
Napolitano et al BMCBioinformatics 2013, 14:201
http://www.biomedcentral.com/1471-2105/14/201

SOFTWARE Open Access

Bioinformatic pipelines in Python with Leaf
Francesco Napolitano1*, Renato Mariani-Costantini2,3 and Roberto Tagliaferri1

Abstract

Background: An incremental, loosely planned development approach is often used in bioinformatic studies when
dealing with custom data analysis in a rapidly changing environment. Unfortunately, the lack of a rigorous software
structuring can undermine the maintainability, communicability and replicability of the process. To ameliorate this
problem we propose the Leaf system, the aim of which is to seamlessly introduce the pipeline formality on top of a
dynamical development process with minimum overhead for the programmer, thus providing a simple layer of
software structuring.

Results: Leaf includes a formal language for the definition of pipelines with code that can be transparently inserted
into the user’s Python code. Its syntax is designed to visually highlight dependencies in the pipeline structure it
defines. While encouraging the developer to think in terms of bioinformatic pipelines, Leaf supports a number of
automated features including data and session persistence, consistency checks between steps of the analysis,
processing optimization and publication of the analytic protocol in the form of a hypertext.

Conclusions: Leaf offers a powerful balance between plan-driven and change-driven development environments in
the design, management and communication of bioinformatic pipelines. Its unique features make it a valuable
alternative to other related tools.

Keywords: Data analysis, Bioinformatic pipelines, Python

Background
Systemic Bioinformatic analysis requires heterogeneously
composed research groups, including data producers, data
miners and application domain experts (such as biolo-
gists). Data producers use dedicated technology on bio-
logical specimen to extract data; data miners analyze data
and try to highlight relevant information; biologists exam-
ine the filtered data, which thy then validate through
targeted experiments and use to support their hypoth-
esis or to formulate new ones (See Figure 1). Custom
bioinformatic analysis requires programmers to imple-
ment new methods and/or put together existing ones in
order to build new data analysis frameworks (data flows
[1], commonly known as bioinformatic pipelines). In such
cases, high level scripting languages are used (such as
Python, Perl, R, Matlab) to quickly implement and test
new methodologies and present results to other research
groups, while statically typed languages (like C, C++, Java)

*Correspondence: fnapolitano@unisa.it
1Department of Computer Science (DI),University of Salerno, Fisciano (SA)
84084, Italy
Full list of author information is available at the end of the article

are generally preferred when computational performance
is crucial [2-4].
Indeed the priority of custom data analysis software is

above all about results, while features like code main-
tainability, documentation and portability are often con-
sidered secondary. In our experience, a precise design
of the analysis process is usually impossible to achieve
in advance, since the feedback produced by preliminary
results may drive the study in unpredictable directions.
In fact, the main shortcoming of plan-based development
paradigms is in their lack of responsiveness to change.
Software Engineering deals with such issue by means of
dedicated development models (Extreme Programming,
Prototype-based Programming [5], Agile development
[6]) that try to relax formal constraints in order to more
easily adapt to dynamic conditions [6].
However, if taken to an extreme, prototype-based

approaches tend to undermine the integrity of the system’s
architecture [7], accumulating patches as more requests
are fulfilled. The resulting analysis is often hard to repro-
duce, which is also due to difficulties with establishing its
execution provenance [8-10]. Such challenges have been
recently evinced in [11], where urgency for open source

© 2013 Napolitano et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Napolitano et al BMC Bioinformatics 2013, 14:201 Page 2 of 14
http://www.biomedcentral.com/1471-2105/14/201

Figure 1 Example of bioinformatic collaboration. Bioinformatic research collaboration scheme. This is a representation of a typical process in a
bioinformatic study where different research units are involved. The left part of the scheme represents a loop with iterations that are usually cheaper
(no consumables or expensive technologies involved) and more prone to be iterated over time in order to refine the analysis based on partial
results. This loop represents a major challenge in terms of code maintainability.

code in scientific development was emphasized as a con-
sequence of the difficulty of reproducing bioinformatic
results and accounting for all the technical aspects of a
bioinformatic analysis. In addition, we note that loosely
structured and poorly documented processes can hardly
be reproduced even when source code is available.
In order to take into account the need to reduce plan-

ning and at the same time maintain high level structuring
in bioinformatic analyses, we developed the Leaf [12,13]
system (Figures 2 and 3). Its purpose is to allow for the

transparent association of regular code written in a high-
level programming languages with a pipeline structure.
To this aim, Leaf implements a graph design language
(namely LGL, Leaf Graph Language, see Figure 4 for a
brief overview) that allows the programmer to define the
high level pipeline describing his analysis directly within
his source code in other languages. Specifically, we devel-
oped LGL support for the Python language, implemented
as the Pyleaf library. Python was chosen as a high level,
dynamically typed, general purpose, interpreted language,

Pyleaf

Figure 2 Leaf architecture. A Leaf project is carried out by three different layers. On the top layer, a high level definition of a pipeline is coded
through the Leaf Graph Language (LGL). The Pyleaf library is able to interpret an LGL graph as a computational pipeline and bind the nodes of the
pipeline to the user’s Python code.

Napolitano et al BMCBioinformatics 2013, 14:201 Page 3 of 14
http://www.biomedcentral.com/1471-2105/14/201

Pyleaf

Figure 3 User interaction. The interaction between the user’s Python code and the Leaf system happens through the definition of an LGL graph
(the high level pipeline) and the use of Pyleaf. The user creates a new Leaf project by providing Pyleaf with the pipeline definition, the Python code
implementing each node of the pipeline and the primary resources to work on. The project is then used to request the production of resources.

that offers interoperability with other languages (like R)
and clean, readable code [2]. Moreover, a growing com-
munity of Bioinformaticians has shown interest in the
Python language, also through the development of tools
like those collected in the Biopython project [14]. The
LGL language provides an extremely minimalist approach,
enforcing almost no conventions as to how the pipeline
nodes must be implemented.
The formal definition of a pipeline is used by Leaf to pro-

vide a number of automated features described in the next
sections. As a final output, Leaf is able to generate a hyper-
text document describing both the high level design and
all the details of the analysis (the bioinformatic protocol),
including provenance information.

