction	 since	European	 settlement	 and	 substantial	
declines	in	population	size	since	the	1960s	(Garton	&	Connelly,	2011;	
Schroeder	et	al.,	2004).	These	decreases	in	range	and	population	size	
have largely been attributed to habitat loss and fragmentation and 
have resulted in the species being petitioned for listing under the 
U.S.	Endangered	Species	Act	multiple	times.	Although	populations	
are	declining,	there	is	a	wealth	of	information	available	on	the	spe-
cies’	habitat	utilization	(Doherty,	Naugle,	&	Walker,	2010;	Doherty,	
Naugle,	Walker,	&	Graham,	2008;	Fedy	et	al.,	2014)	and	range-	wide	
estimates of abundance through counts of males at breeding leks 
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(Doherty,	 Evans,	 Coates,	 Juliusson,	 &	 Fedy,	 2016;	 Garton	 et	al.,	
2011)	where	they	congregate	to	attract	and	compete	for	access	to	
females.	Combining	this	habitat	utilization	and	abundance	informa-
tion with our range- wide genetic data makes sage- grouse an ideal 
candidate	 for	exploration	of	 the	 link	between	habitat,	 abundance,	
and functional connectivity.

The relationship between functional connectivity and landscape 
or	habitat	 variables	 is	 often	quantified	using	 regression-	based	 ap-
proaches in which pairwise genetic differentiation between groups 
or individuals is compared to pairwise landscape- based resistance 
(or	 landscape	 cost)	 distances	 derived	 from	 a	 variety	 of	 single	 or	
combined	landscape	features	(Cushman	&	Landguth,	2010;	McRae,	
2006;	Van	Strien,	Keller,	&	Holderegger,	2012).	Here,	we	used	this	
approach	to	address	three	main	questions.	1)	Do	habitat	indices	pro-
vide a better fit with genetic data than individual or combined land-
scape	predictors?	2)	Does	the	incorporation	of	abundance	estimates	
improve the fit between genetic and habitat- based resistance dis-
tances?	3)	How	well	do	the	best	fitting	resistance	models	predict	ge-
netic differentiation across landscapes when compared to distance 
alone?	Because	the	abundance	and	distribution	of	very	low-	quality	
habitat can be disproportionately important for functional connec-
tivity	 (Row	et	al.,	 2010,	2015),	 identifying	 these	 thresholds	 (Keller	
et	al.,	2015;	Méndez,	Vögeli,	Tella,	&	Godoy,	2014)	where	functional	
connectivity is reduced could help focus conservation efforts on 
improving	the	habitat	quality	of	landscapes	to	reach	the	necessary	

thresholds.	Thus,	we	also	determined	whether	there	were	consistent	
thresholds	in	habitat	or	landscape	predictors	which,	when	exceeded,	
resulted in disruption of functional connectivity for sage- grouse. 
Overall,	our	results	should	provide	guidelines	for	large-	scale	evalua-
tions of functional connectivity and assist with management goalms 
of maintaining or restoring functional connectivity.

2  | MATERIAL S AND METHODS

2.1 | Study area and sample collection

Our study area includes nearly the entire range of sage- grouse in 
North	America,	with	 the	 exception	 of	 a	 few	 small,	 geographically	
disjunct portions of the range which include individuals within the 
Canadian	provinces	of	Alberta	and	Saskatchewan	and	sage-	grouse	
MZs	VI	and	VII	(Figure	1,	Figure	S1).	The	sage-	grouse	range	largely	
coincides	 with	 the	 distribution	 of	 sagebrush	 (Artemisia spp.)	 in	
western	 North	 America,	 an	 ecosystem	 that	 has	 become	 increas-
ingly	 fragmented	 due	 to	 habitat	 conversion	 for	 agriculture,	 hous-
ing	development,	oil	and	gas	development,	wildfire,	exotic	grasses	
and	 invasive	 conifer	 encroachment	 (Knick	 et	al.,	 2003).	 Within	
the	range,	we	stratified	our	analysis	based	on	 long-	standing	Sage-	
Grouse	Management	Zones	 (here	 after	MZ;	Figure	1),	which	were	
established using differences in environmental attributes that influ-
enced	vegetation	communities	in	each	zone	and	were	uninfluenced	

F IGURE  1 Locations	(black	circles)	
of 267 breeding lek clusters of greater 
sage-	grouse	samples	(6,844	samples	in	
total)	collected	from	2005	to	2014	and	
used to compare genetic differentiation 
and	landscape	resistance.	Full	distribution	
of	all	samples	can	be	found	in	Figure	S1.	
Shaded gray area represents the current 
distribution	of	greater	sage-	grouse,	and	
dotted	lines	represent	the	extent	of	
seven	management	zones	for	the	species.	
Samples	from	management	zones	I–V	
were included in this analysis

MZ VII
MZ III

MZ V MZ II

MZ IV

MZ VI
MZ I
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by	administrative	or	governmental	boundaries	 (Stiver	et	al.,	2006).	
This	 stratification	 ensured	 relevance	 to	 previous	 studies,	 ongoing	
management	 initiatives,	 and	 consistency	with	 the	 development	 of	
existing	habitat	and	abundance	layers	(Doherty	et	al.,	2016).

We	used	6,844	spatially	referenced	feather	and	tissue	samples	
collected	across	 the	sage-	grouse	 range	 (Figure	1,	Table	1).	Feather	
samples	 were	 collected	 noninvasively	 (Bush,	 Vinsky,	 Aldridge,	 &	
Paszkowski,	2005;	Row	et	al.,	2015)	 from	 leks,	 and	blood	samples	
were collected from captured sage- grouse during the breeding 
season as part of radiotelemetry research efforts. Samples were 
collected	from	1,392	 leks	from	2005	to	2014	by	field	staff	from	a	
variety of state and federal management agencies and nongovern-
mental	organizations.

2.2 | Derivation of microsatellite genotypes for 
unique individuals

Genetic	 analysis	was	 conducted	 at	 two	molecular	 biological	 labo-
ratories:	 the	Molecular	Ecology	 Lab	 at	 the	U.S.	Geological	 Survey	
Fort	 Collins	 Science	 Center	 (hereafter,	 FORT)	 and	 the	 National	
Genomics	 Center	 for	Wildlife	 and	 Fish	 Conservation	 at	 the	USFS	
Rocky	Mountain	Research	 Station	 (hereafter,	NGC).	DNA	was	 ex-
tracted from feather and blood using previously described methods 
(Cross,	Naugle,	Carlson,	&	Schwartz,	2016;	Row	et	al.,	2015).	Both	
FORT	 and	NGC	 amplified	 15	microsatellite	 loci	 in	 eight	multiplex	
polymerase	chain	reactions	(PCR)	and	genotypes	were	determined	
using	electrophoresis	(Cross	et	al.,	2016;	Row	et	al.,	2015).	Full	ge-
netic	methods	can	also	be	found	in	Appendix	S1.

Feather	DNA	samples	can	have	low-	quality	and	quantity	DNA.	
Therefore,	to	ensure	correct	genotypes	from	feather	samples,	each	
sample	was	PCR	amplified	at	least	twice	across	the	15	microsatellite	
loci	to	screen	for	allele	dropout,	stutter	artifacts,	and	false	alleles.	
Alleles	for	each	locus	were	coded	as	missing	 if	they	did	not	match	
across at least two independent runs. Samples with missing geno-
types	for	more	than	five	loci	were	removed.	Genotypes	were	then	
screened to ensure consistency between allele length and length of 
the	microsatellite	 repeat	motif.	We	used	program	DROPOUT	v2.3	
(McKelvey	 &	 Schwartz,	 2005)	 and	 package	 ALLELEMATCH	 v2.5	
(Galpern,	Manseau,	Hettinga,	Smith,	&	Wilson,	2012)	 in	R	 (R	Core	
Team,	2016)	to	screen	for	genotyping	error	and	to	identify	and	re-
move multiple captures of the same individual.

