
Int. J. Biol. Sci. 2022, Vol. 18 
 

 
https://www.ijbs.com 

4043 

International Journal of Biological Sciences 
2022; 18(10): 4043-4052. doi: 10.7150/ijbs.73616 

Review 

Human leukocyte antigens: the unique expression in 
trophoblasts and their crosstalk with local immune cells 
Xin-Xiu Lin1, Ying-Ming Xie2, Si-Jia Zhao1, Chun-Yan Liu1, Gil Mor1,3, Ai-Hua Liao1 

1. Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. 
China. 

2. Department of Obstetrics, Maternity and Child health care hospital Hubei, Wuhan, PR China. 
3. C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI, USA. 

 Corresponding author: Ai-Hua Liao, Ph.D. Address: Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong 
University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, PR China. E-mail address: aihua_liao@hust.edu.cn (A. Liao). ORCID iD: 
https://orcid.org/0000-0001-8533-8315. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2022.04.04; Accepted: 2022.06.01; Published: 2022.06.13 

Abstract 

Trophoblasts differentiate and form the placenta during pregnancy in a complex and finely orchestrated 
process, which is dependent on the establishment of maternal-fetal immune tolerance and the proper 
function of trophoblasts. Trophoblasts express HLA-C and non-classical HLA-Ib molecules (HLA-E, 
HLA-F, and HLA-G). Numerous studies have shown that the unique expression pattern of the HLA 
molecules is closely linked to the successful acceptance of allogeneic fetus by the mother during 
pregnancy. However, some controversies still exist concerning the exact expression and recognition 
patterns of HLA molecules in different trophoblast subpopulations and cell lines. Thus, we summarize 
three types of trophoblast subpopulations as well as the common trophoblast lineages. Then, the 
classification and structural characteristics of HLA molecules were elucidated. Finally, the presence of 
HLA-C and non-classical HLA-Ib molecules (HLA-E, HLA-F, and HLA-G) in various trophoblasts and cell 
lines, as well as their potential role in establishing and maintaining normal pregnancy were also discussed. 
Together, this review will help people comprehensively understand the complex immune interactions 
between maternal and fetal crosstalk during pregnancy and ultimately better understand the physiological 
and pathological etiologies of pregnancy. 
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Introduction 
In 1953, Sir Peter Medawar [1] defined the 

immunological paradox in pregnancy, whereby the 
mother would not reject a fetus carrying the father’s 
antigen. The placenta is the interface between the 
mother and the fetus that separates them 
anatomically. Nevertheless, trophoblasts, special fetal 
epithelial cells, have close contact with the maternal 
immune system. Although it is still a mystery why the 
maternal immune system does not reject the 
allogeneic antigens, a preferred immunologic theory 
has been well recognized, that is the establishment of 
immune tolerance at the maternal-fetal interface 
accounts for not attacking the fetus by the maternal 
immune system [2]. 

Recent studies have shown that the 
immunological tolerance state maintained by the 

maternal immune system during pregnancy is mainly 
due to the specific human leukocyte antigen (HLA) 
expression pattern in trophoblasts [3, 4]. These 
molecules mediate the contact between trophoblasts 
and maternal immune cells via their receptors. It is 
well-known that trophoblasts do not express HLA-II 
class molecules, which are surface markers of strongly 
immunogenic cells in allograft transplantation [5]. 
Consequently, the absence of expression of the 
relevant HLA molecules in trophoblasts that cause 
allograft rejection may play a key role in long-term 
fetal survival [6]. Abnormal HLA expression patterns 
in trophoblasts will lead to pregnancy-related 
diseases including recurrent miscarriage, preterm 
delivery, fetal growth restriction, pre-eclampsia, etc. 
[7]. 
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In this review, we mainly aim to discuss the 
exact expression pattern of HLA molecules in 
trophoblasts, their interaction with local immune cells 
as well as the roles in establishing immune tolerance 
during normal pregnancy. 