Previous work
The development of data flow management systems has
recently become a very active area in bioinformatics [15].
Though an extensive review of the existing tools is out of
the scope of this paper, a simple overview will be useful in
order to identify the strengths and weaknesses of Leaf with
respect to related software. In order to correctly place Leaf
in the landscape of other tools, we divide them into three
categories, based on the thickness of the abstraction layer
between the pipeline definition and its implementation.
Of course the three categories are not perfectly disjoint, as
some tools may cross their boundaries.
In general, the most high-level tools try to encapsulate

implementation details as much as possible in order to
facilitate interactions with the top layer of the analysis.
The user is presented with a Graphical User Interface and
builds a bioinformatic pipeline with point-and-click appli-
cations. Examples of graphical approaches include Galaxy

[16], Taverna [17], Pegasys [18], Conveyor [19], Kepler
[20]. Such tools often include support for extending their
functionality through either dedicated or existing script-
ing languages, allowing for additional flexibility. However,
their main focus and strength is about simplifying the
management of the data flow structure, while lower level
changes are not as immediate. Most of these tools are also
suitable for researchers without programming skills.
A thinner abstraction layer is provided by a number of

pipeline design tools based on formal languages, such as
Anduril [21] and Biopipe [22]. The purpose of these tools
is to provide robust general frameworks for data analy-
sis that can recognize and integrate heterogeneous data
structures. Unlike the higher-level tools, these approaches
usually require the user to make the effort of formally
describing data formats and processing semantics, after
learning the adopted conventions. Their strength is in
their ability to ensure the robustness of the processes
while at the same time granting access to low level details.
The thinnest abstraction layers allow the user to eas-

ily bypass the pipeline manager itself, if needed. Leaf
sits in this category, together with other tools like
Ruffus [23] and Bpipe [24]. These systems are specifi-
cally designed for users with programming skills and their
aim is neither to broaden pipeline management accessi-
bility to a wider audience nor to guarantee a particular
robustness of the process through the rigorous specifica-
tion of data and exchange formats. On the contrary, their
aim is to provide an easy data flow management sup-
port within existing development environments in order
to simplify the coding process and encourage direct mod-
ifications of low level details. They are usually the most
light-weight tools among data flow managers and are

Napolitano et al BMC Bioinformatics 2013, 14:201 Page 4 of 14
http://www.biomedcentral.com/1471-2105/14/201

1 -> 2 -> 3;

1 -> 2 -> @1 ;

 /2
1<
 \3;

 /4
 2<
 / \5
1<
 \ /6
 .<
 \7 ;

1, 2, 3 -> 4, 5, 6;

G: 1, 2, 3;

G: 1, 2, 3;
@G -> G;

1, 2, 3 -> 4;

G: 1, 2, 3;
@G -> @G;

Figure 4 LGL syntax examples. This figure shows some examples of graph structures defined through the Leaf Graph Language (LGL). Tree
structures of any depth and degree can be encoded using the fork arrow (<) and void node (.) mechanisms. Note that through LGL it is possible to
define graphs that are not DAGs (see main text), though they are not allowed by Pyleaf.

implemented as libraries or ad-hoc scripting languages.
In the following we justify the development of Leaf by
detailing the main differences between it and the other
tools in the same category just mentioned: Bpipe and
Ruffus.
The major shortcoming of Ruffus has been highlighted

in [24] as their own motivation: the syntactic mechanism
of Python “decoration” , which is the basis of Ruffus imple-
mentation, spreads the design of the pipeline structure
throughout the code. Tasks like reading or modifying the
data flow structure can be quite involved, since no general

overview of the pipeline is actually present in the code.
Conversely, the LGL formal language developed for Leaf
is intended to be intuitively readable, having the unique
feature that its code visually represents the pipeline it
encodes (Figure 4). Most importantly, the Leaf system
keeps the definition of the pipeline in one place and com-
pletely separated from the Python code implementing the
single nodes (though still in the same Python source file).
The LGL is a dedicated language with its own syntax, thus
requiring some additional effort that is not required for
Ruffus. However, the overall learning curves of the two

Napolitano et al BMCBioinformatics 2013, 14:201 Page 5 of 14
http://www.biomedcentral.com/1471-2105/14/201

systems on the whole are comparable. It should also be
pointed out that an advanced LGL coding style, while pro-
ducing visually rich code, also makes it harder tomaintain.
This is why, in addition to complex syntactic constructs,
we also provided simple shortcuts, which allow the pro-
grammer to choose his preferred level of balance between
easy to read and easy to write code. Figure 5 shows a
comparison between two Leaf and Ruffus code fragments
and describes some additional Leaf features that are not
currently supported by Ruffus.
Like Leaf, Bpipe includes a dedicated language to

define pipeline structures. However, Bpipe is primar-
ily intended to be a pipeline-oriented replacement of
shell scripts, built to run a pipeline of system com-
mands that exchange data through files on the disk.
This approach is the most straightforward, for exam-
ple, in any environment where nodes of the pipeline are
standalone programs. On the contrary, Leaf is meant
to provide pipeline management support for general
purpose scripting languages, such as Python. Nodes
are implemented as functions that can exchange struc-
tured variables of arbitrary complexity in primary mem-
ory (the use of files is optional). With Leaf (and
Ruffus), the definition of such functions can be provided
together with the pipeline structure in the same source
file.

