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Abstract: Sirtuins are a family of deacetylases that modify structural proteins, metabolic enzymes,
and histones to change cellular protein localization and function. In mammals, there are seven
sirtuins involved in processes like oxidative stress or metabolic homeostasis associated with aging,
degeneration or cancer. We studied gene expression of sirtuins by qRT-PCR in human mural
granulosa-lutein cells (hGL) from IVF patients in different infertility diagnostic groups and in oocyte
donors (OD; control group). Study 1: sirtuins genes’ expression levels and correlations with age and
IVF parameters in women with no ovarian factor. We found significantly higher expression levels of
SIRT1, SIRT2 and SIRT5 in patients ≥40 years old than in OD and in women between 27 and 39 years
old with tubal or male factor, and no ovarian factor (NOF). Only SIRT2, SIRT5 and SIRT7 expression
correlated with age. Study 2: sirtuin genes’ expression in women poor responders (PR), endometriosis
(EM) and polycystic ovarian syndrome. Compared to NOF controls, we found higher SIRT2 gene
expression in all diagnostic groups while SIRT3, SIRT5, SIRT6 and SIRT7 expression were higher
only in PR. Related to clinical parameters SIRT1, SIRT6 and SIRT7 correlate positively with FSH and
LH doses administered in EM patients. The number of mature oocytes retrieved in PR is positively
correlated with the expression levels of SIRT3, SIRT4 and SIRT5. These data suggest that cellular
physiopathology in PR’s follicle may be associated with cumulative DNA damage, indicating that
further studies are necessary.
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1. Introduction

Sirtuins (silent information regulator proteins) were initially defined as an evolutionarily conserved
family of class III nicotinamide adenine dinucleotide+ (NAD+)-dependent histone deacetylases that
can also have mono-ADP-ribosyltransferase activity [1,2]. These enzymes cleave an acetyl group from
acetyl-lysine residues in histones, although they can also act in nonhistone proteins, such us structural
proteins, metabolic enzymes or transcriptional factors [1,2]. However, recent studies demonstrate
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that sirtuin family gene products catalyze additional reactions and enzymatic activities, including
mono-ADP-ribosyltransferase, deacylase, deacetylase, desuccinylase, demalonylase, demyristoylase
and depalmitoylase activities [2–4].

Sirtuins are implicated in aging, oxidative stress, maintenance of metabolic homeostasis,
DNA repair and mitochondrial function [5,6] through the regulation of specific genes’ expression and
activation or deactivation of other proteins [7,8].

In mammals, seven sirtuin isoforms have so far been described (SIRT1–SIRT7). These possess a
conserved catalytic domain but differ in their amino and carboxyl terminal that confers specificity in
cellular location and function [9].

SIRT1 is the most studied member of the sirtuin family, it is located mainly in the nucleus, although it
shuttles to the cytosol in response to environmental signals [10]. SIRT1 has been implicated in processes
such as inflammation, by reducing NF-κB activity [11,12], apoptosis by inhibiting p53-dependent
transcription [13,14] and in energy metabolism through effects on regulators of metabolic enzymes
such as PPAR-γ [15]. Yeast Sir2 gene is a SIRT1 homolog that is involved in yeast life span extension,
nonetheless, but a similar role for SIRT1 has been refuted [16]. In the reproductive system, SIRT1 plays a
role in apoptosis of granulosa cells during follicular atresia [17,18] and has been related to preservation
of follicular reserve and extension of ovarian lifespan [19].

SIRT2 is located in the cytoplasm [9]. It transiently migrates into the nucleus to deacetylate
α-tubulin and to modulate chromatin condensation and cell cycle regulation by deacetylating H3 and
H4 histones [20,21]. SIRT2 deacetylates transcriptional factors like Foxo, p53 or NF-κB [4,22–24].

SIRT3 resides in the mitochondria [9] and participates in the regulation of energy metabolism [25,26]
and apoptosis [27] and in reactive oxygen species (ROS) detoxification [28,29]. SIRT3 has been involved
in age-associated oxidative stress and infertility [30–32].

SIRT4 located in the mitochondria [9] regulates lipid metabolism promoting fatty acid oxidation
and inhibiting lipogenesis [33,34]. The effects of SIRT3 and SIRT4 on glutamate dehydrogenase are
opposite: while SIRT4 represses GDH activity, deacetylation by SIRT3 activates GDH [35,36].