To	combine	the	genotype	data	sets	from	both	labs,	we	first	gen-
otyped	 the	 same	 70	 individuals.	 Each	 laboratory’s	 genotypes	 for	
these	individuals	were	compared,	and	shifts	in	allele	size	were	imple-
mented	to	synchronize	allele	calls	for	all	samples	where	necessary.	
Following	the	combination	of	samples,	an	additional	ALLELEMATCH	
analysis	was	performed	on	the	complete,	combined	data.	Finally,	we	
quantified	the	power	of	our	microsatellite	locus	panel	to	discern	in-
dividuals	using	probability	 identity	 (PID;	Evett	&	Weir,	1998)	which	
calculates the probability that two individuals drawn at random from 
the population could have the same genotype across all loci.

2.3 | Genetic differentiation within 
management zones

Sage-	grouse	 have	 clustered	 distributions	 (Doherty	 et	al.,	 2016),	
particularly during the breeding season when individuals attend 
centralized	breeding	 leks	where	 the	majority	of	our	 samples	were	
collected.	 Additionally,	 sage-	grouse	 can	 have	 substantial	 within-
		and	 interseasonal	movement	distances	 (Cross,	Naugle,	Carlson,	&	
Schwartz,	2017;	Fedy	et	al.,	2012),	so	we	expected	little	differentia-
tion	between	spatially	proximate	 leks	and	 individual	samples	 (Row	
et	al.,	2015).	Thus,	we	used	a	clustered	(i.e.,	“group-	based”)	approach	
to evaluate genetic differentiation as this likely best represents the 
ecology of the species at the spatial scale of this study and the sam-
pling	scheme	(i.e.,	multiple	samples	from	each	lek).	We	derived	lek	
clusters	 by	 grouping	 spatially	 proximate	 sampling	 locations	 using	
hierarchical	 clustering	 (hclust function with complete	method)	 in	R	
(R	Core	Team,	2016).	The	algorithm	iteratively	joined	each	sampling	
location	 based	 on	 distance	 using	 the	 Lance–Williams	 dissimilarity	
formula	(Legendre	&	Legendre,	2012).	Subsequently,	we	used	a	cut	
distance	 to	 differentiate	 clusters	 separated	 by	 a	 distance	 >25	km,	
which	represented	the	maximum	average	summer	to	winter	move-
ment	distance	for	any	population	in	Wyoming	(Fedy	et	al.,	2012).	We	
used	a	minimum	sample	size	of	eight	individuals	per	genetic	cluster	
for	all	subsequent	analyses.

We	calculated	pairwise	genetic	differentiation	using	Hedrick’s	G′

ST
 

(Hedrick,	2005)	among	our	clustered	groups.	This	measure	of	genetic	
differentiation was highly correlated with GST	 (mean	=	0.98	±	0.02	
SD)	and	Jost’s	Dest	(mean	=	0.94	±	0.02	SD)	and	avoids	problems	as-
sociated	with	nonstandardized	measures	of	genetic	differentiation	
(Jost,	2008;	Meirmans	&	Hedrick,	2011).

TABLE  1 Number	of	Greater	Sage-	Grouse	samples,	breeding	leks	and	grouped	lek	clusters	used	to	establish	patterns	of	genetic	diversity	
and	population	structure	in	each	of	five	long-	established	management	zones

Zone

Number of 
individuals 
included

Number 
of leks

Mean (SD) number 
samples per lek

Number of lek 
clusters

Mean (SD) 
individuals per 
cluster Mean G′

ST
 (SD) Max G′

ST

MZ	I 2,095 419 4.77	(4.57) 81 25.85	(19.99) 0.14	(0.07) 0.43

MZ	II 1,567 251 6.16	(3.74) 75 20.89	(13.45) 0.21	(0.10) 0.56

MZ	III 558 174 3.89	(3.79) 29 19.24	(13.97) 0.36	(0.12) 0.66

MZ	IV 1,507 483 3.60	(3.24) 67 22.49	(13.88) 0.15	(0.07) 0.48

MZ	V 282 65 4.81	(9.36) 15 18.80	(13.05) 0.22	(0.09) 0.52
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2.4 | Landscape resistance within 
management zones

We	 quantified	 pairwise	 effective	 resistance	 among	 lek	 clusters	
using	circuit	theory.	Landscape	surfaces	were	coded	such	that	each	
pixel	 was	 assigned	 a	 value	 representing	 resistance	 to	 gene	 flow.	
Subsequently,	we	used	the	gdistance	package	in	R	to	quantify	pair-
wise	 resistance	between	 two	groups	 as	 the	expected	 correlate	 to	
the	amount	of	gene	flow	between	two	groups	(i.e.,	higher	pairwise	
resistance	 equates	 to	 lower	 expected	 movement;	 McRae,	 2006;	
McRae	 &	 Beier,	 2007).	 Pairwise	 effective	 resistance	 values	 are	 a	
function of the flow of current—representative of gene flow—and 
therefore	incorporate	geographic	distance	(McRae	&	Beier,	2007).

We generated pairwise effective resistances from landscape 
resistance surfaces using three published models representing 
accepted abiotic and biotic variables influential in sage- grouse bi-
ology	 (Doherty	et	al.,	2016;	see	below	for	specific	predictors).	For	

each	resistance	surface,	we	tested	three	threshold	values	above	or	
below	which	the	landscape	is	hypothesized	to	be	resistant	to	grouse	
movements	(Keller	et	al.,	2015).	In	all	cases,	we	used	the	thresholds	
to derive a binary resistance surface representing habitat and non-
habitat.	For	variables	with	a	known	negative	association	with	sage-	
grouse	 (e.g.,	 human	 disturbance,	 tillage),	 raster	 pixel	 values	 below	
the thresholds were set as habitat and assigned a resistance of 1 
with nonhabitat cells receiving a higher value. When the landscape 
variable	 represented	 a	 positive	 association	with	 sage-	grouse	 (e.g.,	
percentage	 sagebrush	 cover,	 habitat	 utilization),	 values	 above	 the	
threshold	were	classified	as	habitat	(resistance	of	1)	and	we	assigned	
higher	values	 to	nonhabitat	 (below	the	 threshold).	By	determining	
the	threshold	values	that	best	describe	functional	connectivity,	we	
can make specific predictions as to when landscape degradation 
will	lead	to	decreased	connectivity.	Below,	we	describe	each	resis-
tance surface and their associated resistance and threshold values. 
All	 raster	 surfaces	 were	 resampled	 using	 bilinear	 interpolation	 to	

TABLE  2 Landscape	variables	used	as	resistance	surfaces	and	associated	thresholds	used	to	delineate	“habitat”	and	“nonhabitat”	and	the	
top	selected	resistance	values.	Additional	details	on	habitat	layers	can	be	found	in	Doherty	et	al.	(2016)

Description Abbrev
Native 
resolution (m)

Expected 
effect Thresholds Resistances

Breeding	habitat	utilization:	Range-	wide	breeding	habitat	
index	developed	independently	for	each	management	zone	
(Doherty	et	al.,	2016)

BH 120 × 120 Positive 0.25,	0.50,	0.65 20,	200

Lek	abundance	quantified	using	kernel	density	estimation	of	
lek	counts	in	each	management	zone	(Doherty	et	al.,	2016).