Trophoblast types in human placenta 
Trophoblasts 

A zygote is generated when sperm and egg 
interact. On the fifth day after fertilization, a 
preimplantation embryo is created after recurrent 
cleavage. The inner cell mass eventually develops into 
the fetus, while the outer trophectoderm proliferates 
and develops into the placenta. On days 7-9 after 
fertilization, the outer trophectoderm differentiates 
into cytotrophoblasts (CTBs), and a deeper, 
non-proliferative, invasive, multinucleated, thickened 
mass of primitive syncytium [8]. The primitive 
syncytium appears to secrete enzymes that digest and 
loosen the decidua surrounding it, and is present for 
approximately 7-9 days after initially attaches to the 
endometrium [8-10]. CTBs are highly proliferative 
and served as the "stem cells" of the placenta, which 
can differentiate into the other two types of 
trophoblasts, namely syncytiotrophoblasts (STBs) and 
extravillous trophoblast (EVTs) [10-12]. STBs are 
distinguished by cell fusion to be terminally 
differentiated and multinucleated, while EVTs are 
distinguished from CTBs that detach from placental 
villi and invade into decidua [13]. 

STBs are located in the outer layer of the 
placental villi and are in direct contact with maternal 
blood, forming a barrier between the mother and the 
fetus [14]. Besides, STBs have endocrine functions, 
secreting human chorionic gonadotropin, placental 
prolactin, and pregnancy-specific glycoproteins, and 
can transport nutrients and oxygen to the developing 
fetus [15, 16]. EVTs can be divided into endovascular 
trophoblasts (eEVTs) and interstitial trophoblast 
(iEVTs) [12, 13]. eEVTs invade the spiral arteries and 
replace vascular endothelial cells, whereas iEVTs 
invade the decidual interstitium and eventually form 
the placental bed in the myometrium [13, 17]. EVTs 
can interact with the mucosa's local immune cells, 
reshape spiral arteries, widen previously restricted 
blood vessels, and boost low-pressure blood flow to 
the developing placenta, thereby supplying oxygen 
and nutrients for the growth of the fetus [18]. 

Trophoblast cell lines 
To clarify the role of trophoblasts in establishing 

maternal-fetal immune tolerance, several human 
trophoblast cell lines have been set up and widely 
used. In 1993, Graham et al. [19] established the 
long-living HTR8/SVneo cell line by introducing the 

gene-encoding simian virus 40 large T antigen into 
first-trimester human trophoblasts. In 2005, Feng et al. 
[20] established a TEV-1 cell line, which stably 
expressed the human papillomavirus type 16 E6/E7 
gene in primary first-trimester trophoblasts via a 
retroviral vector pLXSN-E6/E7. In 2009, Straszewski- 
Chavez et al. [21] constructed an early gestational 
trophoblast cell line Swan 71 by infecting early 
gestational trophoblasts with human telomerase 
reverse transcriptase. In addition, several 
choriocarcinoma cell lines have been established, 
including the BeWo, JEG3, and JAR cell lines, which 
are also commonly used to study the properties and 
functions of trophoblasts [22, 23]. Nonetheless, 
whether these trophoblast cell lines reflect the 
properties of primary trophoblasts and the HLA 
molecule expression patterns are not fully clear and 
need further investigation. In recent years, a three- 
dimensional (3D) trophoblast organoid (TO) model 
[15, 24, 25] and a trophoblast stem cell (TSC) model 
[26] have also been established, which allows us 
deeply understand the secrets behind the placental 
formation. 

Classification and structural 
characteristics of HLA family 
The classification of HLA family 

The major histocompatibility complex, also 
known as HLA, is a highly polymorphic gene 
complex comprising over 200 genes, whose locus is 
located in the 3Mbp region of the short arm of 
chromosome 6 [27, 28]. They encode cell surface 
glycoproteins that can be used to present and 
recognize self- and non-self-peptides [29]. HLA 
molecules have been widely studied in 
transplantation, autoimmune, bacterial, viral 
infections, and tumor immunotherapy [30]. In 
addition, the unique expression pattern of 
non-classical HLA in placenta appears to be the most 
relevant mechanism for fetus to escape the 
recognition of maternal immune cells [31]. 

Usually, HLA is classified into three types based 
on the function and structure, including HLA-Class I, 
-Class II, and -Class III molecules [32]. HLA-Class I 
molecules can be categorized into classical HLA-Ia 
molecules (HLA-A, HLA-B, and HLA-C) and 
non-classical HLA-Ib molecules (HLA-E, HLA-F, and 
HLA-G) [33]. HLA-Class I genes encode commonly 
expressed proteins participating in antigen 
presentation, and are ubiquitously expressed on all 
nucleated cells [34]. HLA-Class II molecules include 
HLA-DR, HLA-DQ, HLA-DP, HLA-DN, HLA-DM, 
and HLA-DO [35, 36]. HLA-class II genes encode 
proteins involved in antigen presentation by the 
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so-called professional antigen-presenting cells, 
including dendritic cells, macrophages, B cells, and 
thymic epithelial cells [34, 35]. HLA-Class III 
molecules cannot be easily classified based on known 
or assumed functions. HLA-class III genes encode 
proteins involved in complement activation, hormone 
synthesis, inflammation, cellular stress, extracellular 
matrix organization, and immunoglobulin 
superfamily members [34, 37]. 