SIRT5 in mitochondria [9,37] has been reported to possess low deacetylase activity compared to
the other members of the family. In contrast, SIRT5 possesses high desuccinylation, demalonylation
and deglutarylation activities [4]. It activates the urea cycle by deacetylating carbamoyl
phosphate synthetase 1 [38]. SIRT5 desuccinylates isocitrate dehydrogenase 2 and deglutarylates
glucose-6-phosphate dehydrogenase, which protect cells from oxidative damage by activating
NADPH-producing enzymes [39]. In women, SIRT5 expression decreases along with ovarian reserve
as maternal age increases [40].

SIRT6, nuclear [10], is implicated in telomeres stabilization, DNA double strand break repair and
regulation of transcription [41–44]. SIRT6 overexpression increases lifespan in male mice by ~15% [45].
Regarding fertility, SIRT6 has been associated with follicle reserve preservation and increase of ovarian
function lifespan [19].

SIRT7, predominantly localized in the nucleolus [9], co-activates ribosomal DNA transcription
by association with RNA polymerase I complex [46,47]. In addition, SIRT7 interacts with chromatin
remodeling complexes by association and deacetylation of the B-WICH component [48] and plays a
role in stress resistance to hypoxia, osmotic stress, ER-stress or genomic stress [49–51].

The aim of this study was to investigate the expression of the genes coding for the 7 sirtuins in
human granulosa–lutein (hGL) cells from in vitro fertilization (IVF) patients with different infertility
diagnoses, aging women and oocyte donors (young controls) in order to seek differences in gene
expression levels and possible correlation with clinical parameters.
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2. Results

2.1. Descriptive Statistics and Clinical Variables

Significant differences in age distribution were found between OD (oocyte donors between 18
and 27 yo) and all other groups (p = 0.000) and between ≥40 yo (women ≥ 40 yo with tubal or male
factor and no ovarian factor) and all other groups (p = 0.000). No age difference was observed between
NOF (women between 27 and 39 yo with tubal or male factor and no ovarian factor), PCOS (polycystic
ovarian syndrome), EM (endometriosis) and PR (women < 40 yo defined as poor responders) (Table 1).

Table 1. Clinical and IVF cycle parameters are shown per group.

Parameters OD ≥40 yo NOF EM PR PCOS

N of patients 17 15 24 18 16 16
Age 22 ± 1 a 41 ± 1 b 34 ± 1 c 36 ± 1 c 36 ± 1 c 33 ± 1 c

Days 11 ± 1 a 11 ± 1 a 11 ± 1 a 11 ± 1 a 11 ± 1 a 10 ± 1 a

rFSH (IU) 2812 ± 255 a 5750 ± 560 b 3199 ± 391 a 5622 ± 442 b 6154 ± 397 b 1723 ± 143 a

rLH (IU) 1081 ± 161 a 2645 ± 335 b 1115 ± 13 a 2606 ± 263 b 2981 ± 274 b 430 ± 70 a

Peak E2 (pg/mL) 3171 ± 307 a 2797 ± 188 a 3054 ± 230 a 2763 ± 298 a 2032 ± 214 a 2901 ± 321 a

Total oocytes 25 ± 2 a 13 ± 2 c/d 17 ± 2 b/c 9 ± 1 c/d 6 ± 1 d 21 ± 2 a/b

Mature oocytes 20 ± 2 a 11 ± 2 c/d 13 ± 1 b/c 8 ± 1 c/d 5 ± 1 d 18 ± 2 a/b

Results are expressed as mean ± standard error. Different lowercase letters (a, b, c and d) represent statistically
significant different means. OD (oocyte donors between 18 and 27 yo), ≥40 yo (women ≥40 yo with tubal or male
factor and no ovarian factor), NOF (women between 27 and 39 yo with tubal or male factor and no ovarian factor),
EM (endometriosis), PR (women < 40 yo defined as poor responders) and PCOS (polycystic ovarian syndrome).

While agonist and antagonist protocols were differently represented between diagnostic groups,
within each group there were no statistically significant differences in gene expression between the
2 protocols.

Regarding the amount of exogenous gonadotropins used for ovulation induction, PCOS, OD and
NOF groups received significantly lower doses compared to EM, PR and≥40 yo (p = 0.000). The number
of total and mature oocytes retrieved varied between groups: significant differences are shown in
Table 1. No statistically significant differences in mean E2 peak value were observed among groups.

