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Clines are observable gradients that reflect continuous change in biological

traits of species across geographical ranges. Clinal gradients could vary at

geographic scales (latitude and altitude). Since clinal variations represent

active genomic responses at the population level they (clines) provide an

immense power to address questions related to climatic change. With the

fast pace of climate change i.e. warming, populations are also likely to exhibit

rapid responses; at both the phenotypic and genotypic levels. We seek to

understand how clinal variation could be used to anticipate climatic responses

using Drosophila, a pervasively used inter-disciplinary model system owing to

its molecular repertoire. The genomic information coupled with the phenotypic

variation greatly facilitates our understanding of the Drosophilidae response to

climate change. We discuss traits associated with clinal variation at the

phenotypic level as well as their underlying genetic regulators. Given

prevailing climatic conditions and future projections for climate change,

clines could emerge as monitoring tools to track the cross-talk between

climatic variables and organisms.
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1 Background

Species extinctions have been common in the history of this planet (Bambach 2006;

Qiao et al., 2016). Striking among these extinctions has been the global loss of megafauna

(weighing more than 45 kg) which began approximately fifty thousand years ago, towards

the end of Pleistocene and continued into the Holocene (Koch and Barnosky 2006).

Termed as the Late Quaternary Extinction (LQE), this time period happened to coincide

with the latest glacial-interglacial transition, raising considerable debate about the

anthropogenic versus climatic impacts on species extinctions (Barnosky and Lindsey

2010; Nogués-Bravo et al., 2010; Sandom et al., 2014). Even then growing consensus

indicates a synergistic role of both climatic and anthropogenic influences on species

extinctions (Prescott et al., 2012). Anthropogenic influence could likely be postulated

through overhunting (Flannery 1990), fire usage (Miller et al., 2005) and introduction of

predators (Alroy 2001) with the onset of human colonization across continents. The
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climate-centric perspective hypothesized habitat loss, seasonal

alterations affecting nutritional availability from plants to be

some of the causes behind species extinctions [reviewed in (Koch

and Barnosky 2006)]. Temperature has been a key driver implied

in climatic changes; specifically decreasing temperatures during

the last glacial maxima have been associated with megafaunal

extinctions (Stewart et al., 2021). The fast pace of glacial-

interglacial transition, the large size (≥45 kg) of the mega-

fauna added could have limited the time to adapt or migrate

(Koch and Barnosky 2006). Arguably, recent climate change

confined to the limited time frame from 1955 to 2022 has been

more appalling, due to its enormous extinction rate (Akçakaya

et al., 2014). Climate change consequences (Cahill et al., 2013)

can be seen as an overall reduction in biodiversity (Bellard et al.,

2012; Meyer et al., 2022), as well as spatial redistributions of

organisms globally (Sunday et al. 2012). While species extinction

is a reality, rapid climate change almost always does not imply the

doom for species. Organismal response to rapid climate change

varies and is predominantly evident through modifications of life

history traits (Hoffmann and Sgrò 2011), shift in reproductive

timings and migration (Scheffers and Gretta 2019; Parmesan and

Singer 2022). Mammalian extinction could be striking because of

its (mammals’) sheer size, yet ectotherms (sensitive to

temperature fluctuations) could be immediate targets of

climate change. The speciose insects could particularly provide

valuable insights regarding extinction events and climate

vulnerability. Although, fossil records, carbon dating and

molecular phylogeny address extinction events partially,

inferences can be equivocal. We propose that clines can be

used to decipher/predict the response of organisms to

changing climate (Figure 1).

The term “cline” was introduced by Julian Huxley (1938)

and is generally defined as an observable gradient in a biological

characteristic across a larger geographical range. A variety of

species exhibit geographic variation, i.e., systemic changes in

form, size or any other characteristic along the environmental

gradient (Koch 1986). For this review we broadly discuss

Drosophila genus and their relative potential to understand

adaptive response to climate change.

Drosophila melanogaster (commonly known as vinegar fly)

originated in Central and South Africa from where it dispersed to

Europe, Asia and more recently to North America, and Australia

(David and Capy 1988; Haudry et al., 2020) (see Figure 2).

Within a span of 20,000 years D. melanogaster as with other

FIGURE 1
The flowchart describes clinal variation and the impact of climate change on clines. Clinal variation can occur both at the phenotypic and
genotypic level across different geographic scales; altitude and latitude. Climate changes are known to influence existing clines, resulting in clinal
shifts in which species either expand or contract in their habitat range. Response to climate change could be rapid and these could be tracked within
a span of few years. Populations responding to climate change at the genomic level couldmodify existing ones. Overall clines could be a tool to
track rapid environmental changes.