The structural characteristics of the HLA 
family 

The extracellular structural domains of 
HLA-Class I molecules include heavy chain α1, α2, 
and α3, where α3 is non-covalently bound to light 
chain β2-microglobulin (β2M) [38] (Figure 1). The 
peptide binding platform consists of the α1 and α2 
structural domains, while the α3 structural domain 
serves as a binding site for co-receptors [39, 40]. 
Besides, all HLA-Class I alpha chains carry a 
conserved N-glycosylation site, and these 
glycosylation features directly correlate with the 
cellular localization of HLA I-like molecules [30]. 

HLA-Class II molecules have a similar structure 
to HLA-Class I (Figure 1). The two structural 
domains, β1 and β2 chains, evolve to form a slightly 
curved β-fold as a base and two α-helices at the top, 
which are far enough apart to accommodate a peptide 
chain [41]. In HLA-Class II molecules, two proximal 
membrane immunoglobulin (Ig) structural domains 
support the peptide binding unit, which consists of 
two structural domains, being the α1 chain and the β1 
chain. An Ig domain is present in each chain of 
HLA-Class II molecules, and a transmembrane helix 
anchors both chains in the membrane [39, 41]. 
Trophoblasts do not express the HLA-Class II 
molecules, which are surface markers of strongly 

immunogenic cells in allograft transplantation [31]. 
Therefore, we will not discuss the HLA-Class II 
molecules below. 

Specific expression and function of 
classical HLA-Ia in trophoblasts 

Unlike most nucleated cells, trophoblasts do not 
express HLA-A and HLA-B molecules. However, 
trophoblasts can express polymorphic HLA-C [31, 42]. 
Therefore, in this section, we will focus on 
summarizing the studies related to the expression and 
function of HLA-C molecules. 

HLA-C in different trophoblasts and cell lines 
HLA-C was first discovered in 1970, and it is a 

highly polymorphic molecule [43]. Although HLA-C 
is a classical HLA-Ia molecule, it is the only HLA-Ia 
class molecule expressed on trophoblasts in 
pregnancy. Most studies did not observe the 
expression of polymorphic HLA-C in CTBs and STBs 
by using flow cytometry [44, 45]. However, other 
study observed that HLA-C can be weakly expressed 
in the cytoplasm of STBs at 5 gestational weeks and in 
the nucleus of CTBs at 12 gestational weeks by using 
immunohistochemistry method [5]. Moreover, the 
mRNA and protein expression levels of HLA-C in 
placenta were significantly higher in spontaneous 
labor than those in non-labored C-section [5]. HLA-C 
is expressed in all EVTs’ population, including eEVTs, 
iEVTs, and placental bed giant cells [46]. Also, it is 
expressed in such early pregnancy trophoblasts- 
derived cell lines as HTR8/SVneo, Swan 71, and 
TEV-1 [44]. While in the other cell lines, HLA-C was 
found to express in JEG3 and BeWo, but not in JAR 
[47-49]. When TO differentiates into EVTs, it can 
express HLA-C [50]. 

Function of HLA-C in pregnancy 
HLA-C is the only classical HLA-Ia 

molecule identified on trophoblasts. HLA-C can 
be classified into two types based on C1 or C2 
epitopes: HLA-C1 and HLA-C2 [51, 52]; its 
receptor is the Killer Immunoglobulin-like 
Receptor (KIR) [53]. KIR is mainly expressed in 
NK cells, with a small proportion of metaphase 
T cells expressing KIR [53, 54]. HLA-C1 is a 
ligand for inhibitory KIR2DL2 and KIR2DL3 
and activating KIR2DS2, while HLA-C2 serves 
as a ligand for activating KIR2DS1 and 
KIR2DS5 as well as inhibitory KIR2DL1 [55, 56]. 
It has been found that the inhibitory role of 
KIR2DL1 with HLA-C2 is more critical, while 
the weaker inhibitory interaction between 
HLA-C1 and KIR2DL3 does not seem to have a 
significant effect on pregnancy outcome [57]. 

