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Abstract

The impact of COVID-19 disease on health and economy has been global, and the magnitude 

of devastation is unparalleled in modern history. Any potential course of action to manage this 

complex disease requires the systematic and efficient analysis of data that can delineate the 

underlying pathogenesis. We have developed a mathematical model of disease progression to 

predict the clinical outcome, utilizing a set of causal factors known to contribute to COVID-19 

pathology such as age, comorbidities, and certain viral and immunological parameters. Viral 

load and selected indicators of a dysfunctional immune response, such as cytokines IL-6 and 

IFNα which contribute to the cytokine storm and fever, parameters of inflammation D-Dimer 

and Ferritin, aberrations in lymphocyte number, lymphopenia, and neutralizing antibodies were 

included for the analysis. The model provides a framework to unravel the multi-factorial 

complexities of the immune response manifested in SARS-CoV-2 infected individuals. Further, 

this model can be valuable to predict clinical outcome at an individual level, and to develop 

strategies for allocating appropriate resources to manage severe cases at a population level.
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INTRODUCTION

The COVID-19 pandemic caused by infection with SARS-CoV-2 was officially announced 

in March 2020 by the CDC and WHO [1,2]. As of this publication, more than 170 million 

infections and over 3.5 million deaths have been reported worldwide. Majority of the 

subjects have asymptomatic infections. The rate of fatality is disproportionately high in the 

elderly and patients with comorbidities such as diabetes, cardiac disease, and kidney disease 

[3,4]. The consequences of the pandemic are fraught with potential loss of lives, social and 

economic distress, and the uncertainty of disease progression because of variable individual 

pathogenesis.

A unique and dysregulated immune response has been shown to be a hallmark of COVID-19 

[5–9]. The figure 1 schematically depicts the cascade of events that contribute to the 

progression of disease. Mathematical models have been utilized by several investigators 

to understand the mechanisms of disease pathogenesis, immune pathways involved and 

course of viral infections [10,11]. In this article, we have proposed a predictive model that 

utilizes the levels of clinical and laboratory parameters to determine the severity of clinical 

outcomes ranging from asymptomatic to mild, moderate, severe, and critical disease states. 

The proposed model can be useful to predict clinical outcome at the individual-level and 

develop efficient and effective treatment strategies to manage public health challenges at the 

population-level.

The questions the model attempts to answer are: at an individual level, what is the 

probability of an individual infected with SARS-CoV-2, given the clinical signs and 

laboratory values on various days, likely to progress to severe disease; at a population 

level, what are the prioritized clinical and laboratory parameters that are most likely to 

contribute to progression to severe disease. We have used a multiple regression based model 

to predict severity of the outcome of COVID-19. To evaluate the combinatorics that are 

not observed in the sample, we have applied resampling methods based on Monte Carlo 

simulation (Figure 3a and 3b).

MATERIALS AND METHODS

Development of a simulated dataset

A simulated data set of 45 individual subjects was created with 15 subjects assumed to 

be asymptomatic, 15 with moderate disease, and 15 with severe COVID-19 [12,13]. The 

simulated values for the viral and immune parameters were generated using data from 

clinical reports published in the last year for each of the selected parameters. This table 

provides the ranges and the related references for the values for all parameters and figure 

shows the box-and-whisker plots for the distribution of the values for each parameter (Table 

1) (Figure 2).

Data modeling

We have applied multiple linear regression approach to the simulated data set for COVID-19 

subjects generated and analyzed to understand the impact of each of the parameters on 

the outcome of disease severity. We chose a multiple regression model since both, the 
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outcomes and predictors, were numeric. We used regression models to establish a predictive 

transfer function and evaluated significance of results. In this model, the relationship 

between independent variables (x1, x2…xn) with dependent variable (y) can be visualized 

by the equation, y=f (x1, x2…xn). This is the transfer function that is derived through 

analysis. The validity of the model was established using ‘Goodness of Fit’ and ANOVA. 

The statistical significance of the model was tested by evaluating residuals and F Ratio 

in one-way ANOVA, based on the criteria of p<0.05 and goodness-of-fit with adjusted 

R-squared>90%. The assumption for this analysis was that each of the parameters were 

independent. However, in cases where factual patient datasets will be subjected to this type 

of analysis, there may be multi-co-linearity within the parameters that should be rationalized 

using dimensionality reduction methods [14,15].

