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Network attributes underlying 
intellectual giftedness in the 
developing brain
Jiyoung Ma1,2, Hee Jin Kang1,3, Jung Yoon Kim1, Hyeonseok S. Jeong4, Jooyeon Jamie Im1,2, 
Eun Namgung1,3, Myeong Ju Kim1,3, Suji Lee1,3, Tammy D. Kim1, Jin Kyoung Oh4, Yong-An 
Chung4, In Kyoon Lyoo1,3,5, Soo Mee Lim6 & Sujung Yoon1,3

Brain network is organized to maximize the efficiency of both segregated and integrated information 
processing that may be related to human intelligence. However, there have been surprisingly few 
studies that focus on the topological characteristics of brain network underlying extremely high 
intelligence that is intellectual giftedness, particularly in adolescents. Here, we examined the network 
topology in 25 adolescents with superior intelligence (SI-Adol), 25 adolescents with average intelligence 
(AI-Adol), and 27 young adults with AI (AI-Adult). We found that SI-Adol had network topological 
properties of high global efficiency as well as high clustering with a low wiring cost, relative to AI-Adol. 
However, contrary to the suggested role that brain hub regions play in general intelligence, the network 
efficiency of rich club connection matrix, which represents connections among brain hubs, was low in SI-
Adol in comparison to AI-Adol. Rather, a higher level of local connection density was observed in SI-Adol 
than in AI-Adol. The highly intelligent brain may not follow this efficient yet somewhat stereotypical 
process of information integration entirely. Taken together, our results suggest that a highly intelligent 
brain may communicate more extensively, while being less dependent on rich club communications 
during adolescence.

Intelligence is known as the general cognitive capability to reason, plan, solve problem, appraise, and learn 
quickly from experience1. Moreover, intelligence is strongly associated with behavioral patterns and important 
life outcomes, including health and longevity2.

Since the earlier research which investigated the correlation between brain size and intelligence3, considerable 
efforts have been made to identify the neural basis underlying inter-individual differences in intelligence4–7. In 
the early days of research, the alterations in the fronto-parietal gray matter regions as an indexing marker for 
intelligence have attracted much attention, due to their implicated role in information processing8. However, as a 
growing number of studies have examined white matter connections and network metrics, integrative roles of the 
brain in networking multiple cortical and subcortical regions have become an increasing interest in investigating 
intelligence4. Recent evidence indicated that inter-individual differences in intelligence may be attributed to the 
global efficiency and strength of white matter connectivity network across the brain regions9–11. Furthermore, the 
relationships between intellectual ability and functional efficiency of brain network were more pronounced in the 
frontal and parietal regions12–14. Interestingly, the fronto-parietal regions along with the subcortical structures 
including the thalamus, putamen, and hippocampus are considered as highly inter-connected brain hubs, also 
referred to as “rich clubs”5. Connections between these rich clubs play a key role in promoting efficient infor-
mation flow in the brain network, despite the high cost of white matter wiring15–17. Moreover, global efficiency 
of the brain network could be influenced by damages to the connections between rich clubs15. Therefore, rich 
club connections can be presumed to optimize global communication efficiency, thus improving global cognitive 
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functions including intelligence16. Likewise, a link between the strength of rich club connections and perfor-
mance on visuo-spatial motor processing was observed in typically developing preadolescent children11.

“High intelligence” or “intellectual giftedness” is often recognized from an early age and is characterized as a 
unique set of highly developed cognitive capacity leading to extraordinary accomplishment18. Since the first his-
tological work on Albert Einstein’s brain19, a series of studies have examined his postmortem brain in an attempt 
to identify brain properties that are associated with high intelligence20–22. However, one of the most striking 
findings from these studies was that extraordinary cognitive capability may not be accounted for by the specific 
structural features of the brain. On the other hand, a few studies using in vivo brain imaging have provided pre-
liminary evidence for the neural correlates of high intelligence. Such studies have found that increased functional 
involvements in the fronto-parietal regions during task performance may be associated with high intelligence23, 24.  
However, there have been surprisingly few studies that focus on the neural basis of ‘high intelligence’ in the con-
text of brain network perspectives.