 

 
Figure 1. The molecular structure of human leukocyte antigen (HLA) class I and II molecules. 
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The interaction between HLA-C and inhibitory 
KIR in NK cells inhibits cytotoxic activity and 
modulates the secretion of cytokines and growth 
factors by NK cells, promoting EVTs’ invasion and 
placental vascular remodeling [58]. Sharkey et al [59] 
found that the percentage of CD56+ cells that 
expressed KIR in decidual tissues increased, and the 
mRNA expression levels of KIR also increased in early 
pregnancy. KIR2DL3, which had the highest level of 
KIR, led to increased binding of HLA-C1 tetramers to 
decidual NK (dNK) cells and would increase the 
production of IFN-γ, which is necessary for normal 
vascular remodeling and endometrial decidualization 
in early pregnancy [59]. When the activating receptor 
KIR2DS1 in dNK cells binds to HLA-C on 
trophoblasts, it can induce dNK cells to secrete 
cytokines and chemokines like GM-CSF [60]. The 
cytokines and chemokines secreted by dNK cells can 
induce trophoblasts to invade the decidua more 
effectively, promoting spiral artery remodeling and 
improving blood supply to the fetus [61]. In addition 
to its involvement in immune tolerance, HLA-C can 
directly promote placental growth without interacting 
with immune cells [62]. In conclusion, HLA-C 
molecules are critical in regulating the tolerogenic 
activity of NK cells in the decidua toward the fetus 
and trophoblast invasion. 

Specific expression and function of 
non-classical HLA-Ib in trophoblasts 

Trophoblasts uniquely express non-classical 
HLA-Ib molecules, including HLA-E, HLA-F, and 
HLA-G [63]. Therefore, this part will summarize the 
studies related to the expression and function of 
non-classical HLA-Ib molecules. 

HLA-E 

HLA-E in different trophoblasts and cell lines 
In 1988, HLA-E was identified in resting T 

lymphocytes [64]. Moreover, in 1990, it was 
discovered that HLA-E was expressed in placental 
and extravillous tissues at all stages of pregnancy [65]. 
The expression of HLA-E on the cell surface is 
regulated by the acquisition of peptides derived from 
the leader sequences of other HLA-I molecules, 
including the HLA-G and HLA-C molecules [66, 67]. 
Hackmon et al. [5] found that HLA-E was weakly 
expressed in CTBs and STBs at 5 weeks of gestation 
and failed to detect its expression at the other 
gestational weeks. HLA-E was found to be expressed 
on the surface of EVTs [68]. HLA-E was localized to 
iEVT in the decidual stroma by immunohisto-
chemistry, and a small proportion of the cytoplasm of 
STBs also showed intense HLA-E staining [68]. 

HTR8/SVneo, Swan 71, and TEV-1 were all found to 
express HLA-E [44]. HLA-E was expressed on the 
surface of JEG3 and BeWo and was co-expressed with 
HLA-G [69]. When TO differentiates into EVTs, it can 
express HLA-E [24]. 

Function of HLA-E in pregnancy 
Like the classical HLA-Ia molecules, HLA-E is 

expressed in nearly all nucleated cells [70]. HLA-E 
was found in 1988, and it only binds to NK cell 
receptors like CD94/NKG2A, CD94/NKG2B, and 
CD94/NKG2C, not the KIR receptor family [71-74]. 
The binding of HLA-E to CD94/NKG2C, a receptor in 
CD8+ T cell, promotes the expansion of CD8+ T cell 
subsets and the activation of effector functions [73]. 

HLA-E is the major ligand of the NK cells 
inhibitory receptor CD94/NKG2A. Their binding can 
suppress NK cell-mediated cell lysis and support the 
fetus in evading maternal immune surveillance [72, 
75]. Compared with wild-type mice, NKG2A 
knockout mice had poor placental angiogenesis 
remodeling, resulting in low fetal weight and aberrant 
fetal brain development; both of which are the main 
characteristics of preeclampsia, indicating that the 
HLA-E/NKG2A pathway might be related to its 
pathogenesis [76]. In addition, CD94/NKG2A is 
expressed in TCRγδ+ T cells [77]. The mutual 
recognition between HLA-E in trophoblasts and 
CD94/NKG2 receptors in immune cells may be 
crucial in maternal-fetal immunological interactions. 
Further studies are required to determine whether the 
immune tolerance induced by the interplay of HLA-E 
in trophoblasts and CD94/NKG2A in decidual 
immune cells is the root cause of successful 
pregnancy. 

