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ABSTRACT

Neuropeptides (NPs) are short secreted peptides
produced in neurons. NPs act by activating sig-
naling cascades governing broad functions such
as metabolism, sensation and behavior throughout
the animal kingdom. NPs are the products of mul-
tistep processing of longer proteins, the NP pre-
cursors (NPPs). We present NeuroPID (Neuropeptide
Precursor Identifier), an online machine-learning tool
that identifies metazoan NPPs. NeuroPID was trained
on 1418 NPPs annotated as such by UniProtKB. A
large number of sequence-based features were ex-
tracted for each sequence with the goal of cap-
turing the biophysical and informational-statistical
properties that distinguish NPPs from other proteins.
Training several machine-learning models, includ-
ing support vector machines and ensemble deci-
sion trees, led to high accuracy (89–94%) and pre-
cision (90–93%) in cross-validation tests. For inputs
of thousands of unseen sequences, the tool pro-
vides a ranked list of high quality predictions based
on the results of four machine-learning classifiers.
The output reveals many uncharacterized NPPs and
secreted cell modulators that are rich in potential
cleavage sites. NeuroPID is a discovery and a pre-
diction tool that can be used to identify NPPs from
unannotated transcriptomes and mass spectrome-
try experiments. NeuroPID predicted sequences are
attractive targets for investigating behavior, physiol-
ogy and cell modulation. The NeuroPID web tool is
available at http:// neuropid.cs.huji.ac.il.

INTRODUCTION

The functions elicited by neuropeptides (NPs) cover most
aspects of metazoan life including metabolism, growth and
social behavior (1). For example, in mollusks and insects,
mating behavior and reproduction are regulated by NPs.
More generally, NPs function in energy consumption, food

uptake, pain and sensation, temperature control, appetite,
mating and social behavior. NPs act through binding their
cognate receptor and activating a signaling cascade (2).

Most mature NPs are short peptides (5–30 aa) that are
produced from a longer polypeptide, referred to as a NP
precursor (NPP). Active NPs are the products of multi-
ple cleavages of the precursor. Such cleavages mostly occur
at basic residues (Arg and Lys) motifs that flank the NPs.
While dibasic residues are the hallmark of the cleavage sites
for endopeptidases (3), in some NPs such canonical cleav-
age sites are not detected.

Several bioinformatics approaches were developed to en-
hance the routine BLAST searching protocol by incorpo-
rating distinctive properties of NPs (e.g. (4)). However, at
present, there is no systematic approach to identify NPPs
in poorly annotated metazoan genomes. The organization
of the NPP as a source of multiple NPs is conserved despite
a weak similarity between NPPs along the evolutionary tree
(5). Currently, NPPs are sporadically identified from se-
quencing projects of organisms and from the collections
of large-scale proteomics and transcriptomics experiments.
We developed a systematic approach for identifying candi-
date NPPs (6). Large-scale mass spectrometry (MS) pro-
teomics identified thousands of spectra that derived from
NPP genes. Additionally, a large number of bioactive mod-
ulatory peptides were identified (e.g. (7)). For peptides col-
lected from human samples, only about 20% of the asso-
ciated genes are currently annotated as NPPs. The expan-
sion in MS proteomics and the depth of the transcriptome
coverage suggest that NeuroPID is valuable as a discovery
platform for bioactive modulators. NPPs and their associ-
ated NPs are attractive targets for drug development and
pharmacological manipulations.

OUTLINE––FEATURES TO PREDICTIONS

Figure 1 shows a prototype of an NPP that belongs to the
Allatostatin family as an illustration for the challenges in
identifying such genes at a genomic scale. The Allatostatins
are produced in many insects to control food intake (8).
The sequence of the Pacific beetle cockroach (Figure 1) con-
tains 13 identified NPs. While each peptide has a unique se-
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Figure 1. Allatostatin NPP from Diploptera punctata (Pacific beetle cock-
roach). (A) The sequence (P12764, ALLS DIPPU, 370 aa) has 7 weak ‘re-
peats’. The repeated segments account for Allatostatin-1 to Allatostatin-
13. The NPs are colored red and blue interchangeably. (B) NeuroPID visu-
alization of P12764. The rectangle at the N′-terminal indicates the Signal
Peptide (SP). Arg (R) or Lys (K) and dibasic residues are colored green
and red, respectively.

quence, all share the Tyr/Phe-Xaa-Phe-Gly Leu/Ile-NH2
consensus. The weak sequence similarity among the NPs
emphasizes the challenge in identifying NPPs from unan-
notated genomes.