2.2. Sirtuin Gene Expression

2.2.1. Study 1: Sirtuin Gene Expression Level and Correlations with Age and IVF Parameters in
Women with No Ovarian Factor

All sirtuin family members were expressed in human granulosa-lutein cells, Table 2. SIRT1 and
SIRT2 were the most expressed. SIRT3, SIRT5 and SIRT7 showed an intermediate expression and SIRT4
and SIRT6 the least expression.

Comparing expression between different IVF diagnostic groups gene expression was higher in
≥40 yo patients than in other groups for SIRT1 (OD: p = 0.008; NOF: p = 0.000), SIRT2 (OD: p = 0.000;
NOF: p = 0.000) and SIRT5 (OD: p = 0.032; NOF: p = 0.014). With the exception of SIRT2 and SIRT7 the
NOF group did not differ from the controls, Figure 1.

Sirtuins and age—When all women with no ovarian factor (OD, NOF and ≥40 yo) were analyzed,
we observed that only SIRT2, SIRT5 and SIRT7 expression correlated with age (r = 0.350, p < 0.01;
r = 0.324, p < 0.05 and r = 303, p < 0.05) (Figure 2).

Sirtuins and IVF parameters—When different groups were analyzed, no correlation was found
between NOF or ≥40 yo with any IVF parameters. The ovum donor controls showed a negative
correlation between SIRT2, SIRT3, SIRT4 and SIRT6 and administered gonadotrophin doses (p < 0.01)
and a negative correlation between SIRT7 and FSH doses (p < 0.05). In addition, SIRT2, SIRT4, SIRT6,
SIRT7 expression also correlated negatively with total treatment days (p < 0.05).
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Table 2. Expression levels of sirtuin-1–7 genes by diagnostic group.

Study 1 Study 2

Gene OD NOF ≥40 NOF EM PR PCOS

SIRT1 225.2 ± 46.0 a 169.1 ± 11.7 a 478.3 ± 111.1 b 169.1 ± 11.7 a 139.3 ± 16.2 a 166.4 ± 30.2 a 138.5 ± 36.4 a

SIRT2 271.4 ± 36.6 a 161 ± 16.1 a 600.1 ± 97.0 b 161 ± 16.1 a 637.5 ± 57.1 b/c 793.0 ± 97.7 b 460.4 ± 68.5 c

SIRT3 70.8 ± 8.9 a 72.1 ± 3.1 a 115.3 ± 27.6 a 72.1 ± 3.1 a 117.7 ± 14.7 a/b 150.9 ± 34.3 b 84.3 ± 14.3 a/b

SIRT4 2.5 ± 0.6 a 4.3 ± 0.3 a 2.7 ± 0.9 a 4.3 ± 0.3 a 1.9 ± 0.2 a 3.6 ± 0.9 a 2.01 ± 0.6 a

SIRT5 83.2 ±10.5 a 79.2 ± 4.9 a 171.6 ± 37.2 b 79.2 ± 4.9 a 143.8 ± 18.1 a/b 169.7 ± 22.2 b 146.8 ± 20.3 a/b

SIRT6 3.2 ± 0.7 a 4.4 ± 0.5 a 2.5 ± 0.5 a 4.4 ± 0.5 a 6.3 ± 1.3 a 13.8 ± 3.8 b 4.7 ± 1.6 a

SIRT7 32.7 ± 7.3 a 68.6 ± 8.8 a 66.5 ± 14.5 a 68.6 ± 8.8 a 104.9 ± 11.3 a 151.2 ± 30.8 b 91.4 ± 17.2 a/b

Results were determined by qRT-PCR and are expressed as mean ± standard error. Different lowercase letters (a, b and c) represent statistically significant differences of the means in each
study. Gene expression values are ×105 relative to β-actin expression.
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2.2.2. Study 2: Correlations between Sirtuin Gene Expression and IVF Parameters in Women with
Different Infertility Diagnosis compared to NOF

