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Purpose: Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are associated

with metabolic diseases such as obesity and Type 2 diabetes mellitus (T2DM). Mitochondria

and ER are connected via mitochondria-associated membranes (MAM) that are involved in

glucose homeostasis and insulin resistance. We postulated that exercise might positively

benefit T2DM-induced ER and mitochondrial dysfunction that might be associated with

MAM.

Materials and Methods: Mice were fed a high-fat diet and injected with streptozotocin

(STZ) to create T2DM models. Glucose tolerance, mitochondrial quality, MAM quality, and

ERS were investigated in diabetic mice after six weeks of swimming.

Results: Type 2 DM induced decreased MAM quantity, impaired mitochondrial quality, and

deteriorated ERS in skeletal muscle that led to endoplasmic reticulum-associated degradation

(ERAD). Swimming alleviated strong ERS caused by T2DM. Importantly, MAM quantity

was positively associated with mitochondrial function and tended to negatively correlate with

the ERS branch, ATF6. Moreover, both ATF6 branches of ERS and ERAD were positively

associated with the pIRE1α branch of ERS.

Conclusion: Type 2 DM induced glucose intolerance, powerful ERS, and mitochondrial

dysfunction associated with decreased amounts of MAM. Swimming improved glucose

intolerance and selectively mitigated the ERS in skeletal muscle. Therefore, MAM quality

and ATF6 might be novel and important targets for T2DM treatment. Endoplasmic reticulum

stress might be an effective target of swimming to improve diabetes.
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Introduction
Type 2 DM is a complex metabolic disorder and its incidence has dramatically

increased over the past few decades. Consequently, a better understanding of the

mechanisms underlying this pathology is crucial for proposing new therapeutic

approaches.1 Type 2 DM is often associated with the development of secondary

complications in various organs, such as the eyes, kidneys, heart, brain, and skeletal

muscle.2 Among these organs, skeletal muscle is crucial for glucose homeostasis as it

is the primary site of insulin-stimulated glucose uptake. Therefore, it is the main

target of changes in insulin resistant states and T2DM.3 Type 2 DM is associated with

reduced mitochondrial function, dynamics and membrane potential, (MMP),1,4–10

and aberrant ERS,11 all of which could impair energy metabolism in skeletal muscle.

Recent structural and functional studies have revealed interactions between
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mitochondria and ER networks, and zones of close contact

between these organelles are called MAM (mitochondria

associated membranes)12 (11). These MAM allow mito-

chondria and ER to share some important cellular functions

that are critical for insulin production and insulin-

stimulated glucose disposal.1 Given the structural and func-

tional link between ER and mitochondria, a potential emer-

ging mechanism of T2DM might involve interaction

between mitochondria and ER (MAM).1,13,14

Molecular chaperones such as calnexin, calreticulin, and

the sigma-1 receptor (sigma-1R) at MAM regulate associa-

tions between the ER and mitochondria.12 The sigma-1R

cloned in 199615,16 represents an integral membrane protein

that is localized at the ER (and the ER–mitochondria inter-

face) suggesting that it functions as an ER chaperone. Thus,

Sigma-1R is considered as the gold standard for quantifying

MAM. This receptor also modulates several signaling path-

ways including ion channels, lipid rafts, autophagy, and the

ER stress response.17,18

Endoplasmic reticulum stress (ERS) refers to a subcellular

organelle process in which ER homeostasis is disrupted by

physiological factors such as heat shock, mitochondrial cal-

cium overload,19 or a high-fat diet.20 These perturbations can

lead to the accumulation of unfolded proteins and protein

aggregates in the lumen of the ERwhich is called the unfolded

protein response (UPR). The occurrence of a UPR suggests

ERS.21 The UPR consists of three main branches, each of

which is activated by the specific stress transducers, protein

kinase R-like ER protein kinase (PERK), activating transcrip-

tion factor 6 (ATF6) and inositol requiring enzyme 1 (IRE1).