In this study, we characterized global network attributes for high intelligence, including the role of rich club 
regions and their connections using the construction of white matter structural network. This study aims to 
examine whether high intelligence can be attributed to a unique “genius brain” with distinctive network connec-
tions or to a “normal brain” with outstanding measurements of intelligence within a normal distribution spec-
trum. For this purpose, we compared adolescents with superior intelligence to adolescents and young adults with 
average intelligence. Superior intelligence was classified by intellectual scores that were more than two standard 
deviations above the average scores25.

Results
The current study included adolescents who had intelligence quotient (IQ) of 130 and higher and who were 
recruited from high schools for intellectually gifted students in South Korea (n = 25, hereafter referred to as “ado-
lescents with superior intelligence [SI-Adol]”). Twenty-five students with IQ < 120 were recruited from regular 
high schools as “adolescents with average intelligence (AI-Adol)”. Young adults between ages 20 and 30, with an 
IQ < 120 (n = 27), were recruited as “young adults with average intelligence (AI-Adult)”. Characteristics of par-
ticipants are presented in Table 1.

In the current study, global network metrics including global efficiency, local efficiency, and network cost were 
calculated in each individual’s white matter structural network matrix and were compared between the groups. 
In addition, the network properties of rich club organization were also examined at an individual level. Network 
density and cost for the rich club, feeder, and local connection matrices were calculated and compared between 
the groups.

Global Network Metrics.  We first assessed global network metrics including global efficiency, local effi-
ciency, and network cost of the whole-brain structural connectivity matrix in each study group. The comparisons 
between the SI-Adol and AI-Adol groups may provide the information regarding the effects of high intelligence 
on network topology, while those between the AI-Adult and AI-Adol groups may provide information about the 
effects of age on network topology. Group-averaged structural matrix of each group is presented in Fig. 1.

The SI-Adol group had a higher level of global efficiency (β = 0.48, permutation-adjusted P = 0.0001) and 
local efficiency (β = 0.33, permutation-adjusted P = 0.01) than the AI-Adol group, implying greater efficiency 
of segregated and integrated information processing in adolescents with high intelligence (Fig. 2). In addi-
tion, a lower wiring cost was observed in the SI-Adol group, as compared with the AI-Adol group (β = −0.41, 
permutation-adjusted P = 0.003, Fig. 2), which suggests greater cost-effectiveness of information processing in 
the highly intelligent brain.

Results from comparing global network metrics between the AI-Adult and AI-Adol groups may reflect the 
age effects on global network metrics, such as, normative developmental changes in network measures. There 
were no significant differences in global efficiency (β = 0.21, permutation-adjusted P = 0.19) and local effi-
ciency (β = 0.26, permutation-adjusted P = 0.12) of the whole-brain structural connectivity matrix between the 
AI-Adult and AI-Adol groups (Fig. 2). However, the AI-Adult group had a lower wiring cost than the AI-Adol 
group (β = −0.33, permutation-adjusted P = 0.03, Fig. 2), suggesting that the adolescent brain may become more 
cost-effective as it grows into adulthood.

Network Metrics of Rich Club Organization.  We found that the SI-Adol group exhibited reduced levels 
of network density (β = −0.44, permutation-adjusted P = 0.003, Fig. 3) of the rich club connection matrix, as 
compared with the AI-Adol group. Network cost of the rich club connection matrix was lower in the SI-Adol 

Adolescents 
with SI (n = 25)

Adolescents 
with AI (n = 25)

Young adults with 
AI (n = 27)

Age — yr 17.0 ± 0.9 17.0 ± 0.8 25.3 ± 2.6

Male sex — no. (%) 20 (80.0) 17 (68.0) 20 (74.1)