Comparing expression between different groups (Table 2), no significant difference was observed
in SIRT1 and SIRT4 gene expression level among any group. Expression levels of SIRT2 were
statistically higher in EM (p = 0.000), PR (p = 0.000) and PCOS (p = 0.010) patients compared to
NOF. However, PR present the higher expression level, statistically different from PCOS (p = 0.008),
while EM has an intermediary value that did not differ from any other group, Figure 3. SIRT3, SIRT5
and SIRT7 gene expression was statistically higher in PR than in NOF (p = 0.029; p = 0.011; p = 0.003).
PCOS and EM present an intermedia expression value that did not differ from NOF or PR (Figure 3).
SIRT6 expression was statistically higher in PR patients than in all other groups (NOF: p = 0.002;
EM: p = 0.045; PCOS: p = 0.008) (Figure 3).
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When different diagnostic groups were analyzed, we observed that in PR, ≥40 yo and PCOS
groups no correlation was found between sirtuin gene expression and gonadotrophin doses. Only in
EM patients did SIRT1, SIRT6 and SIRT7 correlate positively with FSH and LH doses administered.
Interestingly, these correlations with SIRT6 and SIRT7 were opposite to those found in control OD.

With the exception of a negative correlation for SIRT4 in PCOS patients, no correlations were
found between sirtuin expression and number of days of treatment in the analyzed groups.
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There was a positive correlation between mitochondrial sirtuins and mature oocytes retrieved in
PR patients.

3. Discussion

3.1. These Are Novel Findings Regarding the Possible Role of the Sirtuin Gene Family in Reproductive Failure

In view of their NAD+ dependence [51], there may be a role for sirtuins in intrafollicular cell
redox balance and antioxidant response.

This article reports the expression levels of the seven sirtuin genes presently known in post-ovarian
stimulation and human chorionic gonadotrophin treated human hGL cells and establishes correlations
among sirtuin gene expression and clinical status: age, clinical diagnosis, specific ovulation induction
and response to treatment; Table 1. Notably, the average estradiol level in the PR group is relatively
elevated. We defined PR based on the Bologna criteria [52], but excluding the advanced maternal age
subjects, which represent a separate group in our study. The stimulation protocol was adjusted to
furnish satisfactory serum estradiol levels prior to hCG injection. We used an antagonist protocol with
high doses of LH and FSH based on the expected poor response and the high estradiol levels obtained in
some patients probably reflect the high dose of LH used for ovulation induction. Interestingly, our group
of poor responders does not include patients >40; the patients’ age range is 28–39, which may have
positively affected the ability of granulosa cells to produce estrogen. Our results are in agreement with
the paper by Ku et al. [53], which showed higher estradiol levels in patients treated with a combination
of FSH and LH. However, Ku el al. used an ultralong protocol, which may be responsible for lower
estradiol levels in their patients.

IVF patients with no ovarian factor (OD, NOF and ≥40 yo) showed a direct correlation between
their hGL cell sirtuin 2, 5 and 7 gene expression and age. This could be a means of maintenance
of energy homeostasis, glucose metabolism and reactive oxygen species detoxification, DNA repair
and other cell repair mechanism that decrease with age and could result is poor response to ovarian
stimulation and compromised oocytes [54,55].

The positive correlation of SIRT2 expression levels with age (p < 0.01) in women with no ovarian
factor shows a pronounced increase at 40 years old, as shown in Figure 2 scatter plot. The expression
levels of SIRT2 in the PR and EM groups of patients resemble those of ≥40 yo women, Table 2.
The higher expression levels of SIRT2 gene in women older than 40 yo than in the OD and NOF
groups supports the hypothesis that SIRT2 expression increases most notably after forty years [56–58],
always within the age limits or our study.

Summary—Taken together, these findings imply a feedback loop that induces sirtuin 2, 5 and 7
expression with (ovarian) aging and in relation to disease states that foster the presence of reactive
oxygen species in or around the ovary. However, these descriptive studies were not designed to test
such relationships.

3.2. These Findings Have Implications for Ovarian Aging.

Fertility decreases from age 35 and reaches a clinically perilous point in most women by age 40.
In our study, SIRT1 gene expression levels were higher in women older than 40 yo than in OD and
NOF patients (Figure 1). These data are in agreement with those of Di Emidio et al. [30], who reported
higher levels of SIRT1 mRNA in aged mouse oocytes and a decreased ability to react to H2O2 addition
as a sign of increased oxidative stress (OS). This coincides well with the increase of SIRT1 expression in
response to age dependent OS. A direct correlation between aging and OS increase has been reported
with aging-related decay of fertility [59], and our laboratory reported an increased expression levels
of the oxidative stress response gene ALDH3A2 in granulosa-lutein cells that is related to age and
infertility diagnosis [60,61].