The classifier underlying NeuroPID was derived by a su-
pervised machine-learning (ML) methodology on a set of
true and false instances obtained from 1418 manually anno-
tated NPPs from the UniProtKB database. Each sequence
is converted into a vector of primary sequence-derived fea-
tures (∼560 features). The features cover the amino acid
composition, bigrams frequencies (400 features) and addi-
tional 140 biophysical and statistical characteristics from
the sequence (6). The performance of the NeuroPID was
assessed using different predictive models. The positive and
negative sets included ∼1000 sequences each. We randomly
split the sequences and carried out 6-fold cross-validation,
with a fraction of the data (i.e. 10–40%) serving as a disjoint
set for the iterations during the training phase. The training
was performed in view of several independent negative sets
(e.g. nuclear proteins, secreted membranous proteins). The
results of the tests for each of the validation set was summed
and averaged to estimate the MCC (Matthews correlation
coefficient) and AUC (area under receiver operating char-
acteristic curve). The statistical definitions of accuracy, pre-
cision and recall used are:

• Accuracy = TP+TN
TP+FP+TN+FN Accuracy = TP+TN

TP+FP+TN+FN

• Precision = TP
T P+F P Precision = TP

T P+F P

• Recall(sensitive) = TP
TP+FN Recall(sensitive) = TP

TP+FN

where TP, TN, FP and FN are the true positives, true
negative, false positive and false negative, respectively. Table
1 summarizes representative ML models with AUCs rang-
ing from 0.89 to 0.93. Testing many sets of sequences that
were not included in the ML training (a blind test) resulted
in high quality predictions. For example, testing 3000 Am-
phibian sequences, resulted in 62 positive predictions, 34 of
them were marked as high quality predictions. Manual in-
spection revealed 3/34 as false positives while the rest of the
predictions include classical NPs, secreted peptide from skin
and modulators of the immune system. This result shows
the high success rate of NeuroPID, and the relative enrich-
ment of NPs in Amphibian proteomes.

An additional test included human peptides from re-
sources for NPs and bioactive peptides. There are 94 pro-

tein sequences that account for the 270 identified peptides
from human samples (7). Recall that only 18/94 sequences
are currently annotated ‘neuropeptide’ by UniProtKB. An
input of all 94 human protein sequences to NeuroPID posi-
tively predicted 85% (80/94) of these sequences, with 67.5%
as high quality predictions. Using additional annotation re-
sources (mostly Gene Ontology - GO) extended the number
of sequences that are related to NPs to 39 sequences. Neu-
roPID identified all the 39 sequences as positive predictions
(with 72% as ‘top quality predictions’). Therefore, we esti-
mate the discovery rate of NeuroPID to range between 68%
and 85%. A similar test on all ∼400 human bioactive pep-
tides from SwePep (9) showed that NeuroPID recovers 72%
of the relevant proteins as positive predictions.

SEQUENCED GENOMES––A SOURCE OF NPP CAN-
DIDATES

At present, there are tens of metazoan genomes that are
fully or partially sequenced. An attractive application for
NeuroPID is in screening unannotated transcriptomes.
There are over 25 complete insects’ genomes including 12
Drosophilae (10), social insects (e.g. honey bee), vector of
pathogens (e.g. Anopheles) and more. The input for Neu-
roPID can be extracted directly from genomic annotation
projects (e.g. Hymenoptera database (11)), and from the
major protein resources such as the UniProtKB (12) and
NCBI (National Center for Biotechnology Information)
protein databases (13). Complementary resources include
cDNA libraries, ESTs (expressed sequence tags) and RNA-
Seq reads. Another rich source for NeuroPID input are se-
quences from MS experiments (14).

USER PERSPECTIVE AND WEB INTERFACE

NeuroPID is described for a typical user seeking to identify
NPPs from a large collection of unknown sequences.

Input’s page

This page includes text entry and file uploading options for
FASTA format protein sequences. The system accepts thou-
sands of sequences. There is no limit on the number of in-
put sequences, and tens of thousands of sequences can be
handled. An option to activate the SignalP 4.0 program for
additional filtering (15) is provided. SignalP computation-
ally predicts the presence of a signal peptide (SP) at the N′-
terminal of each sequence. The SP filter may increase the
run time (up to several minutes for more than 10 000 se-
quences). Note that the various protein resources (Pfam,
SwissProt, NCBI-proteins) are not necessarily consistent in
defining SP.