Since the model may not exhibit multiple combination of parameters in the limited 

dataset of 45 subjects, we have used resampling methods using Monte Carlo simulation 

to achieve a better density of combinations. The simulation was applied for resampling 

of the transfer function with 2000 runs, where a convergence was achieved after multiple 

runs. The simulation was performed in order to understand the impact of possible parameter 

combinations on clinical outcomes. Monte Carlo simulation uses random variates from 

selected range of values to model the impact of progression of events leading to outcomes.

Data analysis using training and testing data sets

Model building involved partitioning the data set into ‘training’ and ‘testing’ sets. We 

apportioned 70% of the data to train the model and used the remaining 30% to test 

the model, using random selection algorithms. Following development of the model, we 

analyzed a set of test data to compare predicted versus observed results to validate the 

model.

The linear coefficients of the prediction equation determined the weights of each parameter 

to predict the clinical outcome.

Estimation of the coefficients of input parameters

The modeling approach was based on utilizing clinical and laboratory parameters to fit the 

regression models. Since direct comparison of regression coefficients was not necessary, and 

interactions in factors were not considered on account of assumption of independence of 

factors, we chose to leave the factor-data in the original scales.

Rationale for the parameters included in the analysis

The input parameters selected for this model, which requires cause (clinical and laboratory 

parameters) and effect (clinical outcome) relationships, were based on the data reported in 

recent scientific publications. The Figure 1 shows the schematic representation of the stage 

of disease progression and parameters associated with the increasing severity of diseases. 

The following parameters were chosen:

Comorbidities: Though the precise mechanism(s) of disease progression in patients with 

comorbidities has yet to be elucidated, pre-existing conditions such as diabetes, cancer, 
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neurological, cardiac and lung and kidney disease have been reported to contribute towards 

severity of COVID-19 [16,17]. The simulated data for comorbidity was generated using an 

arbitrary range of 1 to 4, where 1 represented a healthy individual and 4 represented an 

individual with a severe comorbidity.

Age: A range of 18 to 100 years was utilized for generating the stimulated data set. 

The assumption used in generating the data was that disease progression was directly 

proportional to age [17]. Reports of certain rare pathogenic conditions in children, example 

Kawasaki disease, have not been considered in the current model [18,19]. Reports indicate 

that majority of children infected with SARS-CoV-2 are asymptomatic [19].

Viral load: SARS-CoV-2 infects individuals through the nasopharyngeal pathway. This 

infection is the cause of all subsequent effects. Viral load is measured by reverse-

transcriptase quantitative PCR (RT-qPCR), which detects viral RNA from nasopharyngeal 

swabs [20]. The test relies on multiple cycles of RNA amplification to produce detectable 

amount of RNA in the mixed nucleic acid sample, reflected in the Cycle-time (Ct) value, 

which is defined as the number of cycles necessary to detect the virus. A Ct value of less 

than 20 is considered a high viral load while a Ct value of 35 and higher indicates a lower 

level or near absence of viral infection [20]. Viral load in patients is dependent on various 

factors, including number of ACE2 and TMPRSS2 receptors, comorbidities, cytokines, 

number of viral particles at infection, and the overall immune health status of the patients 

[21–26]. Viral loads have been demonstrated to have a direct correlation with severity of 

disease and mortality in COVID-19 [27,28].

Cytokine Storm: High viral loads evoke defensive mechanisms that can induce 

inflammation leading to a dysregulated innate immune response that could result in a 

cytokine storm characterized by fever-inducing levels of cytokines such as IL6, IFNα, IL1β 
and CXCL-10 [27,29–33]. CXCL-10, interestingly was also found to be indicative of severe 

outcomes in patients affected by the SARS CoV1 outbreak in 2002 [34]. Cytokine storm has 

been implicated in contributing to pulmonary immunopathology, leading to severe clinical 

disease and mortality. In this model, we have included levels of IFNα and IL6 obtained from 

the published data.