Int. J. Mol. Sci. 2020, 21, 295 7 of 15

SIRT5 gene expression level is significantly higher in ≥40 yo than in OD and NOF (p = 0.045 and
p = 0.010, respectively). SIRT5, localized in the mitochondrial matrix, regulates mitochondrial activity
and function [62] by succinylating [63] or acetylating proteins such as cytochrome C, which is pivotal
in oxidative metabolism and the apoptosis processes [36].

These studies closely link sirtuins to the aging ovary. The increase in expression of SIRT5 gene
in women older than 40 years old could represent a feedback loop that is related to the presence of
oxidative species.

Other studies of the sirtuin family and the ovary—There have been other studies of SIRT5 in human
granulosa-lutein cells. Pacella-Ince et al. [40] reported a lower gene expression level in women of
advanced maternal age and reduced ovarian reserve compared to younger women, which is apparently
opposite to our results. However, in the article by Pacella-Ince et al., the patients’ distributions
within each age group include no ovarian factor women as well as different infertility diagnoses.
Furthermore, the different infertility diagnoses are not represented in all groups and percentages
among them are notably variable; as a result, the amount of SIRT5 gene expression given is not specific
for age, but just an average of the combined groups [40].

While convincing of differences in mural hGL cells, these findings do not reveal sirtuin family
expression in the cumulus cells that are directly in apposition to the oocyte/embryo. We have
shown that there are important biochemical differences between mural and cumulus cells [64,65].
Additionally, there have been reports of miRNA differences in poor responders [66] and other genes’
expression in cumulus cells from obese women [67,68]; the possibility of mural vs. cumulus differences
is on the list for further study.

Summary—The human ovarian follicle, represented by post-ovulatory luteinized granulosa cells,
expresses all known members of the sirtuin family of genes. We have proposed a feedback mechanism
related to the presence of inflammation/reactive oxygen species/aging that drives expression of sirtuins
as a defensive/protective mechanism. SIRT6 and SIRT7 functions include regulation of DNA-repair
mechanisms [43,44,50,69]. The overexpression of SIRT6 and SIRT7 in the PR group of patients might
be indicative of the role of these sirtuins in an attempt to repair accumulated damage to DNA
caused by a deficient response to cellular genotoxic stress [45,69]. However, in NOF and ≥40 yo,
the expression levels of these sirtuins do not differ from those observed in younger women (OD)
(Table 2). This suggests that in PR the DNA damage is mainly due to genomic instability and not
affected by aging [54]. In the case of patients suffering from EM or PCOS, the slight increase expression
of SIRT7 gene observed may be an effect of incorrect balance between redox response mechanisms and
the higher oxidative stress described for these pathologies.

The diverse expression patterns of sirtuins among groups reveals not only a clinical,
diagnosis-specific profile, but also an age dependent feature. Figure 4 presents a scheme of alterations
and proposed compensatory responses by sirtuin expression in aging and in environmental and
metabolic circumstances reflecting pathological and physiological conditions.
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Figure 4. Scheme of alterations in NOF and PR groups and possible sirtuins’ roles. According to
our studies, NOF women between 18 to 38 years old may avoid OS damage by OSR, triggering a
normal signaling response and maintaining an equilibrated OS/OSR status (A). It is possible that this
equilibrium favors OS during pre-menopausal aging (B). In that case, OSR are not sufficient to protect
cells from OS actions and SIRT1, SIRT2 and SIRT5 gene expression increase would be required to
recover homeostasis. Failing this response, women poor responders show a different sirtuin pattern (C).
In this group, women between 25 to 38 years old have an imbalance between OS and OSR similar to
older NOF women. Cellular attempts to reach homeostasis by increasing SIRT1, SIRT2 and SIRT5 gene
expression are insufficient and it is necessary activate protein, lipid and DNA repair mechanisms and
others sirtuins’ expression. Despite the fact that SIRT6 and SIRT7 gene expression increase, cells cannot
response to signaling and homeostasis cannot be recovered, leading to a clinically poor response to
follicle stimulation.