Results’ page

This page includes a Summary Table with a schematic
partition of the positive and negative predictions (Figure
2, marked ‘1’). The system removes sequences with non-
legitimate residues (i.e. B, X, U or Z). In the example in
Figure 2, among the 4454 sequences, only 529 proteins have
predicted to have SP, and positive predictions comprise only
4.6% of the initial input.
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Table 1. Performance of ML classification models implemented in NeuroPred

ML model Accuracy Precision Recall MCC AUC

Random Forest 0.928 0.938 0.915 0.857 0.928
Gradient Boosting 0.93 0.928 0.929 0.859 0.93
Linear SVM 0.881 0.87 0.894 0.763 0.882

Figure 2. Screenshots of NeuroPID prediction page (1) A summary table
for an input of 4454 proteins from Xenopus laevis. A pie chart displays the
distribution of prediction according to the agreement of the classifiers. (2)
A detailed table shows the confidence for each prediction methods. The red
and green fonts indicate negative and positive predictions, respectively. We
consider a prediction to be a positive prediction according to predictor-
specific threshold. The table is ranked by the Internal Score (IS). The se-
quence is linked to its FASTA sequence, to knowledge-based resources
(ProtoNet, UniProtKB) and analysis tools (SignalP, NeuroPred). (3) Re-
sults from the feature histogram. The position of a selected protein (dash
line) in view of the distribution of the positive and negative sets is shown.
The distributions are shown in green and red colors to indicate the posi-
tive and negative instances, respectively. The data were normalized by the
standard deviations of the distributions (denoted Feature Units, X-axis).
(4) Sequences graphics according to protein’s length and positions of basic
residues. The red vertical line on the sequence shows the location of diba-
sic and tribasic residues. The presence of a single basic residue is colored
green.

The Detailed Results are presented as a table that specifies
the probabilistic scores of each ML prediction model (Fig-
ure 2, marked ‘2’) and an indication for the positive predic-
tions (i.e. the protein is candidate for NPP, green font). The
threshold on the probabilistic score is >0.8 for Linear SVM
(support vector machine), the Extra trees and the Minimal
tree predictions, and >0.99 for the Gradient Boosting clas-
sifier. The user can sort each column and thus rank the list
by the preferred method of prediction, or by the Internal

Score (IS), which provides an additional high quality filter
(see ‘Navigating among NeuroPID predictions’).

Each sequence is linked to a further downstream analysis,
including ProtoNet classification for protein clustering (16),
SignalP which provides a confidence score for having a clas-
sical SP in the sequence (15), NeuroPred which predicts the
likelihood of NPP processing into NPs based on the pre-
dicted cleavage products (17). In addition, the sequence is
linked to the protein sequence’s page from UniProtKB. The
FASTA sequence can also be retrieved for further analysis
(Figure 2, marked ‘2’).

A tab for High Quality Predictions shows a subset of the
positive predictions above a pre-selected IS threshold. This
list is considered a reliable set for NPPs and neuromodula-
tors. Note that the IS threshold used for the ‘top quality pre-
dictions’ relies strongly on the presence and distribution of
di- and tribasic motifs along the sequence. Evidently, NPPs
that are not processed by the canonical proteolysis pattern
will not be included in such list. Therefore, browsing among
all NeuroPID positive predictions is advisable.

Batch downloading of the data is available with the
Download / Forward options. The list of all positive predic-
tions can be directly forwarded to NeuroPred. In addition,
the detailed results can be downloaded for further analysis
by inference tools such as PANDORA (18).

The Feature Histogram tab provides a visual analysis tool
for a specific feature and a selected protein. The features
listed contributed significantly to the NeuroPID classifiers
performance. In Figure 2 (marked ‘3’), the position of a se-
lected protein (dash line) in view of the distributions of the
features of ‘protein length’ and ‘instability index’ over the
positive (green) and negative (red) sets is shown.

The Sequence Graphics presentation tab provides visu-
alization for each sequence according to its length and
the appearance of basic residues (R and K) along the se-
quence. The quantitative value for the number of the motifs
and their density are indicated (Figure 2 marked ‘4’). Note
that only sequences processed by dibasic proteolysis (The
‘Known Motif’ model) (16) will benefit from measuring the
high density of dibasic and tribasic motifs. An example of
Allatostatin is shown in Figure 1B. The Sequence Graph-
ics visualization is not restricted to sequences that lack the
potential dibasic cleavage sites.