KI 120 × 120 Positive 90%,	70%,	50% 10,	200

Breeding	Population	Index	model	combing	breeding	habitat	
utilization	and	lek	abundance	(BHU	*	KI;	Doherty	et	al.,	
2016)

BPI 120 × 120 Positive 90%,	70%,	50% 10,	200

Sagebrush cover: Mean percentage of all sagebrush species 
(LANDFIRE	EVT	1.2	–	2010)	within	6.44	km	moving	
windows

sb 30 × 30 Positive 10%,	30%,	50% 5,	50

Canopy cover: mean percent cover of the total tree canopy 
(LANDFIRE	Fuels	1.2	–	2010)	within	6.44	km	moving	
windows

cc 30 × 30 Negative 5%,	10%	15% 5,	200

Tilled agricultural: mean percentage of tilled agricultural 
fields	within	6.44	km	moving	windows.	National	
Agriculture	Statistics	Service	2008–2014

ti 30 × 30 Negative 5%,	15%,	25% 5,	50

Human	disturbance:	index	to	human	disturbance	on	the	
landscape	including	population	density,	roads,	energy	
development.	2011	National	Landcover	Database	
Disturbed	Classes	(Homer	et	al.,	2015).

hd 30 × 30 Negative 0.03%,	0.06%,	
0.09%

5,	50

Steepness: Mean percentage of landscape classified as 
steep	using	Theobald	LCAP	tool.	National	Elevation	Data	
(NED	2013,	Data	available	from	the	U.S.	Geological	Survey)

st 30 × 30 Negative 5%,	10%,	15% 5,	200

Roughness: Standard deviation of elevation and averaged 
within	6.44	km	moving	windows	(NED	2013)

ro 30 × 30 Negative 50,	100,150 5,	50

Annual	Drought	Index:	Averaged	across	years	and	within	
6.44	km	moving	windows	estimated	from	USFS	
(1961–1990)

adi 1 km × 1 km Negative 6,7,8 5,	50

Degree days above 5 C: The number of degrees that mean 
daily	temperature	is	≥5°C	and	averaged	within	6.44	km	
moving windows

dd5 1 km × 1 km Positive	or	
Negative

1,600,	1,850,	
2,050

5,	50
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a	 resolution	 of	 1.2	km.	 Overall,	 changes	 in	 resolution	 should	 not	
have	a	strong	effect	on	pairwise	resistance	values	(McRae	&	Beier,	
2007;	 Row	 et	al.,	 2015).	 In	 all	 cases,	we	 compare	 results	 to	 resis-
tances derived from an undifferentiated landscape in which all cells 
had	a	resistance	of	one.	Thus,	only	distance	was	considered	in	the	
derivation	of	resistances,	which	serves	as	a	null	model	and	is	anal-
ogous	to	geographic	distances,	but	 limited	to	the	same	study	area	
constraints	as	the	resistances	surfaces	(Lee-	Yaw,	Davidson,	McRae,	
&	Green,	 2009).	Hereafter,	we	 refer	 to	 these	 resistances	 as	 “geo-
graphic distances.”

2.4.1 | Development of habitat predictors

Our first set of resistance surfaces were built on a breeding habi-
tat	utilization	model	(BH)	developed	from	landscape	characteristics	
surrounding active breeding leks. The dominant variables varied for 
each	MZ,	but	primarily	included	positive	relationships	with	percent	
aerial coverage of sagebrush and negative relationships with increas-
ing tree canopy cover and anthropogenic variables such as cultiva-
tion	and	human	disturbance	 (Table	2).	Details	on	 the	development	
of	 the	BH	models	and	 top	variables	 for	each	MZ	are	presented	 in	
Doherty	et	al.	 (2016).	Raster	values	associated	with	the	BH	model	
represent	 the	 predicted	 probability	 that	 the	 raster	 pixel	 contains	
sufficient breeding habitat to support sage- grouse lek formation. 
All	active	leks	within	the	sage-	grouse	range	occurred	in	areas	with	
a	 predicted	 probability	 (p)	≥	.65,	 so	 we	 used	 this	 as	 one	 of	 three	
thresholds,	 classifying	 all	 raster	 cell	 values	with	p ≥ .65 as habitat 
and	anything	below	as	nonhabitat	and,	as	such,	resistant	to	dispersal	
(Table	2).	We	expected	that	not	all	nonlek	habitat	(e.g.,	p < .65)	would	
reduce	dispersal.	Thus,	we	considered	two	lower	probability	thresh-
olds	(p ≥ .5 and p ≥ .25)	which	split	the	distribution	and	in	which	all	
cells below the thresholds in p were assigned as nonhabitat to repre-
sent increased resistance to movement.

We	also	derived	a	set	of	resistance	layers	based	on	a	kernel	index	
(KI)	 of	 lek	 sizes	 and	 a	 breeding	 population	 index	 (BPI)	model	 that	
combined	estimates	of	breeding	habitat	(BH)	and	lek	abundance	(KI)	
estimates	which	represents	areas	that	have	both	high-	quality	breed-
ing	habitat	and	high	lek	abundances	(KI	*	BH;	Doherty	et	al.,	2016).	
The	distributions	of	predicted	values	for	the	KI	and	BPI	were	highly	
skewed	toward	zero.	Thus,	we	used	equally	spaced	percentiles	(top	
90%,	70%,	and	50%	of	the	BPI	and	KI)	as	our	thresholds.	The	land-
mass	represented	by	the	BPI	thresholds	represented	approximately	
45%,	 20%	 and	 10%	 of	 the	 active	 sage-	grouse	 range	 included	 as	
habitat.

2.4.2 | Development of landscape predictors

We used eight landscape variables to develop landscape resistance 
surfaces	independent	of	breeding	habitat	and	abundance	(Table	2).	
We used a subset of the variables that proved most important in 
Doherty	et	al.	(2016)	and	which	have	previously	been	shown	to	in-
fluence	sage-	grouse	habitat.	Landscape	predictors	included	features	
that	could	be	managed	through	protection	(e.g.,	percent	sagebrush	

cover)	 and	 restoration	 (e.g.,	 canopy	 cover,	 tilled	 agriculture)	 and	
those	 that	 would	 be	 impossible	 to	 manage	 but	 have	 existed	 as	
barriers or which have restricted movement for a longer period of 
time	(e.g.,	terrain	topology,	measured	by	steepness	and	roughness).	
Environmental	conditions	can	also	limit	dispersal	(Row	et	al.,	2012).	
Thus,	 we	 also	 included	 two	 relevant	 environmental	 predictors:	
Annual	Drought	 Index	and	degree	days	above	5°C	 (Doherty	et	al.,	
2016).	In	both	cases,	thresholds	were	primarily	derived	based	on	the	
distribution of values and values that split the distribution of values 
into	evenly	spaced	bins	to	minimize	correlation	between	resistance	
distances	within	a	predictor	(Table	2).

2.4.3 | Resistance values of nonhabitat

It is difficult to differentiate among a set of resistance surfaces that 
represent hypotheses of functional connectivity if they are highly 
correlated	with	 each	other	 or	with	 distance	 (Row	et	al.,	 2017).	 To	
reduce	 correlations,	we	 tested	 a	 range	 of	 resistances	 and	 choose	
values that would result in pairwise resistances that were not cor-
related with each other after increasing resistances. The resulting 
values	were	not	the	same	for	each	surface.	Thus,	for	all	resistance	
surfaces,	we	 tested	 increasing	 resistance	values	 for	nonhabitat	 (5,	
10,	and	20),	and	we	calculated	the	correlation	between	the	resulting	
pairwise resistance matrices and distance after each iteration. We 
chose our first nonhabitat resistance value when the average corre-
lation	(r)	for	the	three	derived	resistance	matrices	(i.e.,	one	for	each	
threshold)	was	≤0.7	for	at	least	one	of	the	MZs.	We	used	a	similar	ap-
proach to choose a second resistance value by considering a new set 
of	resistance	values	(50,	100,	and	200)	and	selected	the	value	when	
correlations	averaged	≤0.7	from	the	first	set	for	any	MZ.	Overall,	this	
approach	generated	six	resistance	surfaces	(3	thresholds	*	2	resist-
ance	values)	for	each	variable.