In the basal state, these are all associated with the chaperone

Bip (also called glucose-regulated protein 78; GRP78). When

unfolded proteins accumulate, each transducer can disassoci-

ate from Bip, which results in self-activation of the

transducer.22 Both PERK and IRE1 are activated by auto-

phosphorylation oligomerization, whereas ATF6 is translo-

cated to the Golgi apparatus for activation.23 When the ERS

exceeds the processing capacity of a cell, ER-associated

degradation (ERAD) can result.24 Caspase 12 is a specific

indicator of ERADbecause it is active during ER deterioration

to ERAD.25

Physical exercise plays a role in regulating various

bodily functions, such as cellular metabolism, as well as

cardiovascular and muscular functions. Endurance exercise

increases mitochondrial function in skeletal muscle26,27 and

protects against ERS, as this kind of exercise increases the

expression of several chaperones in mice fed with a high-fat

diet.28 Therefore, we questioned whether exercise

intervention would also be associated with interactions

between mitochondria and ER in patients with diabetes.

Mitochondria interact with the sarcoplasmic endoplasmic

reticulum (SR/ER) in skeletal muscle. However,

a correlation between MAM and insulin resistance in ske-

letal muscle has not been investigated in detail. To further

understand the relationship between MAM in skeletal mus-

cle and diabetes, and to confirm whether crosstalk between

mitochondria and ER is a mechanism of positive outcomes

of exercise intervention for T2DM, we generated T2DM

animal models by feeding mice with a high-fat diet and

injecting them intraperitoneally (ip) with STZ. We then

trained them to swim, and analyzed the effects of swimming

on blood glucose, mitochondrial function in skeletal mus-

cle, Sigma-1R and the ERS signaling pathway. We found

that T2DM impaired glucose tolerance, induced ERS that

led to ERAD in skeletal muscle, and caused mitochondrial

dysfunction associated with reduced MAM. Swimming

alleviated deleterious ERS in diabetic mice and thus miti-

gated ERAD.

Materials and Methods
The Committee for the Care of Laboratory Animal

Resources, East China Normal University, approved all

experimental protocols, and the study proceeded in accor-

dance with the National Institutes of Health Guide For The

Care And Use Of Laboratory Animals (NIH Publications

No. 8023, revised 1978).

Animals
Thirty-nine clean-grade male C57BL/6 mice (age, 4 weeks;

weight, 16.49 ± 1.50 g; Shanghai SLAC Laboratory Animals

Co., Ltd., Shanghai China, Animal Production License No.

SCXK (Shanghai) 2007–0005, animal use identification certi-

ficate: SYXK (Shanghai) 2004–0001) were randomly divided

into control (n = 16) and diabetes (n = 23) groups. Clean grade

means that the animals are free of pathogens that are harmful to

humans and other animals, or that could interfere with scien-

tific investigations. The mice are quarantined, and have speci-

fic documentation including quarantine and lineage

certificates. All mice were housed in cages maintained at 22

± 1°C and 50% ± 5% humidity under a 12 h light/dark cycle.

Fodder and water were available ad libitum.

The control group was fed with standard chow. The

group with diabetes was fed with a high-fat diet (54.6%

basic feed, lard 16.9%, sucrose 14%, casein 10.2%, premix

feed 2.1%, maltodextrin 2.2%) for four weeks, then were

injected with STZ (50 mg/kg/day) for 5 days to induce
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T2DM. Control mice were injected with citrate buffer.

Fasting blood glucose >11.1 mmol/L was taken as the

criterion for diabetes in the mice.29 The mice were ran-

domly assigned to control (C), exercised (E), diabetic

sedentary (D), and diabetic exercised (DE) groups (n = 8

each).

Blood Glucose Evaluation and

Intraperitoneal Glucose Tolerance Test

(IPGTT)
Mice fasted overnight before blood glucose tests. Blood

samples were obtained from the tail vein, and blood glu-

cose was measured using an ACCU-CHEK Active gluc-

ometer (Roche Holdings AG, Basel, Switzerland) with

glucose test strips (Roche Holdings AG).

After an overnight fast, venous blood was collected

from the tail to measure baseline glucose before, and 15,

30, 45, 60, 75, 90 and 120 min after an intraperitoneal

injection of glucose (2 g/kg body weight).

Swimming
A swimming pool was set up as described.30 Water to a depth

of 50 cm in a glass tank was kept at a thermostatically

controlled temperature of 30°C ± 2°C. During the first

week, the mice of Groups E and DE swam for short periods

every day for five days to get acclimated to swimming.

Thereafter, the mice swam for 1 h per day (4:30–5:30 pm),

5 days per week for 6 weeks.