Concepts
In this section we introduce the concepts that formalizes
the idea of bioinformatic pipeline implemented in Leaf.
A Leaf pipeline is designed incrementally throughout the
development phase of a bioinformatic analysis. Once the
analysis is completed, a final protocol can be generated
that documents the analysis process.

Resources and processors
In our view, there are two kinds of actors in a data analysis
process: resources and processors. Resources are any type
of data, including raw data, processed data, images, files
etc. Here, by “raw data” we mean data at any stage that
does not represent a final result of the analysis. Processors
are computer routines that can modify existing resources
or create new ones.
We subsequently distinguish between primary and

derived resources. Primary resources are the initial input
to the process and should be regarded as the ground truth
of the analysis. Derived resources are obtained exclusively
as automatic elaborations of primary resources. Excep-
tions to this constraint, like the introduction of manual
interventions or implicit dependence on resources that
are not part of the pipeline, could cause any automatic
consistency check to fail. Derived resources can be fur-
ther divided into raw resources (representing data at an

Figure 5 Comparison between Ruffus and Leaf code. Code for pipeline definition and use is highlighted in bold. Both samples implement the
same simple pipeline made of three nodes (namely first_task, second_task and third_task), the first passes a text string to the other
two, which in turn append some additional text to it. In Ruffus (left) the pipeline structure is defined through the “@follows” decorator, which must
be attached to each function definition in order to specify its ascendants. In Leaf (right) the pipeline structure is visually defined as standalone LGL
code (first lines in the example). Ruffus keeps track of produced resources by checking files specified through the “@files” decorator, which is the
main tool for exchanging data between nodes. Leaf uses common function parameters while seamlessly caching their content on the disk to track
the processing status. Leaf also caches the source code that produces each resource, and is thus able to detect changes in the code and invalidate
all the resources affected by the change. The Ruffus file-based mechanism is also supported by Leaf through the “F” flag in LGL with the only
requirement being that the function producing the files as their resources must return the corresponding file names (see main text).

Napolitano et al BMC Bioinformatics 2013, 14:201 Page 6 of 14
http://www.biomedcentral.com/1471-2105/14/201

intermediate processing stage) and final resources (repre-
senting the results of the analysis).

Bioinformatic protocols as annotated DAGs
A graph [25] is an ordered couple (V , E), where V is a
set of nodes and E ∈ V × V is a set of edges between
nodes. Let us consider processors as nodes in a graph and
resources as edges, such that, for example, a graph (V =
{x, y, z}, E = {(x, y), (y, z)}) represents a data flow where
the processor x provides (imports or generates) a primary
resource passed through the edge (x, y) to the node y. The
node y produces the raw derived resource passed through
the node (y, z) to the node z. The node z produces a final
derived resource. In our context a graph describing a data
flow must be directed and acyclic (DAG).
We define a bioinformatic protocol as an annotated

DAG. Here, annotations are all the details that are neces-
sary to understand and execute the procedure described
by the graph, including source code and documentation
of the processors and the produced resources. Leaf pro-
tocols also include statistics detailing the time and space
consumed by the execution of each node. Finally, since
the actual implementation of Leaf requires each node to
produce only one resource (even though it can be a struc-
tured object), the association of resources with edges is
equivalent to the association of resources with nodes.

Implementation
Leaf is a software tool that supports the generation and
use of bioinformatic pipelines as defined in the previ-
ous section. The Leaf system is composed of two sub-
systems (see Figure 2): the Leaf Graph Language (LGL)
and the Pyleaf Python library, which are described in
the following subsections. The user provides the descrip-
tion of a graph in LGL language together with the
Python source code implementing the nodes. Then he
has access to Leaf features through the Pyleaf interface
(see Figure 3). Pyleaf transparently runs an external
compiler that translates the LGL code into a simpler
description of a graph structure. It then uses this struc-
ture to understand dependencies between nodes in the

pipeline and to run the necessary nodes according to the
user’s requests. In general, LGL source code is meant to
be embedded into source code of other languages (see
Figure 6) and exploited through ad hoc libraries. Pyleaf is
the library that implements the Leaf system for the Python
language (see Figure 7).
The LGL compiler (lglc) was built using the Flex [26]

lexical analyzer and the Bison [27] parser generator. The
compiler currently supports basic error handling, point-
ing out the line of code where a syntax error is detected.
This proves very useful when editing complex graphs. On
the other hand, errors detected in the node implementa-
tions are handled by the Python interpreter as usual: Leaf
does not interfere with this mechanism other than adding
its methods to the call stack.
Graph visualizations are produced using Graphviz tools

[28]. More details can be found on the home page of Leaf
[12] and on its public source code repository [13].

The leaf graph language
The Leaf Graph Language (LGL) is a formal language with
the unique feature of having a graphical appearance even
though it is written in regular text. The purpose of LGL
is to encode general graph structures (including graphs
containing cycles, which are not supported by Pyleaf).
An LGL graph definition can be directly embedded in
the code of other programming languages to serve as a
high level pipeline description. While a formal descrip-
tion of the language’s grammar is beyond the scope of this
paper, in this subsection we present a few examples as
well as the main syntax rules in order to illustrate its basic
philosophy.
The fundamental objects in LGL are items, item sets,

and arrows connecting items or item sets. Each item may
represent a graph node or an entire graph by itself, while
an arrowmay represent a single edge or a set of edges. For
example, the statement:

A -> B, C;

is an LGL instruction that creates a graph with three
nodes, A,B and C, and connects node A (single item) to

Figure 6 Source code embedded pipeline definition. Any programming language supporting multi-line text can include the definition of a
pipeline as LGL code. Left: a Python example including an LGL graph definition whose nodes are implemented in the same source file. Right: a
graphic representation of the corresponding pipeline.