Right handedness — no. (%) 21 (84.0) 23 (92.0) 23 (85.2)

WAIS-R full scale IQ 136.8 ± 4.9 97.0 ± 9.8 98.6 ± 10.0

Table 1.  Characteristics of study participants. Mean and standard deviation values are denoted as 
mean ± standard deviation. SI, superior intelligence; AI, average intelligence; WAIS-R, Wechsler Adult 
Intelligence Scale-Revised; IQ, intelligence quotient.
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Figure 1.  Group-averaged structural matrices of the SI-Adol (upper left), AI-Adol (upper middle), and AI-
Adult (upper right) groups. Rows and columns of matrices (i.e., nodes) are ordered as the rich clubs, non-rich 
clubs of the left hemisphere, and non-rich clubs of the right hemisphere. For presentation purposes, the bar 
graphs, which represent the total connection density of rich club connection (blue), feeder connections (green), 
and local connections (red) of group-averaged matrix for each group, are provided in the lower panel.

Figure 2.  Global graph metrics of the study groups. (A) Standardized Z scores of global efficiency, local 
efficiency, and network cost were calculated using the means and standard deviations of the AI-Adol group 
and were plotted in the radar chart. Red asterisks indicate permutation-adjusted P values for the comparisons 
between the SI-Adol (red) and AI-Adol (yellow) groups, whereas green asterisks indicate those between the 
AI-Adult (green) and AI-Adol (yellow) groups. (B) Three-dimensional illustrations represent the individual 
plotting of global efficiency, local efficiency, and network cost in relations to age and intellectual quotient. The 
comparisons between the SI-Adol (red) and AI-Adol (yellow) groups may provide the information regarding 
the effects of high intelligence on network topology, while those between the AI-Adult (green) and AI-Adol 
(yellow) groups may represent the effects of age on network topology. *Permutation-adjusted P < 0.05; 
**permutation-adjusted P < 0.01; ***permutation-adjusted P < 0.001, 10,000 permutations.
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group than the AI-Adol group (β = −0.43, permutation-adjusted P = 0.004, Fig. 3). However, the local connec-
tion matrix of the SI-Adol group had a higher density level (β = 0.41, permutation-adjusted P = 0.006, Fig. 3) 
than that of the AI-Adol group. There were no differences in network density (β = 0.08, permutation-adjusted 
P = 0.61, Fig. 3) of the feeder connection matrix between the SI-Adol and AI-Adol groups. The levels of wiring 
cost of the feeder connection matrix (β = −0.02, permutation-adjusted P = 0.89, Fig. 3) and local connection 
matrix (β = −0.01, permutation-adjusted P = 0.93, Fig. 3) were similar between the SI-Adol and AI-Adol groups.

For the comparisons between the AI-Adult and AI-Adol groups, network density (β = −0.28, 
permutation-adjusted P = 0.03, Fig. 3) and cost (β = −0.31, permutation-adjusted P = 0.02, Fig. 3) of the rich club 
connection matrix were also lower in the AI-Adult group, as compared with the AI-Adol group. There were no 
differences in network metrics of the feeder connection matrix (network density, β = 0.17, permutation-adjusted 
P = 0.18; network cost, β = 0.04, permutation-adjusted P = 0.79) and local connection matrix (network density, 
β = 0.13, permutation-adjusted P = 0.37; network cost, β = −0.0005, permutation-adjusted P = 1.00) between the 
AI-Adult and AI-Adol groups (Fig. 3).