HLA-F 

HLA-F in different trophoblasts and cell lines 
Since less attention was paid to HLA-F, its 

expression and potential roles during pregnancy 
remain largely unknown. Based on limited literature, 
it is still controversial whether HLA-F is expressed 
intracellularly or on the cell surface. One study 
showed that HLA-F was expressed intracellularly in 
inactivated immune cells and on the surface of 
activated immune cells [78], while another study 
showed that HLA-F was expressed on the surface of 
EVTs [5]. A study by Ishitani et al. [66] showed that 
low levels of HLA-F staining were observed in CTBs 
and STBs, but significantly higher levels of HLA-F 
could be detected in EVTs. Nagamatsu et al. [79] 
found that HLA-F was only expressed intracellularly 
in CTBs, STBs, and EVTs, but not on the surface of 
these cells. In contrary, Shobu et al. [80] discovered 
that HLA-F was expressed at a low level in the 
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cytoplasm of EVTs during the first trimester but 
increased in the second trimester, notably in the third 
trimester, and also expressed on the surface of EVTs. 
Moreover, Ishitani et al. [66] detected the expression 
of HLA-F protein in several cell lines and discovered 
that HLA-F was not expressed on the surface of both 
JEG3 and Bewo cells. Other research found that 
HLA-F was expressed in JEG3 [81]. To date, no 
studies have been conducted to determine whether 
HLA-F is expressed in the trophoblast cell lines as 
HTR8/SVneo, Swan 71, and TEV-1. 

Function of HLA-F in pregnancy 
Although HLA-F was discovered in 1990, the 

related studies are still lacking [82]. The heavy chain 
of HLA-F can form a stable complex on the cell 
surface by binding to β2m and peptide 27 or form 
HLA open conformers (OCs) if not bound to β2m and 
peptide 27 [83]. The HLA-F/β2m/peptide 27 complex 
can bind to the inhibitory immunoglobulin-like 
transcript (ILT) 2 receptors (LILRB1) and ILT4 
(LILRB2) and may act intracellularly to regulate the 
expression of these inhibitory receptors [84]. HLA-F 
OCs, a different type of HLA-F expression, can 
physically and functionally interact with inhibitory 
receptors KIR3DL1 and KIR3DL2, as well as 
activating receptors KIR3DS1 and KIR2DS4 [83, 85, 
86]. 

In dNK cells, 45% express the activating receptor 
KIR2DS4 [87]. HLA-F OCs can bind to KIR2DS4, so 
HLA-F may be involved in receptor-ligand 
interactions between trophoblasts and dNK cells [85]. 
The activation of KIR2DS4 on dNK cells can secrete 
GM-CSF and other chemokines, which promotes 
trophoblast invasion [87]. As a result, high levels of 
HLA-F expression in trophoblasts may be critical for 
dNK cells to promote blastocyst implantation [88]. 
HLA-F OCs can also interact with HLA-E, indicating 
that HLA-F can affect the recognition of HLA-E by 
CD94/NKG2 heterodimers, and in turn HLA-E may 
alter interaction of HLA-F with KIR3DL2 [85]. Since 
HLA-F interacts with MHC class I molecules, 
KIR3DL2 and KIR2DS4, it is possible that HLA-F is 
engaged in receptor-ligand interactions between dNK 
cells and EVTs during pregnancy, and thus 
contributes to the maternal-fetal immune regulation. 

HLA-G 

HLA-G in different trophoblasts and cell lines 
HLA-G is the first HLA class I molecule found in 

trophoblasts. It is a non-classical HLA-Ib molecule 
with low polymorphism. HLA-G is composed of four 
membrane-bound isoforms (HLA-G1, -G2, -G3, and 
-G4) as well as three soluble (sHLA-G) isoforms 
(HLA-G5, -G6, and -G7). The roles of HLA-G in 

pregnancy have been extensively elucidated. HLA-G 
was found to localize in EVTs by using 
immunohistochemical staining with HLA-G 
monoclonal antibody (mAb) of MEM-G/9 [68]. 
During the entire pregnancy, HLA-G was found 
extensively expressed on the surface of EVTs by 
immunohistochemistry [5]. Although most studies 
have shown that CTBs and STBs do not express 
membrane HLA-G, all trophoblast populations, 
including CTBs and STBs, can secrete sHLA-G [33, 
66]. For the detection of HLA-G, anti-HLA-G mAbs 
including 87G, 16G1, and olG were usually used [66]. 
87G detects both soluble and membrane-bound forms 
of HLA-G; 16G1 only detects the soluble form, and 
o1G only detects the membrane-bound form of 
HLA-G [33]. In addition, 16G1 binding was reported 
to be non-specific [89]. 