Systemic Inflammation: Laboratory based parameters indicating inflammation in the 

serum, such as D-Dimer and Ferritin, have been shown to lead to a reduction in blood 

oxygen saturation levels, reflecting inadequate oxygenation in the lungs [35,36].

Lymphopenia: Viral infection can lead to marked lymphopenia that can affect both 

CD4+ and CD8+ T cells [3,28,36]. Lymphopenia likely due to sequestration and cell 

death reflected by significantly reduced CD4 and CD8 T cells in peripheral blood, has 

been reported in moderate and severe COVID-19 patients. In addition, antigen specific 

CD8 Cytotoxic T lymphocyte (CTL) responses have been detected approximately a week 

following viral infection, and the magnitude of the response was observed to have protective 

or damaging effects [37].
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Neutralizing antibodies: Neutralizing antibodies bind to specific surface receptors on 

infectious agents such as viruses and toxins, reducing or eliminating their ability to exert 

harmful effects on cells. SARS-CoV-2 infected individuals generate a robust and long-

lasting neutralizing antibody response targeting spike protein epitopes, and plasma from 

convalescent COVID-19 patients has been used for treatment of severe disease with some 

success [38,39]. It has recently been reported that neutralizing antibodies to SARS-CoV-2 

can predict severity and survival, with higher titers being associated with severe disease in 

some instances [40].

RESULTS

We evaluated multiple approaches to develop mathematical models using parameters that 

can predict the progression of disease. Candidate parameters were selected from mechanistic 

understanding of the process of pathogenesis of COVID-19 to evaluate their possible 

impact on the clinical outcome. Regression methods utilize data to build predictive models. 

Hypotheses are examined and confirmed with pre-determined statistical confidence and 

inferential power. These models incorporate all the experimental variability in the data set. 

Since the models contained numeric factors and numeric ordinal outcomes, we utilized 

methods of Multiple Linear Regression [41]. In this approach, we used the simulated data set 

from COVID-19 affected subjects, organized, and analyzed it to understand the variability of 

each of the parameters.

Regression modeling approach

The data set was parsed into training and testing partitions using methods of randomization. 

The validity of the model was based on goodness-of-fit of R-squared>90% and ANOVA, [p 

value<0.05] and a consequent F Ratio. These statistical results confirmed acceptable degree 

of predictability of the model (Tables 2a and 2b).

Following this multiple-regression analysis, we conducted 2,000 bootstrap samplings using 

the predicted coefficients and random variates from chosen intervals of parameters. The 

assumption for this analysis was that each of the parameters were independent variables. The 

coefficients of each parameter were determined by using multiple regression analyses, which 

is the multiplier to the parameter value in a linear regression equation. The inclusion of 

all the variables in analysis ensures their contribution to the model [41]. However, analysts 

applying this model in the future may, at their judgment, evaluate statistical significance of 

regression coefficients. Parameters that are not significant maybe excluded using step wise 

regression. In our analysis, results based on training dataset predictors matched with those 

from the test dataset confirming an acceptable degree of predictability of the model. We 

invite the readers of this article to contact us to analyze the predictive potential of the model 

using their clinical data.

Monte Carlo simulation

To determine the factors that contribute to the clinical outcome at the population level, 

Monte Carlo simulation was performed on a sample set of laboratory and clinical parameters 

covering the full range, from asymptomatic to severe disease, of outcomes in Figures 3,4 
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[12,13]. The histogram and cumulative data show the distribution of asymptomatic to severe 

outcomes. The tornado chart shows the sensitivity of parameter to the outcome in the 

selected range (Figures 3a and 3b).

The predictive model

Based on the correlation coefficient of the parameters and the outcome from the training 

data set, we developed a model using the prediction equation. The table 3 shows the process 

of predicting the outcome. When the numerical values of the individual parameters for each 

patient are entered into the columns, the model predicts the outcome. Among the 7 ‘Test 

Subjects’, six of the subjects were ‘predicted’ an outcome that was same as the ‘observed’. 

The validation of the model will require data from patients and subjects from clinical trials. 

The goal of this exercise was to develop a model that can be used to predict the outcome in a 

large number of patients (Figure 4) (Table 3).