Tissue Harvesting
After 6 weeks, all of the mice were fasted for 12 h then

sacrificed. The left gastrocnemius muscles were collected to

extract mitochondria and the right gastrocnemius muscles

were snap-frozen in liquid nitrogen and stored at −80°C.

Mitochondrial Membrane Potential
Mitochondria were extracted as described.31,32 The left gastro-

cnemius was ground in a mortar and homogenized in ice-cold

buffer (100 mM KCl, 5 mM MgSO4, 5 mM EDTA, 50 mM

Tris-Base, 1 mM ATP, pH 7.4). Mitochondria were fractio-

nated by differential centrifugation. We used the fluorescent

probe JC-1 to detect the mitochondrial membrane potential

(MMP) Δψ. The probe was diluted to prepare the dye solution
according to the specifications recommended by the

manufacturer of Beyotime C2006 (Beyotime Biotechnology,

Shanghai, China), and fluorescent signals were detected using

aTecan2000microplate reader (TecanGroupLtd.,Männedorf,

Switzerland). Protein was quantified using the bicinchoninic

acid (BCA) method.

RNA Extraction and Quantitative

Real-Time PCR
We extracted RNA as described.30 Total RNA extracted from

gastrocnemius muscles (50 µg) using Trizol assay kits was

quantified by spectrophotometry (260 nm). Complementary

DNAwas prepared from 5 mL of total RNA using ReverTra

Ace qPCR RT kits (FSQ-101; Toyobo Co., Ltd., Osaka,

Japan). Real-time PCR proceeded using a Step One instru-

ment (Applied Biosystems, Waltham, MA, USA), software

(Applied Biosystems) a SYBR and Green PCR Master Mix

(QPK201; Toyobo Co. Ltd.) for detection. The quantity of

transcripts was normalized to the internal control, GAPDH.

Specific primers for Fis1, Mfn1, Mfn2, OPA1 and GAPDH

were designed based on the findings of a PubMed search.

Topic-related publications were included without date of

publication or study design limits. We selected credible pub-

lications in which the primers were described and cited when

gene target-specific, then specific conditions were set to

prepare the primers33–37 (Table 1). All primers were reverse

validated (http://genome.ucsc.edu/cigi-bin/hgPcr?hgsid=

687005089_cq47CErF0NZA0acwDe6fl0tV6e7i).

Preparation of Tissue Lysates for

Western Blotting
Gastrocnemius muscles were homogenized in lysis buffer

(50 mM Tris HCl, 150 mM NaCl, 1 mM EDTA, 0.2 mM

PMSF, and 1% NP-40, pH 7.4), then separated by centri-

fugation at 8000g for 10 min. Protein concentrations in the

supernatant were measured using DC protein assay kits

Table 1 Primer Sequences for Real-Time PCR

Gene Primer Sequences (Forward, Reverse)

Fis1 5ʹ-GTGTTGCGTGTTAAGGGATGA-3ʹ

5ʹ-AAATTGCGTGCTCTTGGACA-3’

Mfn1 5ʹ- AGAGAGAGCGTTTAAGCAGCA-3ʹ

5ʹ- TAATCTGCCAGGGAACAAGAGG-3’

Mfn2 5ʹ- TTAGGACGCTGGGCCTCTG-3ʹ

5ʹ-GGTGTTGACTCCACCTGTCC-3’

OPA1 5ʹ-CTGCAGGTCCCAAATTGGTT-3ʹ

5ʹ-TTTTCCAGGCGCTCCAAGAT-3’

GAPDH 5ʹ-AAC TTT GGC ATT GTG GAA GG-3ʹ

5ʹ-ACA CAT TGG GGG TAG GAA CA-3’
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(Bio-Rad Laboratories Inc., Hercules, CA, USA). Proteins

were resolved by 8–10% SDS-PAGE, then blotted onto

PVDF membrane (Bio-Rad Laboratories Inc). Nonspecific

binding was blocked with 5% skim milk then the mem-

branes were incubated overnight with primary antibodies

diluted in 3% BSA in PBS-T,38 followed by secondary

antibodies for 2 h. Proteins on the membranes were probed

using the high sensitivity ECL chemiluminescence kit,

ECL Plus (Thermo Fisher Scientific Inc., Waltham, MA,

USA), then quantified using a gel imager (Alphatech Inc.,

Burlington, MA, USA).