With regards to trophoblast cell lines, Swan 71 
[21] and TEV-1 [20] were found to express HLA-G by 
western blotting assay. However, other study did not 
detect the HLA-G expression in Swan 71 and TEV-1 
by single-color flow cytometry using two different 
mAbs, G233 and MEMG/11 [44]. Therefore, different 
experimental methods and/or antibodies could affect 
the determination of the HLA-G expression on the cell 
surface. Besides, HTR-8/SVneo, Swan 71 and TEV-1 
can express HLA-A and HLA-B molecules and 
express HLA-class II molecules upon IFN-γ induction 
[44]. As early as 1990, Kovats et al. [49] discovered 
that HLA-G was expressed in JEG3 but not in JAR or 
BeWo when using W6/32 (as a mAb against pan-HLA 
class I molecules). On the contrary, Liu et al. [90] 
reported that BeWo expressed HLA-G and may be 
used to mimic the function of placental trophoblasts 
in vitro. However, their study did not mention which 
clone was used to detect HLA-G. 

In addition, HLA-G gene was found to be 
up-regulated in the differentiation of human 
embryonic stem cells to the trophoblast lineage, and 
their expression level persisted throughout the 
differentiation process [91]. Regarding TSCs, Sheridan 
et al. found they expressed HLA-A, -B, and -C but not 
HLA-G when using both W6/32 and MEMG-9 mAb 
[50]. However, when TSCs were differentiated into 
EVTs, HLA-G expression can be detected; when TSCs 
were differentiated into STBs, HLA expression was 
downregulated [50]. In contrast, TO does not express 
any HLA, but expresses HLA-G when differentiated 
to EVTs [25, 50]. 

Function of HLA-G in pregnancy 
HLA-G is one of the most well-studied HLA-Ib 

class molecules, and its role in pregnancy has been 
extensively reviewed. HLA-G is the first HLA-Ib 
molecule identified in trophoblasts, and has a unique 
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selective splicing pattern, limited polymorphism, and 
limited tissue distribution [92]. HLA-G is thought to 
establish maternal tolerance to allogeneic fetus and 
could be employed as an inhibitory ligand to enhance 
tolerance during pregnancy [49, 93]. HLA-G can 
promote spiral artery remodeling, immune tolerance, 
and fetal growth through binding to immune cells 
during pregnancy [94]. Thus, HLA-G, also known as 
one of the immune checkpoint molecules, has 
multiple functional effects [95]. 

HLA-G molecules can bind to the inhibitory 
receptor KIR2DL4, which is expressed in dNK cells 
[3], mast cells [96], and some T cells [97]. KIR2DL4 
could inhibit NK cell-mediated cytotoxicity and 
induce mast cells to secrete the serine protease MMP-9 
and leukemia growth factor, which promotes the 
invasion and differentiation of trophoblasts, and is 
conducive to embryo implantation [96, 98, 99]. HLA-G 
can also inhibit cell lysis of decidual and peripheral 
NK cells and CD8+ T cells [100-102]. By knocking out 
HLA-G on TEV-1 through RNA interference, Chen et 
al. [103] found that NK cells exhibited more robust 
killing activity against HLA-G knocked out TEV-1 
when compared with the control group. The 
interaction between HLA-G and KIR2DL4 on the 
surface of dNK cells is significant for immunological 
tolerance. 