2.5 | Within- variable resistance thresholds

We	identified	the	top	resistance	surfaces	using	maximum-	likelihood	
population-	effects	models	 (MLPE),	 which	 is	 a	mixed	modeling	 ap-
proach that accounts for nonindependence in pairwise datasets 
(Clarke,	Rothery,	&	Raybould,	2002;	Van	Strien	et	al.,	2012).	For	each	
of	 the	 individual	habitat,	abundance,	and	 landscape	predictors,	we	
used	two	analyses	for	each	MZ	to	determine	(i)	the	thresholds	and	
resistance	values	that	produced	resistance	distances	(RD)	that	were	
best	correlated	with	genetic	differentiation,	and	(ii)	whether	that	cor-
relation was significantly greater than its correlation with distance. 
We	 determined	 the	 top	 model	 with	 Akaike’s	 information	 criteria	
(AIC;	Akaike,	1973)	and	estimated	relative	support	using	ΔAIC	values	
compared	with	a	model	including	only	distance	(i.e.,	the	null	model).	
We	also	determined	the	significance	of	standardized	coefficients	for	
the	underlying	model	(GenDist	~	RD1)	and	a	model	that	also	includes	
geographic	distance	 (GenDist	~	RD1	+	RDdistance).	When	 the	 resist-
ance	coefficient	confidence	intervals	were	positive	in	both	models,	
we considered the variable to have had a significant effect on gene 
flow	over-	and-	above	distance	alone	(Row	et	al.,	2017).
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2.6 | Relative importance of landscape and 
habitat predictors

Within	 each	MZ,	 we	 compared	 all	 of	 the	 models	 with	 significant	
resistance variables against each other using ΔAIC	 in	 a	 between-	
variable analysis. There is some difficulty in identifying the correct 
multivariate models when resistance values are at different scales 
and	have	different	distributions,	but	these	results	can	be	improved	by	
calculating	resistances	from	single	landscapes	that	summarize	mul-
tiple	variables	(Row	et	al.,	2017).	Therefore,	 in	addition	to	compar-
ing	the	univariate	 landscape	predictors,	we	developed	a	combined	
landscape surface using all of the significant landscape predictors 
summed together. Cells with increased resistance for more than one 
landscape variable had an additive resistance value. We calculated 
pairwise resistances using this new combined additive surface and 
compared the fit with genetic differentiation to the fit for values de-
rived from individual landscape variables and to the retained habitat 
predictors	for	each	MZ.

2.7 | Resistance model validations

2.7.1 | Individual- based genetic differentiation

Although	using	 a	population-	based	evaluation	 is	most	 appropriate	
for	our	species	and	sampling	regime,	using	an	individual-	based	ap-
proach in landscape genetics may influence the resulting perceived 
influence	of	landscape	features	(Prunier	et	al.,	2013).	Therefore,	as	
a	 first	validation	of	our	 results,	we	repeated	the	between-	variable	
analysis using an individual- based approach and compared the re-
sults. We calculated individual- based genetic differentiation using 
Bray–Curtis	 percentage	 dissimilarity	 among	 an	 individual’s	 alleles,	
which reflects more recent changes in genetic differentiation when 
compared	to	other	measures	of	individual	differentiation	(Landguth	
et	al.,	2010).

2.7.2 | Cross- validation of predictive G′

ST

We	 validated	 our	 top	 selected	 resistance	 surface	 for	 each	 MZ	
using	 a	Monte	Carlo	 cross-	validation	 approach	within	 each	MZ.	
For	 each	 of	 100	 iterations,	we	 split	 the	 data	 set	 into	 a	 training	
and	testing	dataset.	Using	the	training	dataset	(80%	of	the	data),	
we	developed	an	MLPE	model	predicting	genetic	differentiation	
from	 the	 best	 resistance	 surface	 (GenDist	~	RD1)	 and	 distance	
alone	 (GenDist	~	RDdistance).	 Subsequently,	we	 predicted	 genetic	
differentiation	 based	 on	 the	model,	 and	we	 performed	 a	 cross-	
validation	 using	 the	 testing	 dataset	 (the	 remaining	 20%	 of	 the	
data)	 by	 determining	 the	 absolute	 difference	 between	 the	 pre-
dicted and actual genetic differentiation for both models using 
100 iterations. We grouped differences into predictions ranging 
across five increasing categories of genetic differentiation to 
evaluate the ability of the model to predict genetic differentiation 
across a range of values.

2.8 | Range- wide connectivity

We	used	Circuitscape	4.0.1	(McRae	&	Shah,	2009)	to	derive	and	map	
predicted	dispersal	range-	wide	by	quantifying	gene	flow	among	all	
grouped	locations,	using	the	top	validated	surface	for	each	MZ.	We	
treated each lek cluster as a node and calculated average overall flow 
using	the	all-	to-	one	mode.	Thus,	gene	flow	was	estimated	for	each	
lek	cluster	to	all	others	sequentially	and	then	averaged.

3  | RESULTS

3.1 | Genetic differentiation within management 
zones

The	number	of	 lek	clusters	within	MZs	ranged	from	15	to	81,	and	
the mean number of individuals sampled per lek cluster was rela-
tively	consistent:	ranging	from	18.8	to	25.9	(Table	1).	MZ	III	had	the	
highest	mean	and	maximum	G′

ST
,	while	all	 the	other	MZs	exhibited	

less	 differentiation	 among	 clusters	 (Table	1).	 As	 expected,	 genetic	
differentiation	 (G′

ST
)	was	 positively	 correlated	with	 distance	 for	 all	

MZs	(Figure	S2).

3.2 | Within- variable resistance surface analyses

3.2.1 | Landscape resistance surfaces

Effects of changing thresholds and resistance values on pairwise 
resistance	varied	among	the	MZs	(Table	S1).	Most	of	this	variation	
was	 tied	 to	 the	 abundance	 of	 the	 landscape	 classified	 as	 habitat,	
which	varied	between	each	MZ	(Table	S1).	When	a	given	landscape	
variable	was	rare	on	the	landscape	(e.g.,	tillage	in	MZ	III	and	MZ	V),	
changing the threshold or resistance had little effect on the pair-
wise	resistance,	resulting	in	high	correlations	in	resistance	across	the	
thresholds.	In	most	cases,	changes	in	thresholds	had	a	greater	effect	
on resulting pairwise resistances than changes in resistance values 
(Table	S1).

The importance of each landscape variable to functional con-
nectivity	varied	across	MZs.	Terrain	 ruggedness	was	an	 important	
component of functional connectivity across the range as indicated 
by	roughness	(ro)	and/or	steepness	(st)	being	significant	for	all	MZs	
(Figure	2).	 Sagebrush	 cover	 was	 significant	 for	 functional	 connec-
tivity	 in	 three	 of	 the	 five	MZs	 with	 the	 selected	 threshold	 being	
either	 10%	 (MZ	 V)	 or	 30%	 (MZ	 II,	 IV)	 cover;	 values	 below	 these	
thresholds resulted in increased landscape resistance for “nonhab-
itat”	 (Figure	2).	 Sagebrush	 cover	was	not	 significant	 for	 functional	
connectivity	 in	MZ	 I	 or	MZ	 III,	where	mean	 sagebrush	 cover	was	
the	 lowest	 (Table	S1).	 Tree	 canopy	 cover	 reduced	 functional	 con-
nectivity:	>10%	threshold	had	the	highest	ΔAIC	value	compared	to	
geographic	distance	for	MZs	I,	II,	and	IV.	Changing	thresholds	or	re-
sistance	values	had	little	effect	on	pairwise	resistance	values	in	MZ	
V	despite	high	canopy	cover	values	that	were	clustered	along	MZ	V	
boundaries.
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Anthropogenic	 landscape	 disturbances	 also	 had	 consistent	
negative	 influences	 on	 functional	 connectivity.	 Human	 distur-
bance,	 tillage,	or	both	human	disturbance	and	 tillage	had	signifi-
cant	effects	on	functional	connectivity	in	all	but	MZ	III	(Figure	2).	
In	MZ	I,	II,	and	IV,	the	thresholds	for	tillage	were	all	25%	(Figure	2),	
suggesting disrupted functional connectivity on landscapes where 
row crops and small grain fields composed a greater percentage of 
the	landscape	than	this	threshold.	In	MZ	V,	the	selected	threshold	
was	only	5%,	but	the	overall	percentage	of	the	tilled	agricultural	
in	 the	 landscape	 was	 also	 low	 (~2%	 on	 average;	 Table	S1),	 and	
pairwise	resistances	were	highly	correlated	(.99)	with	geographic	
distance.	In	MZ	III,	tilled	agricultural	similarly	represented	a	small	
percentage of the landscape.

Landscape	variables	derived	from	environmental	variables	ap-
peared to have little effect on functional connectivity for most 
MZs.	Annual	drought	index	(adi)	was	not	significant	for	any	MZs,	
and	 degree	 days	 above	 5	 (dd5)	 was	 only	 significant	 for	 MZ	 II	
(Figure	2).