DISCUSSION

We have evaluated multiple regression analysis for mathematically modeling the course of 

COVID-19 and predict clinical outcome. The premise of this model is that quantitatively 

measured clinical and laboratory parameters involved in the pathogenesis of disease 

progression can be mathematically mapped to a multiple-regression model. COVID-19 is 

initiated by infection of the subject with SARS-CoV-2 with subsequent replication in the 

epithelial cells of the lung. The factors that contribute to the viral load include number of 

cells that express the ACE2 and other receptors, and inflammatory cytokines. Comorbidities 

contribute towards a more serious disease progression. Virus infection of antigen presenting 

cells, such as dendritic cells, macrophages, and other cell types including endothelial 

cells, result in activation of biochemical signals, which lead to secretion of a battery of 

cytokines that include IL1β and IL-6. The viral infections as well as inflammatory cytokines 

cause fever and an increase in serum inflammatory factors such as D-Dimer and Ferritin. 

Induction of an inflammatory response contributes to reduction of the total numbers of 

lymphocytes from circulation. The inflammation results in a loss of lung function (reduction 

in blood-oxygen levels), cardiac function (blood pressure fluctuation) and can culminate in 

multi-organ failure.

Subjects with a normal immune response can generally mount an adequate innate and 

adaptive response to the virus. These individuals clear the virus by generating adaptive 

T cell responses and neutralizing antibodies. Subjects with comorbid conditions can 

have compromised immune function which could result in dysfunctional activation of 

inflammatory responses, leading to worse clinical outcomes.

Selection of the parameters that were included in the model building process was influenced 

by their perceived significance from current research reports. This list of factors is by no 

means complete and it is expected that in due course a more comprehensive list will emerge. 

This report provides a basis for creating a tool, independent of the number and type of 

parameters that could find utility in predicting the disease outcome using those parameters.

Chirmule et al. Page 6

Clin Exp Pharmacol. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Viral Load:

Association of viral load and progression of diseases has been reported for several viral 

infections [42–44]. Viral load in COVID-19 is measured by RT-qPCR of SARS-CoV-2 

using primers for the spike gene [43]. The correlation of high viral load with severity of 

disease progression has been extensively demonstrated. The systemic dissemination of the 

virus has been associated with expression of the ACE2 receptor on endothelial cells [21]. 

Comorbid conditions could enhance the expression of receptors and enable distribution of 

virus, thereby enhancing the viral load, which can result in progression of disease.

IFNα:

The critical role of Type I interferons in innate and adaptive immunity, leading to both 

protective and pathogenic responses, has been reported in the case of several viral and 

bacterial infections [45]. SARS-CoV-2 infection has been shown to result in a diverse 

range of effects on Type I immune responses. Most patients elicit a strong IFNα response 

along with a battery of inflammatory cytokines, some of which progress to a cytokine 

storm [46,47]. Specific blocking of the type I mediated signal transduction by various 

proteins of SARS-CoV-2 has been demonstrated [48]. A remarkably high proportion of 

male subjects experiencing severe or critical COVID-19 disease expressed an inability to 

produce sufficient levels of IFNα due to various types of errors in the IFN genes. Curiously, 

majority of the male subjects possessed circulating IFNα autoantibodies that had the ability 

to neutralize the endogenously produced cytokine, thereby effectively reducing the available 

IFNα. The discovery of these two mechanisms for lowering IFNα levels underscores its 

relevance in controlling the progression of disease in individuals infected with the SARS-

CoV-2 [49].

D-Dimer:

D-Dimer is routinely measured in clinical situations because its levels correlate with 

serious underlying conditions including venous thromboembolism, cancer and sepsis [48]. 

In the case of COVID-19 patients, introduction of the virus brings about infection-induced 

inflammatory alterations leading to coagulopathy. Lungs being the target of SARS-CoV-2, 

acute injury to the lung as well as multi organ failure have been caused by the virus-induced 

cascade of the inflammatory pathway. In an early study on 41 COVID-19 patients, those 

with severe disease had higher levels of D-Dimer along with high levels of IL-8, TNFα and 

IL-2R [31]. Male patients were found to have higher levels of IL-6, IL-2R, Ferritin and other 

markers of inflammation compared to female. High levels of IL-6 showed a statistically 

significant correlation with severe disease in a retrospective study as well [27]. One can 

hypothesize that such patients would likely benefit from anticoagulation therapy.