Antibodies
The following rabbit primary antibodies were diluted 1:1000

for immunoblotting: monoclonal antibody to phospho-PERK

(MA5-15033) and polyclonal antibody to pIRE1α (PA1-

16927) (Thermo Fisher), polyclonal antibodies to ATF6

(ab62576), caspase 12 (ab62484) and Sigma-1R

(ab151288) (ABCAM, Cambridge, MA, USA), and com-

bined with HRP-conjugated secondary antibodies diluted

1:500 (Santa Cruz Biotechnology Inc., Dallas, TX, USA).

Statistical Analysis
Blood glucose levels in the C and D groups before swim-

ming were analyzed using independent Student t-tests.

Multiple comparison data were analyzed by a one-way

ANOVA and correlations were determined by Pearson

correlations, both using GraphPad Prism version 5.0 soft-

ware. Data are presented as means ± SD. P values are

shown as *P < 0.05, #P < 0.05, **P < 0.01 and ***P <

0.001, unless indicated otherwise.

Results
Swimming Improved Glucose Intolerance

in Diabetic Mice
We fed 3–4-week-old mice with a high-fat diet and injected

them ip with STZ to induce T2DM. These mice had signifi-

cantly increased fasting blood glucose levels (>11.1mmol/L)

(Figure 1A). Glucose tolerance was further assessed in C and

D mice using the IPGTT. Blood glucose levels were signifi-

cantly higher in the D, than the C mice throughout the test,

and did not return to basal levels in the D mice until 120 min

after the test (P < 0.001) (Figure 1B). The area under curve

(AUC) of the IPGTT graph was significantly increased in the

D, compared with the C group (P < 0.001; Figure 1D). Since

exercise can improve glucose tolerance,39 we applied the

IPGTT to the mice after swimming for 1 h/day, 5 days/

week for 6 weeks to further assess glucose tolerance.

Swimming improved glucose tolerance in both groups

(Figure 1C). Blood glucose levels declined earlier (P <

0.05) and were significantly lower at 60 min of the test in

the E than the C group. The results were similar between the

DE and D groups, with blood glucose levels at 120 min after

the glucose injection being lower (P < 0.05) in the DE, than

the D group (Figure 1C). The AUCwas significantly reduced

in the DE, compared with the D group (P < 0.05; Figure 1E),

indicating that swimming improved glucose tolerance in

control and diabetic mice.

Diabetes Reduced Mitochondrial

Membrane Potential (MMP) of Skeletal

Muscle
The onset of obesity and T2DM are associated with abnor-

mal mitochondrial function1,8,13,14,40 and exercise can alter

mitochondrial quality. Given that MMP is considered the

most sensitive indicator of mitochondrial quality, we

examined MMP in mitochondria extracted from gastrocne-

mius muscles after swimming. The MMP was significantly

decreased in the D, compared with the C group (**P <

0.01), and significantly increased in the E, compared with

the C group (*P < 0.05), whereas those between the D and

DE groups did not significantly differ (Figure 2).

Diabetes Upregulated and

Downregulated Mitochondrial Fission and

Fusion, Respectively, in Skeletal Muscle
Mitochondrial fission and fusion (mitochondrial dynamics)

play critical roles in maintaining functional mitochondria

when cells are exposed to metabolic or environmental

stresses.38,44 Mitochondrial fission is needed to create healthy

mitochondria with a lower MMP.45 Since we found that

diabetes reduced MMP, we postulated that lower MMP is

associated with mitochondrial fission. We measured mRNA

levels of Fis1, Mfn1, Mfn2 and OPA1 to determine mitochon-

drial dynamics. The Fis1 mRNA levels were significantly

increased in the E (P < 0.01,) and D (P < 0.001) groups

compared with group C (Figure 3A). The, mRNA levels of

OPA1 were significantly decreased in the D (P < 0.05) com-

pared with the C group (Figure 3D), whereas Mfn1 and Mfn2

differ did not significantly differ between them (Figure 3B

and C). These results suggest that swimming increased mito-

chondrial fission compared with control mice, and that

diabetes excessively upregulated mitochondrial fission, but

downregulated mitochondrial fusion.
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Swimming Ameliorated MAM Impaired by

Diabetes
Interactions between mitochondria and ER comprise

a potential emerging mechanism of T2DM pathogenesis,1

and Sigma-1R is considered as the gold standard for quantify-

ing MAM. We assessed Sigma-1R expression in lysates of

gastrocnemius muscles prepared from groups C, E, D, and DE

by immunoblotting. Diabetes significantly reduced (P < 0.01),

whereas swimming increased (P = 0.07) Sig-1R protein levels

in diabetic mice (Figure 4), suggesting that diabetes decreased,

whereas swimming ameliorated the amount of MAM.