Frontiers in Physiology frontiersin.org02

Mayekar et al. 10.3389/fphys.2022.880728

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.880728


species of the genus adapted to local climate regimes. This can be

seen through the wide range of clines across species spread across

continents (Table 1 and Supplementary Table S1). We discuss

clines broadly categorized under morphology; reproduction,

development and behaviour; stress resistance, and metabolic

traits.

2 Clinal variation

2.1 Clines for morphological and
reproductive traits

2.1.1 Latitudinal clines
Clinal variations are influenced by environmental variables

which co-vary with latitude and have been observed in a variety

of ectotherms/stenotherms, which comprise various species of

the genus Drosophila. As per Bergmann’s rule, body size is large

in colder habitats (lower temperatures), and so does body form

and shape (e.g., appendices) (Allen’s rule). These rules were

founded on the basis of endotherms (Köhler et al., 2017) but

also find reflection in a number of altitudinal/ latitudinal clines

for ectotherms. (Ray 1960; Atkinson 1994). Alluding to

Bergmann’s rule, latitudinal clines in D. melanogaster, are

known for several traits, viz., body size (David and Charles

1975), larval growth rate (Robinson and Partridge 2001),

developmental rate (James et al., 1995), ethanol tolerance,

ovariole number (David and Charles 1975), abdominal

pigmentation (Rajpurohit et al., 2008a), cold tolerance, heat

and starvation tolerance (Da Lage et al., 1990) (refer Table 1).

While traits of body size, ovariole number and cold tolerance

exhibit positive clinal variation, i.e., increase with increasing

latitude, the trend reverses for larval development or heat

tolerance.

D. melanogaster populations obtained from the coasts of

Australia and South America exhibited clines for egg size

(Klepsatel et al., 2014) with egg size increasing with latitude.

When all populations were maintained at constant temperatures,

an increase in egg size was recorded with corresponding increase

in latitude. Parallel differentiation (Adrion et al., 2015) wherein

clinal trends are similar across geographical scales (also see

Figure 2) suggests a possible overlap of proximate influential

factors [e.g., temperature across latitudes (Klepsatel et al., 2014)

(Figure 2)].

The magnitude of clinal variation also differs for latitudinally

similar gradients. Photoperiod and temperature influence

FIGURE 2
Map of the direction of spread and clinal variation of Drosophila melanogaster. Ancestral populations of Drosophila melanogaster from sub-
Saharan Africa (Zambia) dispersed to Europe (ca. 10-19,000 years ago) and Asia (ca. 5,000 years ago) (David and Capy 1988; Haudry et al., 2020).
From Europe there were subsequent dispersals to Australia and North America [<200 years ago (Keller, 2007)]. Population recently dispersed from
Africa to North America and this dispersal is considered to be mediated through human movement. Clinal variation in D. melanogaster across
latitudes and altitudes has been denoted by yellow circles and red triangles, respectively. Each circle or triangle represents particular geographic
locations (not to scale) from which populations were collected. Latitudinal and altitudinal clines have been observed for D. melanogaster in Africa,
Europe, Asia, and Australia. In North and South America only latitudinal clines are known for D. melanogaster and no clines are known across
altitudes. Instead D. buzzati (blue) exhibits an altitudinal cline (thermal tolerance) in South America (Sørensen et al., 2005). Numbers in boxes
represent the approximate time in years when D. melanogaster dispersed throughout the world from the ancestral population in Africa. Latitudinal
clines have been depicted for desiccation tolerance (Asia: India (Karan et al., 1998)), chromosomal inversion (Asia: Japan (Inoue andWatanabe 1979))
and wing area (Australia, (James et al., 1995)), (South America, (Land et al., 1999)). Altitudinal clines have been depicted for body pigmentation (Asia
(Parkash and Munjal, 1999)), diapause incidence (North America (Schmidt and Conde 2006)) and cold tolerance (Australia, (Collinge et al., 2006)).
Latitudinal and altitudinal clines for wing area mirror each other in Europe and Africa (Klepsatel et al., 2014). All traits depicted exhibit positive clinal
variation. Thus, wing area is larger for populations at higher latitudes and altitudes compared to populations at lower latitudes and altitudes (Klepsatel
et al., 2014).
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TABLE 1 Latitudinal and altitudinal clines inDrosophila species have been presented from six continents. Each trait exhibiting a cline is represented by a coded colour symbol (refer to box below). Clines are
broadly categorized as: morphological, reproduction, development and behaviour, stress resistance and energy reserves. There is considerable parallelism as well as variation for the same trait across
continents. Traits for clines are codes with different symbols and colours.