To further determine the segregating nature of connection network in each rich club nodes, network efficiency 
of each rich club’s feeder connection matrix was computed in the superior frontal cortex (SFC), superior parietal 
cortex (SPC), precuneus, hippocampus, putamen, and thalamus of each hemisphere (Fig. 4). Among 12 rich 
club nodes, network efficiency for feeder connections of the right parietal regions including the SPC (β = 0.52, 
false discovery rate (FDR)-corrected P = 0.009) and precuneus (β = 0.48, FDR-corrected P = 0.004) was greater 
in the SI-Adol group than in the AI-Adol group (Fig. 4). The feeder connection matrix of the right hippocam-
pus was found to be more efficient in both SI-Adol (β = 0.48, FDR-corrected P = 0.004) and AI-Adult (β = 0.51, 
FDR-corrected P = 0.001) groups, as compared with the AI-Adol group (Fig. 4). Network efficiency of the left 
hippocampal feeder connection matrix was greater in the AI-Adult group (β = 0.38, FDR-corrected P = 0.02) but 
not in the SI-Adol group (β = 0.29, FDR-corrected P = 0.14) as compared with the AI-Adol group. There were no 
significant differences in efficiency for the feeder connection matrix of other rich club nodes between the groups.

To ensure the robustness of results, we repeated all analyses with connectivity matrices, which were con-
structed using different FA thresholds for each individual. We found that the overall results were similar irre-
spective of the FA thresholds (Supplementary Table 1). In addition, we investigated the group-differences in 
topological properties across a range of thresholds between 1% and 20% sparsity in 1% increments. We found 
that the results were not significantly influenced by the thresholding procedures (Supplementary Result 1 and 
Supplementary Figure 1).

Given the unequal sample size (25 AI-Adol vs. 27 AI-Adult), the robustness of the results was examined using 
the jackknife resampling procedure26. Each individual was excluded from the analysis, one at a time accordingly. 
The results from this resampling method for the group-differences in network metrics between the AI-Adol and 
the AI-Adult groups did not change (Supplementary Result 2).

For comparison purposes, the group-differences in network metrics of rich club organization were examined 
with the information of the rich club and non-rich club members, which were selected based on previous studies. 
We repeated the analyses using the information from the rich club members, which were defined as the top 12 
highest ranking nodes based on the degrees of the group-averaged structural networks of each AI-Adol, SI-Adol, 
and AI-Adult group. The results from these repeated analyses were similar to the main analyses, showing that the 
main results are not influenced by the group-specific location of the rich club members (Supplementary Table 2).

Furthermore, we repeated multiple regression analyses including a measure of intelligence (IQ) as an inde-
pendent variable in an auxiliary analysis to examine the effects of high intelligence. Sex composition was included 
as a relevant covariate. The results remained similar for all repeated analyses (Supplementary Result 3).

Figure 3.  (A) Group-averaged reconstructed structural brain network represents rich club members including 
the bilateral superior frontal, superior parietal, precuneus, hippocampus, putamen, and thalamus (dark blue 
circles) and non-rich club members (light blue circles). Three-dimensional rendering of the brain network 
in the MNI space was generated using BrainNet viewer49. (B) Standardized Z scores of network density and 
cost for rich club, feeder, and local connections were calculated using the means and standard deviations of 
the AI-Adol group and were plotted in the radar chart. Red asterisks indicate permutation-adjusted P values 
for the comparisons between the SI-Adol (red) and AI-Adol (yellow) and groups, whereas green asterisks 
indicate those between the AI-Adult (green) and AI-Adol (yellow) groups. *permutation-adjusted P < 0.05; 
**permutation-adjusted P < 0.01, 10,000 permutations).
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Discussion
Recently, architectural features of the whole-brain structural connectivity network have been proposed to be 
associated with intelligence4, as opposed to previous reports which have focused on the anatomical characteristics 
of particular brain regions8. Although several studies have assessed the relationships between general intelligence 
and network metrics in the general population9–12, this is the first study to characterize the neural correlates of 
intellectual giftedness from a network perspective in the developing brain. In the current study, we found that 
high level integration of the whole-brain structural connectivity network was associated with high intelligence. 
Interestingly, even with higher global efficiency, economic network topology such as a lower wiring cost was 
found in intellectually gifted adolescents relative to normal adolescents. These findings support previous obser-
vations which suggested that high levels of global information integration between brain regions may account for 
superior performance on a test of intelligence for those with normally distributed intelligence scores9–12.