Swimming Alleviated ERS in Skeletal

Muscle of Diabetic Mice
Given the changes in mitochondrial quality and MAM along

with the ER-mitochondrial crosstalk, we speculated that dia-

betes aggravates, whereas exercise helps to alleviate ER

stress. Therefore, we examined the expression of p-PERK,

p-IRE1α and ATF6 proteins, which are critical components

of the ERS pathway, in immunoblots of gastrocnemius mus-

cle lysates prepared from the four groups of mice. We also

measured the level of caspase 12 protein to assess ERAD.
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Figure 1 Swimming improves T2DM-induced glucose intolerance. (A) Changes in fasting blood glucose after STZ injection. *P < 0.05, ***P < 0.001 (n = 16–23). (B) Blood glucose
levels in groups C andD in IPGTT tests. **P < 0.01, ***P < 0.001 (n = 6). (C) Area under curve of IPGTT graph of (B). ***P < 0.001 (n = 6). (D) Blood glucose levels in IPGTT test of

groups C, D, E and DE after swimming exercise. *P < 0.05 group C vs E; #P < 0.05 group D vs DE (n = 6). (E) Area under curve of IPGTT graph (D). *P < 0.05, ***P < 0.001 (n = 6).
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Figure 2 T2DM significantly impairs MMP of skeletal muscle. Groups C, E, D and

DE. *P < 0.05, **P < 0.01 (n = 6).
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Diabetes resulted in significantly increased levels of pIRE1α

(P < 0.01,), ATF6 (P < 0.05) and caspase 12 (P < 0.001)

expression (Figure 5). However, swimming significantly

reduced the protein levels of pIRE1, ATF6, and caspase 12

(P<0.05 for all) in the gastrocnemius of the DE compared

with the D group (Figure 5). The level of p-PERK expression

in the gastrocnemius did not change in either group.

Changes in MMP and ERS are Associated

with MAM
To further verify whether mitochondrial quality and ERS

are linked to MAM, we investigated correlations between

the amounts of MMP/ERS signaling and of Sigma-1R

expression. Levels of Sigma-1R expression correlated posi-

tively with MMP (R2 = 0.4901, P < 0.05; Figure 6A), but

inversely with those of ATF6 from gastrocnemius muscle

(R2 = 0.2658, P = 0.06; Figure 6A). These results suggested

a positive correlation between MAM and quantitative as

well as mitochondrial function, and a negative correlation

between MAM and the UPR branch, which is activated by

ATF6. Since two branches (ATF6 and pIRE1) of the UPR

and ERAD (caspase 12) were activated by diabetes, we also

assessed correlations among protein levels of ATF6, cas-

pase 12 and pIRE1α. We found positive correlations

between the levels of pIRE1α and ATF6 proteins (R2 =

0.2283, P < 0.05), and between those of pIRE1α and cas-

pase 12 (R2 = 0.4653, P < 0.01; Figure 6B).

Discussion
The present study provides new insights into the role of

MAM in mitochondrial quality and ERS in T2DM and the

effects of swimming as intervention. We found that STZ-

induced diabetes results in impaired glucose tolerance, ER

stress and abnormal mitochondrial quality associated with

reduced MAM. We also found that swimming significantly

improved glucose tolerance, and alleviated the ERS.

Swimming tended to alleviate mitochondrial dysfunction

and the decreased MAM caused by type 2 diabetes.