Ferritin:

A high level of Ferritin, measure of stored iron, was found to be associated with severe 

disease in COVID-19 patients and was linked to high fatality rates in a 72 patient 

prospective study [33,50,51]. In another study on 39 patients, those with mild COVID-19 

symptoms had lower levels of Ferritin while those with moderate or severe symptoms 

expressed higher levels of Ferritin [50].
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Lymphopenia:

Loss of lymphocytes after viral infections has been associated with severe disease. 

The mechanisms involved in lymphodepletion include cell death, cytokine storm and/or 

redistribution of lymphocyte populations [3,33,37]. In this model, we have utilized 

lymphopenia as a measure of severity of disease progression. Loss of immune function 

could result in several potential mechanisms of pathogenesis including autoimmunity, 

hyperactivation, increased susceptibility to infections and organ dysfunction.

Neutralizing antibodies:

Induction of neutralizing antibodies directed to the receptor-binding domain of the spike 

protein is critical for restricting entry of the virus into the cells and has been one of the 

central tenets of a protective immune response. In this model, we have used a range of 

IgG titers to spike protein for the simulated data set [52]. However, the role of neutralizing 

antibodies induced in a large proportion of subjects following natural infection is still being 

studied [53]. Some subjects do not elicit strong antibody responses. Sub-optimal levels 

of antibodies may catalyze generation of virus mutants [54]. Neutralizing antibodies to 

the virus have generally not correlated with reduced severity of disease in the primary 

infection. In addition, it will be interesting to decipher the role of pre-existing antibodies 

reported recently in the modulation of disease and its impact on vaccination regimens. 

Thus, the mechanisms involved in the induction of antibodies, the repertoire and diversity 

of responses, and effects on protection versus progression, remains to be clearly established 

[55–57].

The predictive model can have multiple applications, such as forecasting the percentage of 

the population that will progress to severe disease in each geography, enabling logistics 

planning for hospital beds, health care providers and personal-protective safety equipment. 

Analysis of the coefficient of correlations of parameters with outcome of disease may 

provide clues to a better understanding of the mechanism of action of disease pathogenesis. 

The model can predict the probability of disease progression at an individual level, based 

on parameter data, and can be used to understand the effect and impact of therapeutic 

interventions. The predictive model can be utilized to analyze large amounts of data to 

develop algorithms for personalized treatment regimens.

CONCLUSION

In conclusion, we have developed a probabilistic model that can be utilized to predict 

progression of disease following infection with SARS-CoV-2. This model was developed 

using simulated data based on published levels of COVID-19 related clinical and laboratory 

parameters and provides an approach to predicting the outcome of disease. Validation of the 

model will require existing data and the clinical outcomes of patients. Prediction of disease 

progression can be highly valuable at an individual as well as population level.
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Figure 1: 
Schematic representation of the progression of disease: the width of the triangles denotes 

increase in levels of viral load (purple), cytokine storm (blue), and anti-inflammatory 

symptoms (green); blue arrows denote T and B cell responses.
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Figure 2: 
Box-and-whisker plots of the simulated data: the figures show the visual representation of 

the summary, which includes median (q2/50th percentile); first quartile (q1/25th percentile); 

third quartile (q3/75th percentile); interquartile range in whiskers, maximum and outliers.
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Figure 3a: 
Histogram from Monte Carlo simulation: 2,000 bootstrap samplings were generated 

using the predicted coefficients from the linear regression analysis, from the intervals of 

parameters; the minimum and maximum values for each of the parameters were set to the 

levels in Figure 4;the distribution of the severity of outcome is in this frequency histogram; 

the values on the x axis denote the disease severity, and y axis denotes frequency of the 

population in each level of clinical outcome.
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Figure 3b: 
The tornado chart shows the influence of each of the parameters on the outcome; the positive 

values correlate towards the severity of disease, and negative values towards asymptomatic 

disease.
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Figure 4: 
The ranges (Maximum and Minimum) of each of the parameters on which the Monte Carlo 

simulation was performed.
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