HLA-G can also bind to the inhibitory 
ILT2/LILRB1 and ILT4/LILRB2 [104-105], which are 
expressed on the surface of NK cells, CD4+ and CD8+ 

T cells, B cells, macrophages, and monocytes [105]. 
ILT2/HLA-G can suppress dNK cell’s cytotoxicity 
and increase the secretion of IFN-γ, which attributes 
to angiogenesis and vascular remodeling during early 
pregnancy [106]. Furthermore, the HLA-G receptor 
ILT2/LILRB1 may be transferred from monocytes to 
activated CD4+ T cells and perform all functions, 
mediating the inhibitory effect of HLA-G on ILT2+ T 
cells [42]. ILT2 and ILT4 in CD8+ T cells competitively 
bind to HLA-G and then prevent the activation of 
cytotoxic CD8+ T cells, thereby inducing the 
establishment of tolerance [107]. Besides, when ILT2 
binds to HLA-G in decidual dendritic cells (DCs), the 
expression of IL-10 and IL-6 by DCs increases, and the 
proliferation of allogeneic lymphocytes is inhibited, 
finally inducing the formation of tolerant DCs [108]. 
IL-10-producing DCs drive the differentiation of 
initial CD4+ T cells into type 1 regulatory T cells via 
the ILT4/HLA-G signaling pathway, which is 
essential for maintaining tolerance to self and non-self 
antigens [109]. ILT2 is also expressed in the decidual 
stroma, primarily composed of fibroblasts and 
macrophages, whereas ILT4 is found in the placental 
vascular smooth muscle [110]. The receptor 
expression pattern suggests that HLA-G has a unique 
immunological function during pregnancy. The 
HLA-G1 homodimer connected by disulfide bonds 
has a higher affinity for ILT2, and the HLA-G5 free 
heavy chain has a more vital binding ability to ILT4 
[111]. Differences in affinity may regulate the invasion 

of trophoblasts and the function of the 
local maternal immune response in the 
uterus. Recently, a unique subset of 
decidual memory NK cells was 
identified, and HLA-G induced its 
formation, leading to increased secretion 
of VEGFα and IFN-γ, thereby better 
supporting the critical process of 
placental angiogenesis [106]. 

Conclusion 
Since Sir Peter Medawar first raised 

the immunological paradox in 
pregnancy, a great deal of evidence has 
subsequently confirmed the importance 
of immune tolerance underlying the 
mechanism of allogeneic fetus escaping 
the attack of maternal immune system. 
Among the multiple contributing factors, 
the unique expression of HLA molecules 
in trophoblasts and the interaction with 
their receptors in local immune cells are 
recognized as the key factors (Figure 2). 

In this review, we systemically 
described the expression pattern of 

 

 
Figure 2. HLA expression in trophoblast and their receptors in local immune cells at the maternal-fetal 
interface. 
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HLA-class Ia molecules (HLA-C) and non-classical 
HLA-Ib class I molecules (HLA-E, HLA-F, and 
HLA-G) in three types of trophoblasts and the 
commonly used trophoblast cell lineages, including 
HTR8/SVneo, Swan 71, TEV-1, BeWo, JAR and JEG3 
(Table 1). Also, we summarized how HLA-Class I in 

trophoblasts interact with their receptors in decidual 
immune cells and their roles in normal pregnancy 
(Figure 3). The current evidence will enhance 
comprehensive understanding on the complex 
immune mechanisms at the maternal-fetal interface. 

 

 
Figure 3. A schematic illustration of the interaction between HLA-Class I molecules and their receptors at the maternal-fetal interface. (A) The figure depicts the placental villi 
consisting of cytotrophoblasts (CTBs), syncytiotrophoblasts (STBs), and extravillous trophoblasts (EVTs) that invade the maternal decidua. (B-F) Summary of the interaction of 
HLA-C, -E, -F, and -G with their corresponding receptors on the surface of decidual NK cell, T cell, B cell, mast cell, other immune cells, and the roles during pregnancy. 
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Table 1. HLA expression in primary trophoblasts and cell lines 

 CTBs STBs EVTs HTR8/SVneo TEV-1 Swan 71 BeWo JEG3 JAR 
HLA-C +/- +/- + + + + + + - 
HLA-E +/- +/- + + + + + + - 
HLA-F +/- +/- + ? ? ? - +/- ? 
HLA-G sHLA-G/- sHLA-G/- + +/- +/- +/- +/- + - 
Summary HLA-C, -E, -F, -G  HLA-C, -E, -F, -G HLA-C, -E, -F, -G HLA-C -E -G  HLA-C -E, -G  HLA-C -E, -G  HLA-C, -E, -G  HLA-C, -E, -F, -G  -  
Note: +: express the HLA molecules; -: not express the HLA molecules; +/-: exist contradictory study results; ?: lack of research; CTBs: cytotrophoblasts; STBs: 
syncytiotrophoblasts; EVTs: extravillous trophoblasts. 
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