3.2.2 | Breeding habitat utilization and abundance 
resistance surfaces

Similar	to	the	landscape	variables,	the	effects	of	changing	thresh-
olds and resistance values for habitat surfaces on pairwise resist-
ances	varied	among	 the	MZs,	but	was	much	greater	 for	 changes	
in	thresholds	overall	(Table	S1).	In	three	of	the	five	MZs,	breeding	

habitat	utilization	 (BH)	 improved	model	performance	over	undif-
ferentiated	 landscapes,	 with	ΔAIC	 values	 >100	 when	 compared	
to	geographic	distance	 (Figure	2).	 The	 selected	 threshold	 for	BH	
was	either	0.25	(MZ	I)	or	0.5	(MZ	II	and	IV),	suggesting	that	when	
breeding habitat estimates dropped below these values in the re-
spective	zones,	functional	connectivity	was	reduced.	In	MZ	IV,	the	
correlation between resistances from a threshold of 0.25 and 0.50 
was	high	 (0.86),	and	the	difference	 in	model	 fit	between	the	 top	
two	thresholds	was	less	than	the	other	two	zones	(ΔAIC	=	10.42),	
suggesting	the	selection	of	the	exact	threshold	may	be	less	robust	
for	this	zone.

Univariate	abundance	alone	(KI)	performed	better	than	distance	
in	four	of	the	five	MZs,	but	ΔAIC	values	were	not	as	high	as	BH	in	
all	of	the	MZs	where	they	were	both	included	in	Figure	2.	The	com-
bined	 abundance	 and	 breeding	 habitat	 layer	 (BPI)	 increased	ΔAIC	
over	an	undifferentiated	 landscape	and	BH	in	MZ	IV	and	MZ	V.	 In	
MZ	 III,	 resistance	 values	 from	 an	 undifferentiated	 landscape	 had	
the	 lowest	AIC,	 but	 the	BPI	model	was	 similar	with	 a	 small	ΔAIC	
of	 0.56	 and	 the	BPI	 coefficient	 confidence	 intervals	 in	 the	model	
GEN	~	BPI	+	UNDIFF	were	significantly	above	zero	(CI:	0.013–0.16).

3.3 | Relative importance of landscape and 
habitat predictors

In	four	of	the	five	MZs,	resistance	values	derived	from	BH	or	BPI	pro-
vided	the	best	fit	with	genetic	differentiation	(Appendix	S2).	In	MZ	

F IGURE  2 Top	univariate	coefficients	for	each	landscape	and	habitat	variable	(see	details	in	Table	2)	in	each	management	zone	as	
compared	to	model	fit	with	distances.	Higher	∆	AIC	values	suggest	a	greater	fit	for	the	landscape	surface	as	compared	to	distance	alone.	The	
top chosen threshold used to define habitat and nonhabitat and the level of correlation for resistances from that surface and distance are 
also shown
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TABLE  3 Top models predicting pairwise genetic differentiation from pairwise resistance between lek groups of sage- grouse samples. 
Resistance	surface	codes	are	a	combination	of	the	base	predictor	(Table	2),	threshold	value	and	assigned	resistance

Surface AICc ΔAICc AICc weight Cumulative weight Residual log- likelihood

MZ	I

BH_25_020 −13,309.79 0.00 0.98 0.98 6,658.90

BPI_10_010 −13,301.86 7.93 0.02 1.00 6,654.94

landsum −13,227.99 81.80 0.00 1.00 6,618.00

KI_10_020 −13,215.14 94.65 0.00 1.00 6,611.58

ro_150_005 −13,201.90 107.89 0.00 1.00 6,604.96

cc_10_005 −13,199.10 110.69 0.00 1.00 6,603.56

st_10_005 −13,194.98 114.81 0.00 1.00 6,601.50

adi_08_050 −13,183.16 126.63 0.00 1.00 6,595.59

ti_25_005 −13,177.29 132.51 0.00 1.00 6,592.65

distance −13,171.60 138.19 0.00 1.00 6,589.81

hd_09_005 −13,168.67 141.12 0.00 1.00 6,588.34

MZ	II

BH_50_020 −10,116.80 0.00 0.99 0.99 5,062.41

BPI_10_010 −10,108.30 8.50 0.01 1.00 5,058.16

KI_10_020 −10,059.24 57.56 0.00 1.00 5,033.63

landsum −10,059.15 57.65 0.00 1.00 5,033.58

ro_150_005 −10,005.27 111.53 0.00 1.00 5,006.64

sb_30_005 −9,996.98 119.82 0.00 1.00 5,002.50

st_10_005 −9,980.62 136.19 0.00 1.00 4,994.32

cc_10_005 −9,978.64 138.17 0.00 1.00 4,993.33

dd5_2050_005 −9,969.67 147.14 0.00 1.00 4,988.84

ti_25_050 −9,939.34 177.47 0.00 1.00 4,973.68

MZ	III

distance −1,068.57 0.00 0.41 0.41 538.33

BPI_30_010 −1,068.00 0.56 0.31 0.71 538.05

landsum −1,066.50 2.07 0.14 0.86 537.30

ro_050_005 −1,066.50 2.07 0.14 1.00 537.30

MZ	IV

BPI_10_010 −8,805.11 0.00 1.00 1.00 4,406.56

BH_50_020 −8,785.28 19.83 0.00 1.00 4,396.65

cc_10_005 −8,732.80 72.31 0.00 1.00 4,370.41

landsum −8,724.33 80.78 0.00 1.00 4,366.17

KI_10_020 −8,715.78 89.33 0.00 1.00 4,361.90

sb_30_005 −8,701.29 103.83 0.00 1.00 4,354.65

ti_25_005 −8,621.57 183.54 0.00 1.00 4,314.80

st_15_005 −8,618.20 186.91 0.00 1.00 4,313.11

ro_150_005 −8,602.39 202.72 0.00 1.00 4,305.20

hd_09_005 −8,596.51 208.60 0.00 1.00 4,302.26

distance −8,594.59 210.52 0.00 1.00 4,301.30

MZ	V

landsum −335.76 0.00 0.60 0.60 172.08

BPI_50_010 −333.15 2.61 0.16 0.77 170.77

st_15_005 −332.72 3.04 0.13 0.90 170.56

(Continues)
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I	and	II,	BH	was	the	best	model	and	ΔAIC	values	over	the	second-	
best	model	were	7.93	and	8.50,	respectively	(Table	3).	In	both	cases,	
BPI	was	the	second-	best	model.	BPI	was	the	best	fit	in	MZ	IV	with	
a ΔAIC	value	of	19.83	over	the	second-	best	model	(BH),	suggesting	
the incorporation of abundance significantly improved the model fit 
for	this	zone.	In	MZ	III,	the	top	model	was	an	undifferentiated	land-
scape,	but	as	noted	above,	 the	second-	best	model	 (BPI)	had	a	 low	
ΔAIC	(0.56)	and	performed	better	 in	the	prediction	validation	(see	
below).	In	MZ	V,	the	combined	landscape	had	the	best	fit,	but	again,	
the	second-	best	model	was	the	BPI	model	with	a	relatively	low	ΔAIC	
of	2.61	(Table	3).

3.4 | Resistance model validations

3.4.1 | Individual- based genetic differentiation

The individual- based analysis produced results similar to the 
population-	based	 results	 presented	 above.	 Using	 the	 individual-	
based	analysis,	BH	or	BPI	was	the	top	model	 in	all	zones	with	the	
exception	 of	 MZ	 V,	 where	 the	 summed	 landscape	 layer	 was	 the	
top	surface	as	 in	 the	population-	based	analysis	 (Table	S2).	 In	MZ	 I	
and	MZ	II,	the	order	of	the	top	two	surfaces	was	switched	from	the	
population-	based	analysis	and	BPI	provided	a	better	fit	than	BH.	In	

Surface AICc ΔAICc AICc weight Cumulative weight Residual log- likelihood

ti_05_050 −330.89 4.87 0.05 0.95 169.65

sb_10_050 −329.96 5.80 0.03 0.98 169.18

KI_50_020 −326.44 9.32 0.01 0.99 167.42

distance −325.98 9.78 0.00 0.99 167.19

BH_65_020 −324.98 10.78 0.00 1.00 166.69

hd_09_050 −324.77 10.99 0.00 1.00 166.58

ro_050_005 −322.80 12.96 0.00 1.00 165.60

cc_15_005 −321.68 14.08 0.00 1.00 165.04

TABLE  3  (Continued)

F IGURE  3 Absolute	difference	between	predicted	and	actual	pairwise	genetic	differentiation	for	groups	of	greater	sage-	grouse	samples	
with	increasing	levels	of	differentiation.	Predictions	for	resistances	from	the	top	resistance	model	(see	Table	3)	and	distance	alone	are	
compared
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MZ	III,	BPI	provided	a	better	fit	over	distance.	In	MZ	IV,	BH	was	the	
top	surface	over	BPI—the	best	fit	in	the	population-	based	analysis—
which was the second- best fitting model.