Physical exercise is an effective intervention for treating

metabolic diseases,14,28,43 such as obesity, hypoglycemia and

A B

C D
*

Figure 3 Swimming and T2DM increase mitochondrial fission, but T2DM decreases mitochondrial fusion. (A–D) Levels of mRNA in groups C, E, D and DE. (A) Fis1

mRNA. **P < 0.01, ***P < 0.001 (n = 8). (B) Mfn1 mRNA (n = 8). (C) Mfn2 mRNA (n = 8). (D) OPA1 mRNA. *P < 0.05 (n = 6).
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diabetes. Indeed, our IPGTT findings showed that swimming

improves glucose tolerance in diabetic mice, which was

similar to previous results.39,46

Both swimming and diabetes resulted in mitochondrial

fission, with which Fis1 is thought to be related. Fission

molecules are upregulated in the skeletal muscles of mice

with obesity induced by a high-fat diet.47 Notably, moder-

ate mitochondrial fission is beneficial for exercise

adaptation,43 whereas excessive mitochondrial fission dis-

rupts mitochondrial pool health, which consequently

damages skeletal muscle homeostasis.38,42 The present

study found that swimming induced, whereas diabetes

significantly increased mitochondrial fission (group E vs

D: P < 0.01 vs P < 0.001). We speculated that swimming

regularly for six weeks induced moderate mitochondrial

fission which was advantageous for exercise adaption,

whereas diabetes induced excessive mitochondrial fission

that is detrimental to the mitochondrial network.

Fission is needed to create new mitochondria and regulate

the mitochondrial network through a selective autophagic pro-

cess called mitophagy.44 This process includes the removal of

depolarized mitochondria with a lower MMP than healthy

mitochondria during cellular stress. Therefore, mitochondrial

fission is closely associated with changes in MMP. Here, we

showed that diabetes significantly decreased, whereas swim-

ming obviously increased MMP, which was consistent with

changes in Fis1 mRNA levels. We recently showed that a Fis1

deficiency results in abnormal mitochondrial dynamics and

delayed mitophagy execution in skeletal muscle at rest and

under exercise stress, indicating that Fis1 not only mediates

fission, but alsomaintains normalmitophagy.38,48,49 Therefore,

we speculate that the decreased MMP induced by diabetes

arises from excessively elevated Fis1 transcription, and that

both of these processes work in concert to affect mitophagy.

However, this awaits confirmation. By contrast, diabetes

reduced the level of OPA1 mRNA suggesting that diabetes

downregulates mitochondrial fusion. These findings agreed

with the fact that OPA1 expression is decreased in the skeletal

muscles of patients with T2DM.50 Furthermore, findings

in vitro have shown that OPA1 disruption in mammal cells

caused by RNA interference (RNAi) blocks mitochondrial

fusion, which leads to poor cell growth and mitochondrial

dysfunction, such as decreased mitochondrial membrane

potential and reduced cellular respiration.51 We suppose that

a decreased OPA1 mRNA level is also associated with the

decreased MMP in diabetic mice. Together, these finding

suggest that the significantly reduced MMP arises from ele-

vated mitochondrial fission and decreased mitochondrial

fusion in the skeletal muscles of diabetic mice.

Both mitochondrial dysfunction and ER stress could be

common changes in insulin-sensitive tissues that play key

roles in glucose homeostasis that is altered in the context of

obesity and T2DM, and the link between mitochondria and

ER is MAM.52,53 We found that the expression of Sigma-1R
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Figure 4 T2DM reduces sigma-1R protein expression. Western blots of Sigma-1R expression in gastrocnemius muscles from groups C, E, D and Group DE. **P < 0.01 (n = 6).
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protein, which is considered a specific quantitative compo-

nent of MAM, was significantly decreased, whereas swim-

ming increased its expression in the skeletal muscle of

diabetic mice. These findings suggested that swimming

can somewhat attenuate MAM impairment induced by dia-

betes. Notably, MAM disruption is an essential subcellular

alteration associated with muscle insulin resistance in mice

and humans, indicating that reduced ER-mitochondria cou-

pling could be a common change in several insulin sensitive

tissues that play key roles in altered glucose homeostasis in

the context of obesity and T2DM.52 We also identified

a positive correlation between levels of Sigma-1R protein

and MMP, suggesting that mitochondrial function is posi-

tively associated with the quantity of MAM in the patho-

genesis of diabetes.

High-fat diets, as well as excessive or insufficient exer-

cise can activate ERS in skeletal muscle. In contrast, repeated

moderate endurance exercise that attenuates the activation of

various chaperone molecules associated with ERS protects

skeletal muscle from excessive ERS.11 We similarly showed

that diabetes significantly increased pIRE1α and ATF6

expression in skeletal muscle and that swimming alleviated

the ERS in diabetic mice, whereas p-PERK remained

unchanged in both groups. These findings indicated that

diabetes activated ERS, whereas swimming attenuated the

ERS through ATF6 and pIRE1α branches in skeletal muscle.