Napolitano et al BMCBioinformatics 2013, 14:201 Page 7 of 14
http://www.biomedcentral.com/1471-2105/14/201

A

B

Figure 7 Coexistence of leaf and python. (A) Python source code including a pipeline definition as an LGL graph (Section “Concepts” in the
source code), the implementation of the corresponding nodes and a function creating and returning a Leaf project object accordingly. (B) Example
of a Python interactive session where the user loads the previous Python code, creates the Leaf project and request the production of a resource.
The user can directly call pipeline nodes as regular Python functions by passing the input parameters manually. Leaf can call them automatically for
the production of a resource as necessary. The thinness of the Pyleaf library abstraction layer allows for quick prototyping and experimentation.

the set of nodes composed of B and C (item set). LGL
automatically translates an arrow into a set of graph edges
according to the type and number of items. In the previ-
ous example the arrow is translated into the set of edges
{(A,B), (A,C)}. The left arrow is also allowed:

A <- B, C;

which defines the set of edges {(B,A), (C,A)}. Formally,
this happens based on the fact that the comma operator
takes precedence over the arrow operator.
An item can represent a complex object when using

named graphs. A named graph is a graph preceded by a
text label and a colon, like in the following statement:

G1: A -> B, C;

After the definition of a named graph, its label (G1 in
this example) can be used wherever an item can be used:
the compiler will replace it with a copy of the graph it
represents. In particular, the statement D -> G1; cre-
ates a new graph G2(V2, E2), where V2 = {A,B,C,D}
and E2 = {(A,B), (A,C), (D,A)}. This happens because
in this case the arrow operator connects the new node
D to all the root nodes (nodes with no incoming edges)
of G1. Analogously, the statement G1 -> D; creates a

new graph G3(V3, E3), where V3 = V2 = {A,B,C,D}
and E3 = {(A,B), (A,C), (B,D), (C,D)}. In this case the
arrow operator connects all G1 leaves to D. Note that the
sequence of instructions:

G1: A -> B, C;

D -> G1;

G1 -> D;

creates three graph objects: the named graph G1 and two
unnamed graphs (corresponding to G2 and G3 which are
previously defined). This is because as the LGL compiler
encounters a previously defined label it creates a new copy
of the corresponding object. If the intention is instead to
create a unique graph by incrementally adding nodes and
edges, it must be explicitly stated through the mechanism
of object reference. From the syntactic point of view this
simply amounts to prefixing each referenced object with
the @ symbol. When a reference object is encountered,
the previously defined object with the same name is used
instead of a new copy. For example, the following code:

G1: A -> B, C;

D -> @G1;

@G1 -> @D;

Napolitano et al BMC Bioinformatics 2013, 14:201 Page 8 of 14
http://www.biomedcentral.com/1471-2105/14/201

creates a single graph G4(V4, E4), where V4 = {A,B,C,D}
and E3 = {(A,B), (A,C), (D,A), (B,D), (C,D)}. Note that
the @ symbol is used only with items defined in previous
statements.
The mechanisms described above are sufficient to

describe any graph in LGL. However, another syntax con-
struct, the fork arrow, is introduced to improve readability.
The fork arrow allows the user to define a tree struc-
ture that is visually evident. The G1 graph, indeed, can be
equivalently defined in LGL as follows:
G1:

/B

A <

\C

;

The fork operator is composed of the less-than character
(<), visually representing a binary split, and the slash (/)
and backslash (\) characters signaling the beginning of a
left child and a right child. LGL syntax includes mecha-
nisms to nest fork structures at arbitrary levels and with
any number of children per level. See Figure 4 for addi-
tional examples. In addition, arrows can be mixed with
forks. Let us consider the following example:
G1:

/B <- D, E

A <

\ /F

C<

\G -> H

;

Any fork can indeed be redefined as an arrow. Finally, spe-
cial flags can be associated with nodes by enclosing them
in square brackets, as in the following example:

G1: A -> [F]B, C;

This instruction creates the graph G1 and associates the
flag F to its node B. The F flag tells Pyleaf (described in
the next subsection) to consider the output of the asso-
ciated processor as a file name and to support dedicated
features.

Pyleaf
Pyleaf is a Python library that is able to bind the node
names of an LGL graph to Python functions in order to
interpret it as an analysis pipeline. As previously men-
tioned, the semantics of the graph see nodes as pro-
cessors and edges as input/output connections between
them. Root nodes are meant to be associated with pri-
mary resources, terminal nodes with final resources, and
other nodes with raw resources. With Pyleaf the user
can request the production of a resource by identifying it
directly with the name of the processor producing it.
For Pyleaf to work two objects are needed: the pipeline

structure in the form of a multi-line Python string con-
taining a graph in LGL code; and the name of the Python
source code file where the functions implementing the
pipeline nodes are defined. Indeed, the binding between
the nodes and the corresponding Python functions is per-
formed by searching for LGL nodes and Python functions
having the same name. With this information Pyleaf can
build a leaf.prj.project Python object, which is

Table 1 Protocol methods summary

Method Description

clear Clears a resource from RAM.

clearall Clears all resources from RAM.

dumpOff Switches dumping OFF.

dumpOn Switches dumping ON.

export Exports the graph to a pdf file, including docstrings.

getinputs Collects all input resources that are input to the given node and returns a copy of them in a list.

list Lists the state (unavailable / dumped / to be built) of all resources.

provide Provides a resource. The resource is returned if available, loaded from disk if dumped, built on the fly otherwise.

publish Exports the analysis as an HTML bioinformatic protocol.

rebuild Clears a resource, then provides it.

run Provides all leaf (final) resources.

trust Assigns a resource to a node without invalidating dependent resources.

undump Clears a dumped resource from the disk.

undumpall Clears all dumped resources from the disk.

untrust Clears a resource and all its dependent.

This methods are designed to be used through a Python shell to perform pipeline operations. Dumping is the automatic management of produced resources in
permanent memory. A resource is said to be available if present in primary memory, dumped if previuosly stored on the disk.