3.4.2 | Cross- validation of predictive G′

ST

In	all	zones,	the	top	resistance	model	was	better	able	to	predict	G′

ST
 

than	distance	alone	(Figure	3).	The	overall	differences	between	the	
top model and geographic distance and the predictive ability of the 
top	model	varied	among	the	MZs.	In	MZ	I,	IV	and	V,	the	top	surface	did	
not predict genetic differentiation better than geographic distance 
for	clusters	with	low	differentiation	(<0.3	G′

ST
),	but	had	improved	pre-

diction	for	clusters	with	high	differentiation	(>0.3	G′

ST
).	In	MZ	II,	the	

top model predicted G′

ST
 better than distance for clusters with low 

and high G′

ST
,	but	not	for	intermediate	values	of	G′

ST
	(Figure	3).	In	MZ	

III,	the	top	surface	only	predicted	G′

ST
 better than geographic distance 

for	clusters	with	low	overall	differentiation	(<0.2	G′

ST
).

3.5 | Range- wide patterns of gene flow

Average	 gene	 flow	 between	 clusters	 identified	 connectivity	 be-
tween populations at local scales and at some regional scales within 

MZs	(Figure	4).	At	the	range-	wide	scale,	connectivity	was	more	vari-
able with large areas of low modeled gene flow separating some 
large	population	centers	 (Figure	4).	Redundancies	 in	high	modeled	
gene	 flow	 throughout	Wyoming	and	Colorado	suggest	 that	MZ	 II,	
which	 contains	 ~40%	of	 range-	wide	 populations,	 is	 also	 the	most	
connected	of	the	five	zones.	Pathways	of	modeled	gene	flow	sug-
gest	 that	 eastern	Montana	 and	 the	Dakotas	 connect	 to	MZ	 II	 via	
Wyoming’s	 Powder	 River	 Basin	 in	 the	 southern	 extent	 of	 MZ	 I	
(Figure	4).	 North-	central	 Idaho	 and	 southwest	 Montana	 popula-
tions	 display	 ample	 gene	 flow	 between	 lek	 groups,	 but	 appear	 to	
lack regional connectivity to surrounding populations; mountain-
ous	terrain	and	intensive	cultivation	of	Idaho’s	Snake	River	Plain	are	
obvious barriers to gene flow. Similar breaks in modeled gene flow 
appear	between	MZ	II	and	MZ	III,	but	our	current	results	highlight	
two potential paths of lowest resistance that bridge Rocky Mountain 
populations	to	those	in	the	Great	Basin.	One	that	runs	through	the	
Three Creeks watershed near the town of Randolph in northeast 
Utah,	and	the	other,	a	more	southern	loop	of	flow	through	central	
Utah.	Farther	west,	multiple	paths	of	potential	 gene	 flow	connect	
southwest Idaho with Oregon and northeast California populations. 
On	the	California/Nevada	border,	two	weak	and	diffuse	paths	con-
nect	the	Bistate	population	to	others	to	the	north	and	east.	Given	

F IGURE  4 Range- wide gene flow map 
describing	low	(dark	blue)	to	high	(yellow)	
connectivity between greater sage- grouse 
lek groups used in landscape genetic 
analysis.	For	display	flow	was	split	into	
percentiles with bin labels representing 
the upper bound
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that	many	of	 these	paths	span	between	management	zones,	more	
research	is	required	in	these	regions	to	test	the	extent	to	which	they	
represent areas of active gene flow.

4  | DISCUSSION

Our landscape genetic analysis of gene flow and causal resistance 
surfaces represents one of the largest single evaluations of func-
tional connectivity for a wild terrestrial vertebrate. Our primary 
advancements herein include accounting for regional variation in fac-
tors	driving	functional	connectivity,	deriving	thresholds	in	functional	
connectivity	for	a	species	at	risk,	and	depicting	those	responses	as	
spatially	explicit	resistance	surfaces	for	use	in	range-	wide	conserva-
tion	evaluations.	Through	noninvasive	sampling	techniques,	the	fea-
sibility of developing broad- scale range- wide datasets is increasing. 
Furthermore,	 ever-	improving	 molecular	 genetic	 technologies	 are	
making it possible to generate large amounts of genotypic informa-
tion from individuals in these datasets. Our findings can serve as 
a roadmap for other large- scale evaluations in landscape genetics 
aimed at identifying connectivity thresholds and validating estab-
lished resistance surfaces within regions of importance to wildlife 
management.

As	hypothesized,	MZ-	specific	habitat	metrics	were	the	best	pre-
dictors	 of	 differentiation.	 However,	 to	 our	 surprise,	 contributions	
of	 bird	 abundance-	corrected	 indices	 were	 equivocal	 to	model	 fit.	
Collectively,	 these	 findings	 suggest	 that	maintenance	 of	 breeding	
habitat	 above	 critical	 thresholds	 so	 as	 not	 to	 reduce	 genetic	 ex-
change is fundamental to conservation of connected populations. 
Our inferences also add to a body of literature suggesting that struc-
tural connectivity estimated from habitat indices can be a strong 
predictor	 of	 functional	 connectivity	 for	 many	 species	 (Hagerty,	
Nussear,	Esque,	&	Tracy,	2011;	Row	et	al.,	2010,	2015;	Shafer	et	al.,	
2012;	Wang	et	al.,	2008),	but	we	stress	the	importance	of	including	
model validations to have a clear understanding of the predictive 
capabilities of landscape genetic models.

Herein,	BH	models	in	each	zone	were	developed	independently	
and the relative importance of the variables underlying each breeding 
habitat	model	varied.	Broadly	speaking,	the	variables	with	the	great-
est importance were a positive association with sagebrush cover and 
a negative association with increased tree canopy cover for most 
zones.	 When	 resistance	 surfaces	 from	 these	 landscape	 variables	
were	compared	independently	to	genetic	differentiation,	they	were	
similarly	found	have	a	greater	fit	 than	distance	alone,	demonstrat-
ing	their	overall	importance.	Interestingly,	the	distribution	of	Annual	
Drought	Index	(MZ	II,	MZ	IV,	MZ	V)	and	degree	days	>5°C	(MZ	II,	MZ	
III,	MZ	IV)	were	prominent	variables	in	some	of	the	habitat	models,	
but	when	analyzed	independently	they	had	little	explanatory	power	
in	our	assessment	of	functional	connectivity.	Thus,	their	importance	
may be connected or correlated with other variables.

Using	our	threshold	approaches,	we	found	that	landscapes	with	
a	probability	of	occurrence	for	breeding	leks	<0.25	or	0.5	reduced	
functional connectivity. These values are likely below the threshold 

for	persistence,	as	all	known	active	breeding	leks	are	present	in	re-
gions	with	values	>0.65	(Doherty	et	al.,	2016).	The	lower	value	for	
functional	connectivity	is	not	surprising,	as	individuals	are	often	will-
ing	 to	disperse	 through	undesirable	habitat	 (Tischendorf	&	Fahrig,	
2000),	but	has	important	conservation	implications	on	how	to	man-
age landscapes to preserve functional connectivity for sage- grouse. 
For	example,	although	the	habitat	may	be	degraded	below	the	0.65	
threshold	 for	 breeding	 lek	 formation,	 it	 will	 still	 be	 important	 to	
maintain habitat above the lower thresholds identified here in order 
to maintain functional connectivity.