Although the previous findings did not show a clear relationship between local clustering of connections 
and IQ in the general population10–12, we found that adolescents with high intelligence possessed the network 
topology of efficient locally segregated processing. Intellectually gifted adolescents, relative to normal adolescents 
with average intelligence, showed a higher level of local efficiency, implying a highly segregated network archi-
tecture. Highly efficient whole-brain structural connectivity network with highly clustering structures, which 
was observed in the gifted adolescents, may confer an advantage in converging the diverse information derived 
from each brain area both accurately and quickly. A recent study defined general intelligence as a fractal output 
by leveraging multiple anatomically distinct systems, rather than as one general function derived from all regions 
across the entire brain27. In this regard, the role of highly specialized and segregated network topology may be 
more important than previously thought in explaining the highly intelligent brain.

Converging lines of evidence have indicated that integration of information from the distributed brain regions 
may require two aspects of network organization: one based on global efficiency of communication among spe-
cialized brain regions and the other based on a specific set of brain regions such as hubs and their respective 
connections28, 29. In particular, the ‘richness’ of hub nodes in structural connectivity network may contribute to 
efficient integration of dispersed information29. Therefore, it may be expected that intellectual ability is associated 
not only with global efficiency but also with rich club connections11. However, we found that the efficiency and 
cost of rich club connections were lower in highly intelligent adolescents than in adolescents with average intelli-
gence. Rather, the network efficiency of local connection matrix interconnecting non-rich club regions was higher 
in highly intelligent adolescents than in adolescents with average intelligence. These findings may be explained 
by the specific network characteristics of information processing between brain regions in the highly intelligent 
brain, which may be unique and potentially different from those in the normal brain.

In order to deal with any potential or unpredictable dangers and opportunities efficiently, the network dynam-
ics of the human brain may quickly and automatically adapt to resolve ambiguities30. For instance, in the face 
of a salient stimuli, the brain may disrupt or break existing topological properties and link to other segregated 
communities specific for addressing the demanding stimuli30, 31. Rich club connections, as core connections, may 
constitute a potential anatomical substrate for this dynamic cooperation process of the brain29. The human brain 
may evolve to have such a dynamic network architecture, in order to cope with and predict for the unknowns30, 

31. However, given that creative cognitive processes may occur spontaneously, and not triggered by any conscious 
volition32, the highly intelligent and creative brain may not entirely follow this efficient, yet somewhat stereotypi-
cal, process of information integration that may be mediated by rich club connections. Furthermore, highly intel-
ligent adolescents appear to utilize or obtain more information from multiple locally segregated connections. This 

Figure 4.  Standardized Z scores of network efficiency for feeder connections calculated using the means 
and standard deviations of the AI-Adol group. Red asterisks indicate permutation-adjusted P values for the 
comparisons between the SI-Adol (red) and AI-Adol (yellow) groups, whereas green asterisks indicate those 
between the AI-Adult (green) and AI-Adol (yellow) groups. *FDR-corrected P < 0.05; **FDR-corrected 
P < 0.01.
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finding may be supported by a recent study underscoring that the efficiency of weak brain connections, rather 
than that of strong brain connections, is responsible for general cognitive function33. In addition, recent reviews 
indicated that creative thinking may depend more on randomly diffused brain involvement rather than localized 
and sequential processes32, 34. In summary, a highly intelligent brain may have a higher level of efficiency in inte-
grating information among brain regions, but be less dependent on rich club connections for global efficiency.

As a final point, we found that highly intelligent adolescents may have a more efficient subnetwork centered 
on the right parietal cortical regions including the SPC and precuneus than normal adolescents. Non-rich club 
regions that were structurally connected with the SPC were primarily located in the fronto-parietal area, while 
the precuneus was predominantly connected with non-rich club nodes including the medial frontal and tempo-
ral regions (Supplementary Table 3). These feeder connection networks of the SPC and precuneus may closely 
resemble the resting-state frontoparietal and default mode networks, respectively35. A large-scale functional neu-
roimaging study has also recently reported that connections among the brain regions in the frontoparietal and 
default mode networks were associated with measures of general intelligence36. Taken together23, 36, 37, the current 
findings imply that efficient frontoparietal and default mode network topology play an important role in intelli-
gence and creativity.