Napolitano et al BMCBioinformatics 2013, 14:201 Page 9 of 14
http://www.biomedcentral.com/1471-2105/14/201

Table 2 Example of statistics generated for the CNV analysis

Statistics for the entire analysis

Number of nodes 24

Number of F-nodes 12

Total number of output files 76

Total size of output files 2.32G

Total CPU time required 03:02:15.25

Statistics for a single node (distMatGfx)

Description Produces an MDS visualization of the output of samplesDistMats

Output files t_tani_distrib.pdf , t_tani_mds.pdf

Last build time Sun Jan 8 03:51:56 2013

Required CPU time 00:01:25.08

The statistics are updated at each run or modification of any part of the pipeline. They are included in the final HTML protocol generated by Pyleaf. F-nodes are nodes
whose output is written in one or more files on the disk. The total required time is estimated by summing up all the time required by single nodes, since they are
usually ran across different sessions. Documentation for each node includes also source code, which is not reported in the Table. In the original document the file
names are hyperlinked with actual files on the disk.

the main interface to all of Leaf ’s features (see Table 1
for a summary of the main implemented methods). Let
us consider the following piece of Python code as an
example:

lglGraph = r"""

/visualize

loadData <

\analyze -> exportResults

;

"""

pr = project(’ex1’, ’lglGraph’)

In order to create the object pr, Pyleaf passes the
lglGraph object to the LGL compiler, reads the result-
ing graph structure and searches the ex1.py file for the
Python functions loadData, visualize, analyze
and exportResults. The pr object is a high-level
interface that primarily deals with analyzing the user’s
code in order to create one or more protocol objects
(a Leaf feature that is currently under development will
allow the user to create and manage variants of a proto-
col). In order to easily access the protocol object, the
following code is used:

p = pr.protocols[""]

The interaction between functions bound to pipeline
nodes happens as follows. Each function has only one out-
put resource, though it can be an arbitrarily structured
object, as usual in programming languages. If a node in the
pipeline has more than one outgoing edge, it will provide
the same resource along each edge. On the other hand,
a node having N incoming edges in the pipeline must be
bound to a function having N input parameters and is
called accordingly. This is an alternative to the approach
where nodes with multiple inputs correspond to the same

function called multiple times with different inputs. Leaf
supports both semantic styles: to use the latter, multiple
copies of the same node can be added to the pipeline (this
is permitted by LGL syntax), where each one is connected
with different input nodes. However, we prefer the former
approach, that uses multiple inputs and a single output per
function, as it tends to align more naturally with common
programming practices.
When the user requests a resource, Pyleaf is able to

identify the part of the pipeline that needs to be executed
in order to build the resource. A sequence of function
calls is thus performed according to the pipeline struc-
ture, where the output of each node forwarded to all of
its descendants, according to the rules explained above.
In order to optimize pipeline execution, Pyleaf supports
parallel processing of independent nodes andmechanisms
for “lazy processing” , whichmeans it doesn’t execute pro-
cessors that are not required to satisfy a user request.
When referring to “unnecessary nodes” we mean nodes
that are not in the path between a primary resource and
the requested resource, as well as nodes that are in said
path but whose output has been previously computed
(and whose source code has not changed since then). This
is possible because Pyleaf automatically stores all derived
resources in primary and permanent memory as soon as
they are produced. As an example, let us suppose that
a user requests the production of the resource that is
produced by the processor analyze from the previous
example. This is done through the Python shell using the
Pyleaf providemethod:

>>> x = p.provide(analyze)

Pyleaf will refer to the protocol’s graph and run the
loadData function accordingly (with no argument),
pass its output to the analyze function and return the

Napolitano et al BMC Bioinformatics 2013, 14:201 Page 10 of 14
http://www.biomedcentral.com/1471-2105/14/201

result in the variable x. Both outputs will be transpar-
ently stored in primary and permanent memory (even if
the output was not assigned to a variable). If the user
later requests, for example, the resource produced by
exportResults, Pyleaf will load its input from the disk
or directly from primary memory, if it is still available.
Variables containing processors’ outputs are automatically
created and cleared internally as needed. The correspond-
ing objects are referred to using node labels from the
pipeline definition. This feature is very important dur-
ing the development of a bioinformatic data analysis,
where massive computations and several data files may
be involved. The user is not forced to manually save
and restore variables, thus preventing data inconsistency
across development sessions. Moreover the definition of
mnemonic names associated with derived resources is

not necessary since the direct use of node names from
the pipeline ensures a clear and simple way to identify
them.
As mentioned, Pyleaf also supports parallel computing

by exploiting multicore machines. For example, if the exe-
cution of the entire pipeline is requested (using the run
method), Pyleaf will detect that the nodes visualize
and analyze have no common ancestors and will run
them in parallel.
Pyleaf also maintains a database that stores the source

code of all the processors in order to ensure consis-
tency between the current state of the pipeline and the
produced resources. If a processor is modified, all depen-
dant resources are automatically cleared (unless the user
explicitly requests to trust an existing resource). Pyleaf
also tracks files created by nodes marked with the flag “F”

Figure 8 LGL code for the CNV project. The computational protocol in LGL for a real Copy Number Variation study. Compare with Figure 9. Refer
to Figure 4 for basic syntax considering that the pipe (|) and newline characters are ignored by the compiler.

Napolitano et al BMCBioinformatics 2013, 14:201 Page 11 of 14
http://www.biomedcentral.com/1471-2105/14/201

in order to verify that their content has not changed. This
is currently performed by checking the time stamp of the
most recent modification.
Finally, Pyleaf can automatically export the entire anal-

ysis as a hypertext document implementing our concept
of bioinformatic protocol. The document includes a visu-
alization of the pipeline, with nodes containing hypertext

links to processor details. Such details include proces-
sor source code, documentation (automatically extracted
from the original source code), execution time, and hyper-
text links to produced files together with their size. Over-
all time and space consumption as well as other statistics
for the pipeline as a whole are also included. See Table 2
for an example.