4. Materials and Methods

4.1. Patients

Under a protocol approved by the Ethics Committee of the Universidad de La Laguna, women
undergoing ovulation induction for oocyte donation or IVF consented to join this study. Upon reaching
the target follicle sizes and receiving 250 µg of hCG, the harvesting of oocytes was by standard methods,
see below. After removal of the oocyte from the petri dish, the accompanying mural granulosa-lutein
cells were set aside for evaluation, see below. Clinical information included the doses of exogenous
follicle stimulating hormone (FSH) and luteinizing hormone (LH) administered, and IVF parameters
related to ovarian response to ovulation induction (number of total and mature oocytes retrieved,
estradiol concentration on the last day of stimulation, and total number of days of stimulation).
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4.1.1. Study 1: Women with No Ovarian Factor

Fifty-six women between 18 and 44 years of age (yo) with no ovarian factor were grouped as:
women between 27 and 39 yo with tubal or male factor and no ovarian factor (NOF; n = 24); women
≥40 yo with tubal or male factor and no ovarian factor (≥40 yo; n = 15); and oocyte donors between 18
and 27 yo (OD, n = 17).

4.1.2. Study 2: Women with Different Infertility Diagnosis Compared to NOF

Seventy-four patients were grouped as being between 27 and 39 yo with tubal or male factor
and no ovarian factor (NOF; n = 24); women <40 yo defined as poor responders according to the
European Society of Human Reproduction and Embryology (ESHRE) criteria [52] (PRs; n = 16);
women with American Society for Reproductive Medicine (ASRM) [70] stages III and IV endometriosis,
with histologic diagnosis (EM; n = 18); polycystic ovarian syndrome (PCOS; n = 16) was defined
according to the Rotterdam criteria [71]. Patient demographics and the most relevant clinical
characteristics of these sub-groups are shown in Table 1.

4.2. Ovulation Induction and Intracytoplasmic Sperm Injection (ICSI)

Ovarian stimulation was carried out with an agonist or antagonist protocol using recombinant
FSH (Gonal F, Serono, Madrid, Spain), combined with recombinant LH (Luveris, Serono, Madrid,
Spain) or human menopausal gonadotropins (hMG,Lepori; Farma-Lepori, Madrid, Spain or Menopur,
Ferring, Madrid, Spain). Initial doses were chosen based on patients’ age and infertility diagnosis.
Ovulation induction was monitored by serial ultrasounds and serum estradiol and progesterone
levels. Doses were adjusted to the individual patient’s response. Ultrasound-guided egg retrieval
was performed 36 h after administration of 250 µg of recombinant human chorionic gonadotropin
(hCG; Serono, Madrid, Spain) or 10,000 IU of urinary hCG (Farma-Lepori, Madrid, Spain). In all
cases, the fertilization method for the mature oocytes retrieved was intracytoplasmic sperm injection.
Embryo transfer was carried out with a Wallace catheter under ultrasound guidance. All retrievals
were performed by the same experienced operator.

4.3. Isolation of hGL Cells

Mural hGL cells were collected from follicular fluid (FF) obtained during ultrasound-guided
transvaginal oocyte retrieval. After removal of the oocyte, FFs from each patient were pooled,
and the hGL cells lightly centrifuged. Cells were then washed in “isolation medium” (Medium 199
(Sigma-Aldrich, Missouri, MI, USA), supplemented with sodium bicarbonate (3.7 g/L) (Sigma-Aldrich),
penicillin (59 mg/L) (Sigma-Aldrich), streptomycin (100 mg/L) (Sigma-Aldrich), amphotericin B
(25 mg/L) (Sigma-Aldrich), L-glutamine (0.29 g/L) (Sigma-Aldrich), and bovine serum albumin (0.1%)
(Sigma-Aldrich) and separated from red blood cells using a 50% Percoll (Sigma-Aldrich) gradient.
Leukocytes were removed using anti-CD45-coated magnetic beads (Dynabeads M-450 CD45; Dynal
ASA, Oslo, Norway) and cellular viability was confirmed by trypan blue exclusion. In all cases, it was
greater than 95%.

4.4. Extraction of RNA

Total RNA from individual patients was extracted using Aurum total RNA mini kit (Bio-Rad
Laboratories, California, CA, USA) following the manufacturer’s instructions.