Although the level of global efficiency of the whole-brain structural connectivity network was similar between 
the groups, young adults with AI demonstrated a more cost-effective network topology in comparison with ado-
lescents with AI. This finding may be tentatively interpreted that the brain develops in a manner which minimizes 
the physical cost of wiring a complex network throughout late adolescence to young adulthood. Given this find-
ing, the characteristic network topology to enhance both segregated and integrated information processing as 
observed in intellectually gifted adolescents may not merely reflect developmental promotion.

Several limitations should be considered when interpreting the results. Although young adults with average 
intelligence were included as a comparison group for determining potential effects of age on network topology, 
the current cross-sectional design could not characterize the developmental network trajectory of highly intel-
ligent adolescent that may be different from that of normal adolescents. Furthermore, although IQ has been 
regarded as a widely used measure for general intelligence7, it should be noted that there are other measures 
that assesses different aspects and levels of one’s intelligence. Therefore, the current results should be replicated 
in future studies with the use of additional diverse measures for intelligence. Considering region-specificity 
and non-linearity of developmental trajectory in the structural connectivity network38, 39, future longitudinal 
research is needed to follow up with network topology for intellectually gifted adolescents versus non-gifted ado-
lescents. This will then provide evidence for a unique trajectory across the developmental lifespan in those who 
are intellectually gifted. Similar to other studies examining structural connectivity network using deterministic 
tractography, it should be noted that there are various methodological options to define node, edge, and network 
construction. The issue of crossing fiber may also be present in using deterministic tractography40. Our findings 
suggest that young adults showed less efficient but more cost-effective rich club connections relative to normal 
adolescents. Although the histological background could not be determined in this study, this finding may be 
attributed, in part, to the developmental process of pruning of the white matter connections and decrease in 
the fiber density. It should be noted that the current results were derived from the cross-sectional group com-
parisons. Therefore, future longitudinal studies that examine the effects of aging and IQ on network metrics at a 
within-subject level would be necessary.

In the current study, we characterized the specific network attributes underlying high intelligence by investi-
gating adolescents with an IQ score of greater than 130 and adolescent with an IQ score of less than 120. Our find-
ings suggest that the intelligent brain may not only be strongly integrated but also highly segregated in the context 
of network topology. Furthermore, the brain regions of highly intelligent adolescents, relative to those of normal 
adolescents, may communicate more extensively, while being less dependent on rich club communications.

Materials and Methods
Participants and Intelligence Assessments.  Adolescents who attended high schools for intellectu-
ally gifted students in South Korea and were referred by their teachers for their intellectual giftedness, based 
on their academic performance, were included as the SI-Adol group. Given that IQ is considered a reliable and 
valid measure for intelligence7, the participants’ intelligence was assessed using the Wechsler Adult Intelligence 
Scale-Revised (WAIS-R). In general, IQ, as measured using the WAIS-R, is classified into the following groups: 
very superior (130 and above), superior (120–129), average (80–119), borderline (70–79), and very low (69 
and below)41. In accordance with this criteria, adolescents with the general intelligence score of IQ 130 and 
higher were categorized into the SI-Adol group (n = 25) and adolescents with IQ < 120 were categorized into 
the AI-Adol group (n = 25). All adolescent participants were between 15 and 19 years old. Twenty-seven young 
adults with an IQ < 120 were included as the AI-Adult group. Study participants with a current or past history 
of major medical, neurological, or psychiatric illness were excluded from the study. History of head injury with 
loss of consciousness or contraindications to magnetic resonance imaging (MRI) were also the exclusion criteria.