It is important to point out that landscape genetic results can 
vary	 at	 different	 spatial	 scales	 (Anderson	et	al.,	 2010)	 and	habitat	
configuration	 can	 influence	 both	 dispersal	 (D’Eon,	 Glenn,	 Parfitt,	
&	 Fortin,	 2002)	 and	 habitat	 selection	 (Wisdom,	Meinke,	 Knick,	 &	
Schroeder,	2011).	Furthermore,	different	 threshold	values	had	dif-
ferent overall effects on pairwise resistance and on model fit for 
each	 management	 zone.	 Thus,	 in	 planning	 for	 conservation,	 con-
ducting	analyses	at	different	spatial	extents	and	testing	the	effect	of	
the	different	thresholds	identified	here	(0.5,	0.25)	and	the	resulting	
habitat configuration will provide valuable insights.

How	individuals	respond	to	habitat	structure	will	vary	between	
species.	Thus,	comparing	other	species	that	overlap	our	study	area,	
especially	 other	 sagebrush	 obligate	 species,	 could	 provide	 insight	
into the generality of the results found here. We are not aware of 
other	studies	that	have	utilized	a	threshold	approach.	However,	both	
Wang	et	al.	(2008)	and	Row	et	al.	(2010)	found	that	the	best	fitting	
resistance	models	assigned	very	low-	quality	habitat	disproportion-
ately higher resistances or set these habitats as absolute barriers. 
These results suggest that thresholds in habitat indices may be an 
effective	 approach	 for	other	 species.	Yet,	 in	 some	cases,	 continu-
ous habitat surfaces have performed better than discrete values 
(Hagerty	et	al.,	2011),	or	 individual	 landscape	predictors	have	per-
formed	 better	 than	 combined	 habitat	 indices	 altogether	 (Roffler	
et	al.,	 2016;	 Wasserman,	 Cushman,	 Schwartz,	 &	Wallin,	 2010).	 A	
weak association between habitat and functional connectivity is 
likely when there are large differences between daily use and dis-
persal habitat or when one or a few landscape components are the 
primary drivers of functional connectivity. It is also hard to compare 
between studies when different approaches are used to derive re-
sistance	 surfaces.	 For	 example,	 both	Wasserman	 et	al.	 (2010)	 and	
Roffler	 et	al.	 (2016)	 only	 tested	habitat	 resistance	 surfaces	with	 a	
direct linear relationship between habitat and landscape resistance. 
In	 contrast,	 discrete	values	 (tested	here	 and	by	Wang	et	al.,	 2008	
and	by	Row	et	al.,	2010)	or	 the	exponential	 relationships	between	
habitat	 and	 resistance	 (Row	 et	al.,	 2015)	 often	 appear	 to	 provide	
better model fit.

We predicted that the inclusion of abundance information would 
improve	 the	 fit	 between	habitat	 and	genetic	differentiation.	 Local	
population	 size	 has	 long	 been	 linked	 to	 patterns	 of	 dispersal	 and	
can	 influence	 source-	sink	 dynamics	 (Matthysen,	 2005;	Ozgul,	Oli,	
Armitage,	Blumstein,	&	Van	Vuren,	2009).	Furthermore,	population	
size	will	 influence	the	effects	of	genetic	drift	and	have	impacts	on	
spatial	patterns	of	genetic	differentiation	(Hutchison	&	Templeton,	
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1999).	However,	contrary	to	our	predictions	including	abundance	in-
formation into the resistance surfaces did not improve the model fit 
for	most	MZs.	In	our	analysis,	inclusion	of	abundance	indices	acted	
to decrease resistance around population centers and increase the 
resistance	in	areas	with	low	abundance,	but	our	approach	could	not	
test	the	effect	of	population	size	on	the	attractiveness	of	individual	
locations	to	dispersers.	Thus,	using	models	where	local	abundance	
can	modify	 the	number	of	 dispersers	 into,	 or	 out	of,	 a	 population	
(Murphy,	Dezzani,	Pilliod,	&	Storfer,	2010;	Row,	Oyler-	McCance,	&	
Fedy,	 2016),	might	 provide	more	 insight	 into	 the	 effects	 of	 abun-
dance on differentiation. We only included abundance estimates of 
males	during	the	breeding	season,	but	it	is	possible	that	abundance	
during	other	seasons	or	estimates	of	effective	population	size	may	
be of greater importance to functional connectivity.

4.1 | Resistance thresholds and spatial variation in 
landscape predictors

Terrain	 roughness	 shaped	 functional	 connectivity	 across	 all	 MZs,	
and	sagebrush	availability	(+)	or	tree	canopy	cover	(−),	and	extent	of	
cultivation	(−)	were	influential	in	all	but	MZ	III,	the	most	highly	frag-
mented	zone.	Time	lags	exist	from	when	a	barrier	to	dispersal	first	
arises on the landscape and when the influence of that barrier on 
functional	connectivity	can	be	detected	(Landguth	et	al.,	2010).	For	
sage-	grouse,	the	topography	of	the	terrain	can	have	a	strong	influ-
ence	on	habitat	use	and	distribution	(Davis,	Reese,	Gardner,	&	Bird,	
2015;	 Fedy	 et	al.,	 2014),	 and	 these	 imposed	 restrictions	 to	move-
ment	 or	 barriers	 have	 likely	 remained	 static	 for	millennia.	 Indeed,	
in	 other	 large-	scale	 landscape	 genetic	 evaluations	 of	 sage-	grouse,	
areas	with	higher	landscape	ruggedness,	a	measure	of	sharp	changes	
in	elevation,	restricted	gene	flow	(Row	et	al.,	2015).	Similarly,	in	our	
individual	 landscape	 analysis,	 we	 found	 increases	 in	 steepness	 or	
roughness	 reduced	 functional	 connectivity	 in	 all	 of	 the	 five	MZs,	
likely resulting from avoidance of these areas by dispersing sage- 
grouse.	Although	these	are	natural	landscape	features	and	will	not	
be	the	target	of	conservation	initiatives,	it	is	clear	that	they	impact	
dispersal and so it is important to consider and control for terrain in 
future evaluations.

In	 contrast	 to	 terrain	 topography,	 the	 current	 distribution	 of	
sagebrush has been modified through development and land con-
version	 (Davies	 et	al.,	 2011;	Welch,	 2005).	 Thus,	 many	 resistance	
features have likely been created or modified since human settle-
ment. Sage- grouse rely on sagebrush for both food and shelter and 
sagebrush is a strong predictor of sage- grouse habitat across sea-
sons	and	spatial	scales	(Connelly,	Knick,	Schroeder,	&	Stiver,	2004;	
Doherty	et	al.,	2016;	Fedy	et	al.,	2014),	and	it	influences	functional	
connectivity	 (Row	et	al.,	2015).	Similarly,	we	found	that	areas	with	
low	sagebrush	cover	impeded	gene	flow	in	three	of	the	five	MZs.	In	
two	cases,	we	found	that	sagebrush	cover	<30%	impacted	dispersal,	
with	a	10%	threshold	in	the	third,	suggesting	that	sagebrush	cover	
<10%–30%	reduces	gene	flow.	As	with	the	habitat	thresholds,	sage-	
grouse are capable of dispersal through habitats in which they are 
unlikely	to	persist	(suggested	persistence	thresholds	are	in	the	range	

of	 40%–65%	 sagebrush	 cover;	 Aldridge,	 Nielsen,	 &	 Boyce,	 2008;	
Wisdom	et	al.,	2011;	Knick,	Hanser,	&	Preston,	2013).

Given	the	importance	of	sagebrush	to	sage-	grouse,	it	is	surpris-
ing that the distribution of sagebrush cover was not a significant pre-
dictor	of	genetic	differentiation	in	two	of	the	MZs.	Variation	in	the	
importance of a predictor can be related to its abundance and distri-
bution,	but	this	does	not	seem	to	be	the	case	here,	as	mean	values	
were	similar	across	all	zones.	In	MZ	I,	where	individuals	have	been	
shown	to	move	far	distances	(Cross	et	al.,	2017;	Newton	et	al.,	2017),	
isolation	by	distance	appeared	to	drive	differentiation.	None	of	the	
landscape	predictors	were	very	strong	 in	MZ	III,	a	zonal	boundary	
spanning multiple populations and/or habitat–population relation-
ships.	Perhaps	this	should	be	expected	as	MZ	III	is	set	in	basin	and	
range	 topography	with	 this	 natural	 fragmentation	 exacerbated	 by	
conifer	encroachment	and	land-	use	change	(Chambers	et	al.,	2017).	
In	both	of	these	zones,	sagebrush	was	an	important	component	of	
the derived habitat indices suggesting that its distribution is import-
ant in combinations with other landscape variables.