Figure 9 Protocol’s graph for the CNV project. Graphical representation of the LGL code of Figure 8. Leaf can internally use Graphviz [28] tools in
order to automatically produce such representation starting from the output of the LGL compiler. Nodes with straight corners represent processors
producing files.

Napolitano et al BMC Bioinformatics 2013, 14:201 Page 12 of 14
http://www.biomedcentral.com/1471-2105/14/201

Leaf and Python frameworks coexistence
The Leaf system is completely transparent to the user’s
development environment. The LGL graph is defined as
a multi-line Python string in the same source code imple-
menting the Python functions that carry out each step of
the analysis (see Figure 7). The processors in the pipeline
are not implemented as structured objects, but rather
as regular Python functions and the programmer does
not need to use any special convention while writing his
Python code. This framework allows the user to write
plain and loosely structured Python code while still defin-
ing a high level scheme of the analysis. Both high and low
levels of the analysis are managed together in the same
source code. In fact, a project using Leaf typically includes
a number of Python functions highlighted as nodes in the
pipeline and others that are only implemented in the code,
thus introducing a further mechanism of hierarchical
structuring.
A common practice when extending an existing anal-

ysis within the Leaf environment is to exploit the pro-
tocol in order to easily set up the starting point for a
new branch in the pipeline. Then the user requests to
Pyleaf the resources that are necessary to the new branch.
Pyleaf loads them from the disk or builds them on the
fly running the necessary nodes from the pipeline and
returns them to the user as regular Python objects. The
user is able to define and test a new Python function
and finally add it as a new node to the LGL graph in
order to make it part of the pipeline. Conversely, exist-
ing pipeline nodes can be tested with new inputs by
calling them as regular Python functions in a shell envi-
ronment. In Leaf the usual direct call of Python functions
seamlessly coexists with their indirect use as pipeline
nodes.

Application example
The Leaf system was developed to overcome prac-
tical problems that arose during a bioinformatic
research project, the results of which are to be pub-
lished soon. This application example included three
main collaborating research units: application domain
experts, data producers and data analysts (see Figure 1).
As the research unit responsible for the data analysis, we
were primarily concerned with: safely keeping primary
resources provided by data producers as our ground-
truth; easily identifying, storing and retrieving primary
and derived resources in order to promptly respond to
new requests from the other research groups; ensuring
that all derived resources could be automatically repro-
duced starting from the primary ones; providing a clear
report of all the steps of our analysis to be shared with
other research groups; maintaining a documentation
of our analysis making it easy to replicate, reuse in the
future and back-trace in case of problems (this includes

providing the execution provenance trace [8-10]). While
our main goal was related to the development of com-
putational methods, in this paper we describe practical
issues concerning the development process of the analysis
pipeline and how the Leaf system helped us overcome
them efficiently.
The project involved a copy number variation (CNV

[29]) analysis of a number of tissue samples. We used
an existing software (PennCNV [30]) implemented as a
Perl script for CNV detection. As an example of trace-
ability enforcement, the primary resources were made
compatible with the Perl script by an ad hoc con-
verter routine written in Python. This conversion could
have been more easily performed manually, but at the
cost of breaking the automaticity rule (see “Concepts”
section). The output of PennCNV suggested a num-
ber of hypotheses that were investigated through ded-
icated methods, which were heavily driven by partial
results in a continuous feedback loop. The final com-
putational pipeline for the analysis is shown in Figure 8
in the LGL language and in Figure 9 as the corre-
sponding graphical visualization. Note that in the final
pipeline the prepareInput processor calls a Unix
Bash script, the PennCNV processor calls a Perl script,
the clustergram processor calls an R script and all
other processors call Python procedures. This is pos-
sible because of the high interoperability supported by
the Python language, but is transparently included in
the pipeline that provides a general overview of the
analysis, evincing only the aspects that have been con-
sidered worth showing. The programmer used his pre-
ferred Python development framework to produce all the
code for this study as well as the associated pipeline.
In our case, even the Bash and R code were embed-
ded in the Python source code, allowing Leaf to access
and control all of the code implementing the pipeline
nodes. R language is exploited through the dedicated RPy
[31] Python library, while Bash scripts are encoded as
Python multi-line strings and passed to system calls for
execution.
The LGL code in the example (Figure 8) is quite involved

and may seem difficult to work with. In our practice,
complex LGL structures are created as the result of a
code polishing phase, as soon as a portion of the pipeline
has been assessed. Before this phase, a very simple syn-
tax is adopted, with elementary structures incrementally
appended to the graph. In fact, the entire LGL code in
Figure 8 could be rewritten in LGL as a simple list of edges,
as shown below:

sampleSheet[F] -> getSampleNames;

@getSampleNames[F] -> exportCNVDiffMat;

@getSampleNames[F] -> clustergram [F];

...

Napolitano et al BMCBioinformatics 2013, 14:201 Page 13 of 14
http://www.biomedcentral.com/1471-2105/14/201

A slightly more complex LGL statement defining the same
structure could be:

sampleSheet[F] ->

getSampleNames ->

exportCNVDiffMat,

clustergram [F]

;

where line breaks and indentation are discretionary. Since
complex structures can be difficult to code, LGL provides
simpler alternatives. The choice of syntax complexity level
is left up to the programmer based on his skill level and
preference.
The generated protocol for the latest version of the CNV

project pipeline is available at the Leaf home page [12]. It
is automatically generated by Pyleaf in HTML format. A
sample of the statistics included in the protocol document
is reported in Table 2.