This study was approved by the Institutional Review Board of the Catholic University of Korea College of 
Medicine, and all procedures were performed in accordance with institutional and national guidelines and reg-
ulations. All participants and their legal guardians provided written informed consent/assent after receiving a 
complete description of the study.

Image Acquisition and Processing.  Study participants underwent T1-weighted and diffusion-weighted 
MRI scanning using a 1.5-Tesla whole-body imaging system (Signa HDx, GE Healthcare, Milwaukee, WI). 
High-resolution T1-weighted structural images were obtained using a three-dimensional spoiled gradient echo 
sequence with the following acquisition parameters: 256 × 256 image matrix, repetition time = 24 ms, echo 
time = 5 ms, field of view (FOV) = 240 mm, flip angle = 45°, number of excitation (NEX) = 2, slice thickness = 1.2 
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mm, no skip. Diffusion-weighted images with 54 non-colinear directions (b = 1000 s/m2) were acquired with the 
acquisition parameters of 96 × 96 image matrix, repetition time = 17,000 ms, echo time = 84 ms, FOV = 220 mm, 
flip angle = 90°, NEX = 2, slice thickness = 2.3 mm, no skip. In addition, six images without diffusion weighting 
(b = 0 s/m2) were acquired. For screening purposes, axial fluid-attenuated inversion recovery images (256 × 192 
image matrix, repetition time = 8,802 ms, echo time = 88 ms, inversion time = 2,200 ms, FOV = 220 mm, flip 
angle = 90°, NEX = 1, slice thickness = 5 mm, no skip) and T2-weighted images (256 × 192 image matrix, repe-
tition time = 2,817 ms, echo time = 26 ms, FOV = 220 mm, flip angle = 90°, NEX = 1, slice thickness = 5 mm, no 
skip) were also acquired.

Preprocessing of T1-weighted images was performed to be used as the anatomical reference and for selecting 
nodes of structural brain network. Each individual T1-weighted image was parcellated into 34 cortical and 7 
subcortical regions per each hemisphere using the FreeSurfer tool (http://surfer.nmr.mgh.harvard.edu)42. A set 
of 82 cortical and subcortical regions-of-interests (ROIs) was selected for representing the nodes of structural 
brain network15. A rater (J.M.) who was blind to the group assignment performed a visual inspection for all 
images to validate the cortical and subcortical segmentation and anatomical labels as well as correct misclas-
sification manually. An averaged non-diffusion image (b = 0 s/m2) of each individual was co-registered to the 
respective T1-weighted image using affine transformation. All cortical and subcortical ROIs in the native space 
were inversely transformed to the diffusion space.

Preprocessing of diffusion-weighted images included the realignment with the averaged non-diffusion image 
(b = 0 s/m2) and the correction for head motion and eddy current distortions. Diffusion tensor was fitted and frac-
tional anisotropy (FA) values were computed within each voxel using the Diffusion Toolkit (http://trackvis.org/).

Network Construction.  Detailed information on network construction is described elsewhere17. In brief, 
deterministic fiber tracking based on the Fiber Assignment by Continuous Tracking (FACT) algorithm was 
applied to reconstruct white matter tract43 and fiber connectivity among the 82 ROIs was then calculated. Three 
seeds in each voxel within the ROIs were started and each streamline from the seed followed the principal dif-
fusion direction from one voxel to the next. A streamline was terminated with the criteria of reaching a voxel 
with a FA value < 0.1, having a turning angle of >45 degrees, or exceeding the ROI. Through these processes 
implemented with the Trackvis (http://trackvis.org) software package, all fiber tracts interconnecting ROIs were 
reconstructed. In order to exclude obvious spurious connections, we considered all streamlines longer than 10 
mm as being anatomically connected.