4.5. Synthesis of Complementary DNA

RNA was reverse transcribed using “iScript cDNA Synthesis kit” (Bio-Rad Laboratories) following
the manufacturer’s instructions. Total RNA was reverse transcribed in 20 µL as follows: 25 ◦C for
5 min and 42 ◦C for 30 min. The reverse transcriptase was inactivated by heating at 85 ◦C for 5 min.
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4.6. Quantitative Reverse Transcription Polymerase Chain Reaction

Quantitative reverse transcription polymerase chain reaction of complementary DNA (PCR) was
employed to study the relative expression of sirtuin genes in hGL cells. All PCR was carried out using
a BioRad CFX96 real-time PCR system (Bio-Rad Laboratories). The specific primers used for each
sirtuin gene and the housekeeping β-actin gene used as a reference for mRNA quantification are listed
in Table 3. The amplification reactions were performed in a 10 µL final volume containing 2× SsoFast
EvaGreen Supermix (100 mmol/L KCl, 40 mmol/L Tris- HCl pH 8.4, 0.4 mmol/L of each nucleoside
triphosphate, iTaq DNA polymerase 50 U/mL, 6 mmol/L MgCl2, SYBR Green I, 20 nmol/L fluorescein,
and stabilizers (Bio-Rad Laboratories) and 0.4 µmol/L of each primer.

Table 3. RT-PCR primers for sirtuin genes (1–7) and β-actin.

Gene Oligonucleotide Sequence (5′→3′) Tm (◦C)

SIRT1
SIRT1-F CTATACCCAGAACATAGACACG 54.1
SIRT1-R ACAAATCAGGCAAGATGC 54.5

SIRT2
SIRT2-F CCATCTGTCACTACTTCATGC 55.8
SIRT2-R AAGTCCTCCTGTTCCAGC 55.1

SIRT3
SIRT3-F GCTGGACAGAAGAGATGC 54.1
SIRT3-R GTGGATGTCTCCTATGTTACC 47.6

SIRT4
SIRT4-F CAGATGTCGTTTTCTTCG 44.4
SIRT4-R CCAGAGTATACCTGCAAGG 52.6

SIRT5
SIRT5-F CCCAGAACATCGATGAGC 55.6
SIRT5-R GCCACAACTCCACAAGAGG 57.9

SIRT6
SIRT6-F AGGGACAAACTGGCAGAGC 60.4
SIRT6-R TTAGCCACGGTGCAGAGC 61.1

SIRT7
SIRT7-F GCAGAGCAGACACCATCC 57.7
SIRT7-R GTTCACGATGTAAAGCTTCG 56.1

β-Actin ACTB-F CTTCCTTCCTGGGCATGG 61.6
ACTB-R GCCGCCAGACAGCACTGT 63.7

Each sample was analyzed in triplicate, and multiple water blanks were included in the analysis.
The thermal profile used for the analysis was as follows: after a 3-min denaturation at 95 ◦C, 40 cycles
of PCR were performed at 95 ◦C for 5 s and 59 ◦C for 5 s. Finally, a melting curve program at 65 ◦C
to 95 ◦C was carried out with a heating rate of 0.1 ◦C/s and read every 0.5 ◦C. Expression levels of
the genes studied are presented as individual data points as 2−∆CT [72]. Gene expression values are
expressed as x105 relative to β-actin expression.

4.7. Statistical Analysis

Statistical analysis was performed with SPSS 23 software (IBM, New York, NY, USA). Descriptive
statistics (mean and standard error (SE) are reported. One-way ANOVA followed by Tukey and
Bonferroni post hoc tests were used to carry out comparisons between diagnostic groups. A Spearman
rank correlation coefficient was used to assess the relationship between continuous variables.
An experiment-wise α of 0.05 was chosen.
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Days Total number of days of stimulation
FF Follicular fluid
FSH Follicle stimulating hormone
hCG Human chorionic gonadotropin
hGL Human granulosa-lutein cells
hMG Human menopausal gonadotropins
ICSI Intracytoplasmic sperm injection
IVF In vitro fertilization
LH Luteinizing hormone
OD Oocyte donors
NOF Women with no ovarian factor
PCOS Polycystic ovarian syndrome
Peak E2 Estradiol concentration on the last day of stimulation
PR Poor responders
rFSH Recombinant follicle stimulating hormone
rLH Recombinant luteinizing hormone
SIRT Sirtuin
UI International unit
≥40 yo Women ≥40 years old with tubal or male factor and no ovarian factor
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