Help page

NeuroPID helps new users by providing answers to Fre-
quently Asked Questions. In addition, it provides a brief
explanation on the different visualization options.

The major protein sequences resources are listed. The
UniProtKB search engine helps users in retrieving se-
quences according to a list of IDs or accession numbers
(13). In addition, NeuroPID lists supporting tools that can
be used to test the input sequences for other functions
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such as the short toxin-like modulatory proteins (19), PAN-
DORA that provides annotation-driven analysis and visu-
alization for sets of sequences (18) and more.

NAVIGATING AMONG NEUROPID PREDICTIONS

We provide a short guideline based on testing thousands of
sequences from many different organisms. Applying addi-
tional filter to the positively predicted sequences is a good
practice for limiting the number of false positive predic-
tions:

(i) Removal of sequences that lack SPs. All NPPs are se-
creted proteins carrying a SP at the N′-terminals. We
encourage the user to apply the filter of SP predictor on
the input set. For example, an input of 750 size-limited
proteins (<300 aa) from the common frog Rana tem-
poraria resulted in 88 positive predictions, but only 2
positive predictions are reported when the SP filter is
applied.

(ii) Confidence of predictions. The positive predictions are
proteins that are predicted by at least one of the four
prediction models (Random Forest-decision tree en-
semble and SVM-based models). While the Extra Tree
model uses all 560 features for the prediction phase,
the minEx Tree relies only on a small set of the most
discriminative features. Consequently, the results from
the two classification models are highly correlated. The
user can select results that are more consistent between
the four ML prediction models for increasing reliabil-
ity.

(iii) High quality predictions have a high density of dibasic
residues. In addition to the presence of SP, the charac-
teristics of the dibasic cleavage site are used as addi-
tional filters for restricting the results to the high qual-
ity set. Dibasic and tribasic motifs play a crucial role
in the cleavage and processing of NPPs (Figure 1). We
designed an IS that captures the density of dibasic and
tribasic residues and calculate the percentage of such
motifs in the effective length of the protein (after re-
moval of s typical SP length of 25 aa). The user is en-
couraged to use the high quality prediction filtered list
ranked by the IS values. From an input of 4454 se-
quences from Xenopus laevis (<300 aa), NeuroPID re-
ported on 204 positive sequences but only 69 sequences
as high quality NPP candidates.

FUNCTIONAL INFERENCE

Analyzing the high quality predictions for functional en-
richment of keywords reveals enrichment of several key-
words including proteins of the innate immune response
such as antimicrobial peptides. Additional proteins include
growth factors, hormonal peptides, extracellular receptor
fragments, proteases and insulin-like proteins. All of these
proteins are short, secreted cellular modulators.

Most sequences from newly sequences genomes and from
MS proteomics resources are uncharacterized. The top pre-
dicted list from NeuroPID should be further analyzed us-
ing independent tools. We allow the predicted sequences to
be further analyzed by the ProtoNet hierarchical tree (16).

ProtoNet clusters typically provide a rich set of annotations
associated with the members of the relevant cluster. We pro-
vide a forwarding option to NeuroPred that assess the prob-
ability of a sequence to be processed for bioactive peptide
products (17).

UPDATE AND FUTURE DEVELOPMENT

The NeuroPID and its pipeline of data transformation and
feature generation are implemented using Python and the
scikit-learn toolkit (20). Web server developers that are in-
terested in interfacing directly with NeuroPID should con-
tact the authors. The NeuroPID code, resources of se-
quences and additional information are available upon re-
quest. Source code for the underlying predictive framework
used herein and in the original article, is freely available on-
line: http://www.protonet.cs.huji.ac.il/neuropid.

NeuroPID will be extended in few directions: (i) Locally
adding downstream analysis tools. (ii) Allowing inputs of
peptides that originate from proteomics MS experiments.
We will use the implementation scheme of PANDORA (18).
(iii) Archiving a catalog of NeuroPID best predictions as
candidates for future experimental validation.

We expect that NeuroPID will be useful in leveraging the
NPPs annotation and the discovery of overlooked modu-
lators. NeuroPID has the potential for generating biotech-
nological leads for the metabolic status, social behavior and
cells’ communication.
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