Fiber tracts interconnecting 82 cortical and subcortical nodes were combined to reconstruct the structural 
brain network comprising a set of nodes (reflecting cortical and subcortical ROIs) and edges (reflecting recon-
structed connections between nodes). A minimum of 3 streamlines interconnecting two different nodes were 
required to be considered as being structurally connected in order to eliminate potentially spurious connections 
and thereby to construct network matrix in order to eliminate potentially spurious connections. Network edges 
were weighted according to streamline density, which was computed as the number of reconstructed streamlines 
between two nodes. The number of reconstructed streamlines was divided by total streamline counts to yield the 
normalized streamline density. Weighted connectivity network of each subject constructed based on normalized 
streamline density was finally used to assess its graph metrics.

Assessment of Global Network Metrics.  The Brain Connectivity Toolbox (http://www.
brain-connectivity-toolbox.net) was used to perform network analysis. For the assessment of graph metrics of 
the global topological organization of each whole-brain structural connectivity network, global efficiency (Eglob) 
and local efficiency (Eloc) were computed in each matrix. Global efficiency is a measure of integration of structural 
connectivity network and defined as the average inverse shortest length between all pairs of nodes, whereas local 
efficiency is a measure of segregation of structural connectivity network and defined as the efficiency computed 
on node neighborhoods44, 45. Network cost was calculated as the streamline density multiplied by the average 
length of the reconstructed streamlines46.

Assessment of Rich Club Organization.  Based on previous studies15, 47, rich club nodes were selected 
as follows: the SFC, SPC, precuneus, hippocampus, putamen, and thalamus, all bilaterally. Rich club nodes are 
more likely to be connected with each other than expected by chance15. All connections between nodes in each 
structural matrix were categorized into one of following: ‘rich club connections’ which are defined as the sum of 
all connections linking rich club nodes, ‘feeder connections’ which are defined as the sum of connections linking 
rich club to non-rich club nodes, and ‘local connections’ which are defined as the sum of connections linking 
non-rich club nodes15. We examined network density for the rich club, feeder, and local connection matrix by 
calculating the sum of streamline density of each connection matrix. Network cost for each rich club, feeder, and 
local connection matrix was also computed.

Statistical Analysis.  Group effects on global network metrics including global efficiency, local efficiency, 
and network cost of the whole-brain structural connectivity network were examined in each “SI-Adol group vs. 
AI-Adol group” and “AI-Adult group vs. AI-Adol group” using multiple linear regression analysis, while adjusting 
for sex. The first set of comparison may provide information regarding the effects of high intelligence on network 
topology, while the effects of age on network topology could be examined in the second set of comparison. In 
addition, multiple linear regression analysis with sex as a covariate was performed on both “SI-Adol group vs. 
AI-Adol group” and “AI-Adult group vs. AI-Adol group” to examine the group effects on network metrics of 
rich club organization including network density and network cost for each rich club, feeder, and local con-
nection matrix. We calculated the permutation-adjusted P values for each network measure48. A total of 10,000 
permutations were performed to obtain an empirical null distribution of effects under the null-hypothesis. A 

http://surfer.nmr.mgh.harvard.edu
http://trackvis.org/
http://trackvis.org
http://www.brain-connectivity-toolbox.net
http://www.brain-connectivity-toolbox.net
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permutation-adjusted P value was computed based on the proportion of permutations with P values under the 
null distribution that was greater than the observed values from the actual data set48.

Lastly, the segregation nature of the connection network of each rich club member was explored. Non-rich 
club regions connected with each rich club were selected on the basis of group-averaged reconstructed network 
(Supplementary Table 3). The group-averaged network was reconstructed using a threshold which only includes 
connections found in at least 50% of the subjects and by averaging the cell values of individual matrices. Using 
the multiple linear regression analysis, group effects on network efficiency of feeder connection network were 
examined in each rich club member - the bilateral SFC, SPC, precuneus, hippocampus, putamen, and thalamus - 
after controlling for sex. Results for the feeder connection matrix of each rich club node were FDR-corrected and 
findings surviving the FDR-correction were considered as being statistically significant.
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