Degrees of activation tended to differ among the three

branches of UPR (p-PERK, pIRE1α, ATF6) under the same

conditions. Our findings are similar to those of a previous

study54 in which the UPR-specific ATF6/IRE1α channel in

the skeletal muscles of 18 untrained persons was activated

after resistance training, whereas PERK was not involved.

However, recoverymight not be achieved when ER stress

is prolonged or severe,55 and the UPR will generate pro-

apoptotic signals to remove affected cells, that is, ERAD.

The pro-apoptotic signals associated with the UPR involve
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Figure 5 Type 2 diabetes exacerbates ER stress leading to ERAD, which is mitigated by swimming (A,B). (a–d) Western blots of p-PERK, p-IRE1α, ATF6 and caspase 12 in

gastrocnemius muscles of mice in groups C, E, D, and DE (n = 6 per group. *P < 0.05, **P < 0.01, and ***P < 0.001.

Zhang et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2020:131424

http://www.dovepress.com
http://www.dovepress.com


the activation of caspase 12 by IRE1α.56 Our findings sug-
gested that the remarkably elevated expression of both

pIRE1α and caspase 12 was caused by diabetes and that the

amounts of pIRE1α and caspase 12 proteins in diabetic mice

were significantly reduced in response to swimming.

Importantly, the correlation between pIRE1α and caspase

12 expression was significant and positive (Figure 6B),

which is consistent with the pro-apoptotic pathway asso-

ciated with ER referred to as IRE1α-caspase 12. These find-
ings indicated that diabetes activates IRE1α-caspase 12,

which results in ERAD, and that swimming can alleviate

ERAD through pIRE1α.
Mitochondrial function is associated with MAM, and

we identified a negative correlation between levels of Sig-

1R and ATF6 expression. The latter was also positively

associated with that of pIRE1α (Figure 6B), indicating that

the ATF6 branch is associated with the pIRE1α branch

during the pathogenesis of diabetes and exercise interven-

tion. We speculate that impaired MAM, mitochondrial

dysfunction and ERS are all related. However, compared

with ERS, mitochondrial function is more closely related

to MAM quantity in diabetic mice, and ERS might be

a more effective target for swimming intervention, which

would probably contribute to improving glucose intoler-

ance. However, the specific mechanisms of these processes

need to be further clarified during the pathogenesis of

diabetes and exercise intervention.

Data supporting these concepts are still preliminary,

and further investigations are needed to elucidate the pre-

cise mechanism of MAM, mitochondrial function and

ERS during T2DM and exercise intervention in vivo.

Further study is also needed to define more mitochondrial

aspects that could fully describe mitochondrial quality,

such as mitochondrial biogenesis and mitophagy.

Although we could show changes in sigma-1R and mito-

chondrial dynamics, electronic microscopy is necessary to

assess ER-mitochondria contact and mitochondrial mor-

phology. Moreover, glucose-regulated protein 75 (GRP75)

A

B

Figure 6 Associations between expression levels of Sigma-1R and MMP, and that of pIRE1α and ATF6 and caspase 12. (A) Correlations between Sigma-1R and MMP and

ATF6. *P < 0.05. (B) Correlations between the pIRE1α and ATF6 and caspase12. *P < 0.05, **P 0.01.
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is a protein localized in MAM and is reduced by long-term

diabetes. Investigating GRP75 expression is also neces-

sary for our future study. In summary, we found that

T2DM induces a decrease in MAM quantity, impaired

mitochondrial quality, and deleterious ERS that leads to

ERAD. Swimming mitigated T2DM-induced glucose

intolerance and ERS in mouse skeletal muscles.

Importantly, MAM quantity was not only associated posi-

tively with mitochondrial function, but also tended to

correlate negatively with an ERS branch (ATF6).

Moreover, both the ATF6 branch and ERAD were posi-

tively associated with the pIRE1α branch of ERS.

Therefore, MAM quality and ATF6 might be novel and

important targets of T2DM treatment. Endoplasmic reti-

culum stress might be a more effective target for swim-

ming to improve diabetes.
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