A	 long	 history	 of	 fire	 control	 has	 enabled	 encroaching	 conifer	
woodlands to degrade sagebrush habitats into areas with higher 
amounts of tree canopy cover. Sage- grouse avoid canopy cover at 
low	levels	(<4%,	Miller,	Naugle,	Maestas,	Hagen,	&	Hall,	2017)	or	stay	
and	suffer	demographic	impacts	(Coates	et	al.,	2017).	In	conifer	re-
moval	areas,	females	readily	nested	in	restored	sites	(Coates	et	al.,	
2017;	Severson	et	al.,	2017)	and	were	more	successful	in	raising	their	
broods	 (Sandford	et	al.,	2017).	We	build	on	this	knowledge	to	add	
that connectivity among population centers is reduced when conifer 
expansion	exceeds	a	10%	threshold	in	canopy	cover.	Connectivity	is	
relevant to management because conifer- encroached habitats stim-
ulate	faster	yet	riskier	movements,	especially	in	juveniles,	that	may	
make sage- grouse more vulnerable to visually acute predators with 
demonstrated	fitness	consequences	(Prochazka	et	al.,	2017).	Future	
restoration planning with the goal of improving genetic connectivity 
can use our range- wide resistance surfaces to select areas where the 
greatest benefit may be found.

Cultivation	 is	 known	 to	 reduce	 breeding	 populations	 (Doherty	
et	al.,	2016;	Smith	et	al.,	2016).	Findings	here	 further	suggest	 that	
cultivation	reduces	gene	flow	when	>25%	of	the	landscape	is	con-
verted	to	cropland	in	three	of	five	MZs	tested.	In	eastern	Montana,	
where	 cultivation	 is	most	 prevalent,	 70%	of	 the	 best	 sage-	grouse	
habitat	is	privately	owned.	Therefore,	activities	that	keep	sagebrush	
habitats	intact	(such	as	large	working	cattle	ranches)	as	opposed	to	
those	that	do	not	(such	as	agriculture)	should	help	maintain	connec-
tivity between population strongholds. Cultivation land use was not 
prevalent	in	the	other	two	zones	(MZ	III,	V)	so	we	had	low	power	to	
determine its effects on functional connectivity therein.

4.2 | Resistance model validation

Landscape	genetic	 studies	 typically	quantify	correlations	between	
patterns of genetic differentiation or gene flow with landscape re-
sistance	(or	cost)	distances	and	provide	insight	into	the	relative	im-
portance of landscape variables influencing functional connectivity 
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(Manel	 et	al.,	 2003).	 Here,	 we	 not	 only	 evaluated	 these	 common	
objectives,	but	also	tested	the	ability	of	the	top	linear	mixed	mod-
els to predict genetic differentiation among populations based on 
landscape	resistance.	Predictive	ability	of	our	resistance	maps	varied	
quite	dramatically	among	MZs	and	also	with	the	level	of	differentia-
tion	between	the	populations	considered.	 In	most	cases,	 improve-
ment in predictive ability of our models when compared to the null 
distance model was greatest when pairwise comparisons had little 
(MZ	 III)	or	much	 (MZ	 IV,	MZ	V,	MZ	 I)	differentiation	among	popu-
lations and in one case where differentiation among populations 
varied	 (MZ	 II).	Where	 our	 models	 did	 not	 perform	 better,	 results	
indicated that distance was the predominate driver of differentia-
tion and that our models did not add much predictive improvement. 
For	example,	in	MZ	IV,	plots	of	genetic	differentiation	and	distance	
(Figure	S2)	reveal	that	highly	differentiated	populations	are	not	ex-
plained well by distance alone due to the high value of residuals; the 
resistance	models	for	this	zone	have	much	better	predictive	power	
for	 these	 highly	 differentiated	 groups.	 Conversely,	 in	 MZ	 III,	 the	
residuals	are	 larger	for	populations	with	 low	differentiation,	which	
corresponds to the improved performance of the resistance models.

Comparing performance of our models to other studies is not 
possible as we are unaware of others who have validated the pre-
dictive power of their landscape resistance models. The potential 
power of landscape genetics for informing management will be 
greatly improved if the model results can be used to predict genetic 
differentiation between regions where genetic data are lacking or to 
predict how changes to the landscape are likely to impact functional 
connectivity.	 Predictions	 backed	 by	 any	 confidence	 require	 more	
validation	 than	 is	 current	practice,	 and	we	present	a	novel	 frame-
work for providing this necessary model validation.

4.3 | Implications for sage- grouse management

Currently,	 sage-	grouse	 conservation	 is	 largely	 focused	 on	 imple-
menting beneficial conservation measures within population strong-
holds	 (e.g.,	 Priority	 Areas	 of	 Conservation;	 U.S.	 Fish	 and	Wildlife	
Service	2013)	and	around	known	sage-	grouse	leks	as	they	represent	
areas of importance for breeding and early brood rearing habitat 
(Doherty	et	al.,	2016;	Fedy	et	al.,	2014).	However,	our	analyses	and	
resulting resistance surfaces point to several measures that can be 
taken to help improve and maintain functional connectivity for sage- 
grouse.	 First,	 although	 population	 strongholds	 likely	 have	 much	
higher	suitability	values,	maintaining	areas	outside	of	these	regions	
above	habitat	 thresholds	of	 0.5,	 or	 potentially	 0.25	 in	 some	man-
agement	 zones,	 should	 help	maintain	 connectivity	 between	 these	
existing	protection	areas.	Secondly,	our	models	could	help	identify	
landscapes	where	targeted	conservation	would	maximize	conserva-
tion	return	on	 investment.	For	example,	a	100-	year	history	of	 fire	
suppression	has	enabled	conifer	expansion	into	sagebrush	habitats,	
reducing	 lek	 attendance,	 breeding	 habitat	 quality	 and	 survival	 of	
sage-	grouse	(Coates	et	al.,	2017;	Miller	et	al.,	2017).	We	found	that	
functional	connectivity	appeared	to	drop	at	around	10%	and,	thus,	
a conifer removal strategy incorporating known dispersal pathways 

from	our	current	flow	map	(Figure	4)	may	help	to	maintain	connec-
tivity between population strongholds.

In	 addition	 to	 the	 thresholds	we	 identified,	 the	 resistance	 sur-
faces and gene flow maps we generated help identify areas within 
which	 to	 prioritize	management	 actions.	 Resistance	maps	 identify	
areas that are above and below threshold values that obstruct gene 
flow and direct conservation actions within these areas where it is 
possible to maintain or improve habitat above or below a targeted 
threshold.	Furthermore,	because	the	nodes	in	our	analysis	represent	
clusters	of	active	sage-	grouse	 leks,	 the	modeled	gene	flow	should	
reflect	movement	from	these	high	density	areas	and,	as	such,	can	be	
used	to	help	locate	and	protect	dispersal	corridors.	Additional	gene	
flow maps can be produced among management areas of particular 
interest to managers and used to target conservation initiatives that 
will maintain connectivity among population strongholds.

It was clear from our cross- validation that the predictive ability 
of our resistance models varied with the levels of genetic differenti-
ation	and	among	management	zones.	Even	when	our	results	strongly	
suggested an improvement in model fit when compared to the null 
distance	model,	 the	overall	predictive	ability	of	our	models	was	at	
times marginal or poor depending on the amount of genetic differen-
tiation among populations. Without our cross- validation to provide 
an	estimate	of	predictive	ability,	conservation	initiatives	could	direct	
actions that will not have the desired improvement on connectivity. 
Overall,	our	cross-	validated	approach	used	in	developing	our	thresh-
old resistance surfaces for sage- grouse should initiate a new era of 
spatial	analyses	which	emphasizes	the	value	of	functional	connectiv-
ity and the identification of habitats supporting it.
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