Conclusions
A balance between agility of code development and over-
all consistency and communicability in rapidly chang-
ing environments such as interdisciplinary research col-
laborations, is of fundamental importance, in regard to
both methodology and efficiency. High-level tools are
the most efficient when working on the general struc-
ture of the analysis, but make low-level interventions
difficult. On the other hand, the use of formal design
approaches can improve the robustness of a bioinformatic
analysis, but at the cost of reducing responsiveness to
change.
The Leaf system, like other tools in the same cate-

gory, allows for low-level access to implementation details,
but still provides tools for the management of a light-
weight, loosely structured data flow layer. In particular
Leaf supports a dedicated pipeline definition language,
LGL, whose flexible coding style allows the programmer
to choose his preferred balance between easy to read and
easy to write code.
To our knowledge, Leaf is the only pipelinemanager that

allows the definition of both the pipeline and its nodes
in the same source file, while at the same time keeping
them separated. Besides the general properties connected
with the design of the Leaf system, we also highlighted
some features supported by the Python implementation
of Leaf that are not present in similar tools, such as the
monitoring of source code, which allows for consistency
checks between code and resources. Additional features
already present in other tools have been further developed
in Leaf, such as the generation of pipeline documentation
in the form of a hypertext, including links to the files pro-
duced during pipeline execution and statistics about time
and space requirements detailed for each node, to name
a few.

In our opinion, both the design philosophy and the
implemented features of Leaf make it a valuable alterna-
tive to other pipeline management systems.

Availability and requirements
Project name: Leaf
Project home page: http://www.neuronelab.dmi.unisa.it/
leaf
Operating system(s): Linux, Windows. Mac OS under
development.
Programming language(s): C++, Python.
Other requirements: Python ≥ 2.6.
License:MIT.
Any restrictions to use by non-academics:None.

Abbreviations
LGL: Leaf graph language; DAG: Directed acyclic graph; CNV: Copy number
variation.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FN designed and implemented the Leaf system. RT provided design and
implementation feedback. RMC provided application domain feedback. RT
and RMC supervised the project. All authors contributed in writing the
manuscript and read and approved the final version.

Acknowledgements
The work was funded by the Italian Association for Cancer Research (AIRC,
Milan, Italy, IG 9168 to R. Mariani-Costantini). The authors would like to thank
Donatella Granata and Ellen Abrams for their useful comments on the
manuscript.

Author details
1Department of Computer Science (DI),University of Salerno, Fisciano (SA)
84084, Italy. 2Department of Medicine, Dentistry and Biotechnology “G.
d’Annunzio” University, Chieti-Pescara, Italy. 3Unit of General Pathology, Aging
Research Center (CeSI) “G. d’Annunzio” University Foundation, Via Luigi
Polacchi 15/17, Chieti 66100, Italy.

Received: 25 February 2013 Accepted: 10 June 2013
Published: 21 June 2013

References
1. Johnston WM, Hanna JRP, Miller RJ: Advances in dataflow

programming languages. ACMComput Surv 2004, 36:1–34.
2. Sanner MF: Python: a programming language for software

integration and development. J Mol Graph Model 1999, 17:57–61.
[PMID:10660911]

3. Fourment M, Gillings MR: A comparison of common programming
languages used in bioinformatics. BMC Bioinformatics 2008, 9:82.
[http://www.biomedcentral.com/1471-2105/9/82/abstract]

4. Tratt L: Dynamically typed languages. Adv Comput 2009, 77:149–184.
5. Bruegge B, Dutoit AH: Object-Oriented Software Engineering: Using UML,

Patterns and Java,Second Edition. Upper Saddle River: Prentice-Hall, Inc.;
2003.

6. Cockburn A, Highsmith J: Agile software development, the people
factor. Computer 2001, 34(11):131–133.

7. Sommerville I: Software Engineering, 9th ed edition. Boston: Pearson
Education Inc.; 2011.

8. Davidson SB, Freire J: Provenance and scientific workflows:
challenges and opportunities. In Proceedings of the 2008 ACMSIGMOD
international conference on Management of data, SIGMOD ’08. New York:
ACM; 2008:1345–1350. [http://doi.acm.org/10.1145/1376616.1376772]

http://www.neuronelab.dmi.unisa.it/leaf
http://www.neuronelab.dmi.unisa.it/leaf
http://www.biomedcentral.com/1471-2105/9/82/abstract
http://doi.acm.org/10.1145/1376616.1376772

Napolitano et al BMC Bioinformatics 2013, 14:201 Page 14 of 14
http://www.biomedcentral.com/1471-2105/14/201

9. Cheney J, Ahmed A, Acar UA: Provenance as dependency analysis. In
Proceedings of the 11th international conference on Database programming
languages, DBPL’07. Berlin, Heidelberg: Springer-Verlag; 2007:138—152.

10. Buneman P, Khanna S, Wang-Chiew T:Why andWhere: A
Characterization of Data Provenance. In Database Theory – ICDT 2001,
Volume 1973. Edited by Bussche J, Vianu V. Berlin, Heidelberg: Springer
Berlin Heidelberg:316–330. [http://www.springerlink.com/index/10.1007/
3-540-44503-X_20]

11. Ince DC, Hatton L, Graham-Cumming J: The case for open computer
programs. Nature 2012, 482(7386):485–488. [http://dx.doi.org/10.1038/
nature10836]

12. Leaf Home Page [http://www.neuronelab.dmi.unisa.it/leaf]
13. Leaf source code repository [https://github.com/franapoli/pyleaf]
14. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I,

Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL: Biopython: freely
available Python tools for computational molecular biology and
bioinformatics. Bioinformatics (Oxford, England) 2009, 25(11):1422–1423.
[PMID:19304878]

15. Romano P: Automation of in-silico data analysis processes through
workflowmanagement systems. Brief Bioinformatics 2008, 9:57–68.
[http://bib.oxfordjournals.org/content/9/1/57]

16. Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol 2010,
11(8):R86. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945788/]
[PMID:20738864 PMCID: PMC2945788]

17. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, Li P, Oinn T:
Taverna: a tool for building and running workflows of services.
Nucleic Acids Res 2006, 34(Web Server):W729–W732. [http://nar.
oxfordjournals.org/content/34/suppl_2/W729.full]

18. Shah SP, He DY, Sawkins JN, Druce JC, Quon G, Lett D, Zheng GX, Xu T,
Ouellette BF: Pegasys: software for executing and integrating
analyses of biological sequences. BMC Bioinformatics 2004, 5:40.
[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC406494/]
[PMID:15096276 PMCID:PMC406494]

19. Linke B, Giegerich R, Goesmann A: Conveyor: a workflow engine for
bioinformatic analyses. Bioinformatics 2011, 27(7):903–911. [http://
bioinformatics.oxfordjournals.org/content/27/7/903]

20. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S: Kepler: an
extensible system for design and execution of scientific workflows.
In Scientific and Statistical Database Management,2004. Proceedings. 16th
International Conference on: IEEE Computer Society; 2004:423–424.

21. Ovaska K, Laakso M, Haapa-Paananen S, Louhimo R, Chen P, Aittomaki V,
Valo E, Nunez-Fontarnau J, Rantanen V, Karinen S, Nousiainen K,
Lahesmaa-Korpinen AM, Miettinen M, Saarinen L, Kohonen P, Wu J,
Westermarck J, Hautaniemi S: Large-scale data integration
framework provides a comprehensive view on glioblastoma
multiforme. Genome Med 2010, 2(9):65. [http://genomemedicine.com/
content/2/9/65]

22. Hoon S, Ratnapu KK, Chia Jm, Kumarasamy B, Juguang X, Clamp M,
Stabenau A, Potter S, Clarke L, Stupka E: Biopipe: a flexible framework
for protocol-based Bioinformatics analysis. Genome Res 2003,
13(8):1904–1915. [http://genome.cshlp.org/content/13/8/1904]

23. Goodstadt L: Ruffus: a lightweight Python library for computational
pipelines. Bioinformatics 2010, 26(21):2778–2779. [http://bioinformatics.
oxfordjournals.org/content/26/21/2778]

24. Sadedin SP, Pope B, Oshlack A: Bpipe : a tool for running and
managing Bioinformatics pipelines. Bioinformatics 2012. [http://
bioinformatics.oxfordjournals.org/content/early/2012/04/11/
bioinformatics.bts167.abstract]

25. Cormen TH: Introduction to Algorithms, 3rd ed edition. Cambridge: MIT
Press; 2009.

26. flex: The Fast Lexical Analyzer [http://www.gnu.org/software/flex]
27. Bison - GNU parser generator [http://www.gnu.org/software/bison/]
28. Graphviz - Graph Visualization Software [http://www.graphviz.org]
29. Hastings PJ, Lupski JR, Rosenberg SM, Ira G:Mechanisms of change in

gene copy number. Nature Rev. Genet 2009, 10(8):551–564. [http://www.
ncbi.nlm.nih.gov/pubmed/19597530] [PMID:19597530]

30. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan
M: PennCNV: An integrated hidden Markovmodel designed for
high-resolution copy number variation detection in whole-genome
SNP genotyping data . Genome Res 2007, 17(11):1665–1674. [http://
genome.cshlp.org/content/17/11/1665.abstract]

31. A simple and efficient access to R from Python. [http://rpy.
sourceforge.net]

doi:10.1186/1471-2105-14-201
Cite this article as: Napolitano et al: Bioinformatic pipelines in Python with
Leaf. BMC Bioinformatics 2013 14:201.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://www.springerlink.com/index/10.1007/3-540-44503-X_20
http://www.springerlink.com/index/10.1007/3-540-44503-X_20
http://dx.doi.org/10.1038/nature10836
http://dx.doi.org/10.1038/nature10836
http://www.neuronelab.dmi.unisa.it/leaf
https://github.com/franapoli/pyleaf
http://bib.oxfordjournals.org/content/9/1/57
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945788/
http://nar.oxfordjournals.org/content/34/suppl_2/W729.full
http://nar.oxfordjournals.org/content/34/suppl_2/W729.full
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC406494/
http://bioinformatics.oxfordjournals.org/content/27/7/903
http://bioinformatics.oxfordjournals.org/content/27/7/903
http://genomemedicine.com/content/2/9/65
http://genomemedicine.com/content/2/9/65
http://genome.cshlp.org/content/13/8/1904
http://bioinformatics.oxfordjournals.org/content/26/21/2778
http://bioinformatics.oxfordjournals.org/content/26/21/2778
http://bioinformatics.oxfordjournals.org/content/early/2012/04/11/bioinformatics.bts167.abstract
http://bioinformatics.oxfordjournals.org/content/early/2012/04/11/bioinformatics.bts167.abstract
http://bioinformatics.oxfordjournals.org/content/early/2012/04/11/bioinformatics.bts167.abstract
http://www.gnu.org/software/flex
http://www.gnu.org/software/bison/
http://www.graphviz.org
http://www.ncbi.nlm.nih.gov/pubmed/19597530
http://www.ncbi.nlm.nih.gov/pubmed/19597530
http://genome.cshlp.org/content/17/11/1665.abstract
http://genome.cshlp.org/content/17/11/1665.abstract
http://rpy.sourceforge.net
http://rpy.sourceforge.net

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Previous work

	Concepts
	resources and processors
	Bioinformatic protocols as annotated DAGs

	Implementation
	The leaf graph language
	Pyleaf
	Leaf and Python frameworks coexistence

	Application example
	Conclusions
	Availability and requirements
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 793.440]
>> setpagedevice