Body size, ; Wing length, ; Wing loading, ; Cell number, ;Trident pigmentation, ; Body weight, ; Thorax length, ; Abdominal bristles, ; Sterno-pleural bristles, ; Aldh-Phe gene, ; In(3R) P, ; Wing size, ; Abdominal pigmentation, ;

Wing-thorax ratio, ; Ovariole number, ; Copulation period, ; Egg size, ; Diapause, ; Thermoregulation, ; Larval developmental time, ; Circadian rhythm, ; Time less allele, ; Mid day siesta, ; Desiccation resistance, ; Starvation resistance,

; Heat resistance, ; Wolbachia infection frequency, ; Trehalose, ; Chill recovery, ; Cold resistance, ; Ethanol tolerance, ; Total body lipids,
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circadian rhythms and diapause especially in temperate species.

Shorter photoperiods and lower temperatures induce diapause,

i.e., winter dormancy (Danilevsky et al., 1970; Schmidt and

Conde 2006). Even then, North American D. melanogaster

populations, show an increase in diapause frequency

compared to East Australian populations with respect to

increasing latitudes (Collinge et al., 2006).

Pigmentation, a highly variable trait across species, also

exhibits latitudinal clinal variation in the Drosophila genus.

Trident pigment pattern exhibited a positive cline with respect

to latitude in both D. melanogaster (David et al., 1985) and D.

simulans (David and Capy, 1988; Capy et al., 1988). However, the

slope was steeper in the case of D. melanogaster compared to D.

simulans with extremely low temperatures inducing trident

pigmentation. Another trait influenced by latitude is female

remating or polyandry (Taylor et al., 2016). A study

investigating the effect of temperature on mating in female D.

pseudoobscura populations indicated that polyandry follows a

latitudinal cline. It was found that females re-mated at an

increased rate in a colder environment corresponding to a

higher rate of polyandry at higher latitudes. However, genetic

factors also had an impact on the latitudinal cline in this species

(Taylor et al., 2016). Latitudinal clines partly result from spatially

varying selection, in many cases temperature being considered

the major selective factor (Stalker and Carson 1947). In an

extensive study across latitudes in the Indian subcontinent

(Rajpurohit and Nedved 2013) body size, ovariole number,

starvation tolerance, and several other traits. were found to

vary with latitude. Trait variation in this case is largely

speculated to be driven by temperature.

2.1.2 Altitudinal clines
Altitudinal clines are assumed to mimic latitudinal clines

qualitatively since mean temperature reduces as a result of

increasing altitude and latitude (Figure 2). Altitudinal clines

also exist for many morphological traits across a variety of

species. Body color/size can also change along altitudinal

gradients. The “thermal melanism” hypothesis states that

organisms in colder regions, i.e., higher latitudes or higher

altitudes are usually darker compared to the ones in the

warmer regions for efficient thermoregulation (Trullas et al.,

2007). In D. melanogaster populations from different continents,

thoracic pigmentation correlates with latitudes. Flies from high

altitudes have darker body pigmentation thus correlating with

latitudinal clines (Pitchers et al., 2013). Positive altitudinal cline

for body size have been identified inD. buzzatti (Dahlgaard et al.,

2001), and D. robusta (Stalker and Carson 1948).

A similar cline has also been recorded in D. melanogaster

populations collected from highland and lowland regions in the

Indian subcontinent (Parkash et al., 2008). D. melanogaster

populations at higher altitudes were more melanized than

populations from lower latitudes. Darker flies with more than

45% melanization were found to be more resistant to desiccation

than lighter flies with less than 30% melanization. The

phenotypic variations exhibited by these organisms were

concluded to correspond with geographical factors such as

latitude and altitude as well as changing weather conditions

like annual temperatures and humidity (Parkash et al., 2008).

Other Drosophila species known to have similar reported clines

for pigmentation includeD. simulans (David and Capy 1988) and

D. dunni (Hollocher et al., 2000) (Supplementary Table S1).

Clinal patterns across latitudes do not always reflect those of

altitudes. D. melanogaster females collected from highlands

(3,000 m) in Ethiopia (Africa) exhibited bigger thorax sizes

than females collected from lowlands (525 m) (Klepsatel et al.,

2014). At higher altitudes, selection in addition to temperature,

e.g., lowered oxygen availability could also affect body size

(Frazier et al., 2001). That is lowered oxygen levels (hypoxia)

could induce smaller body size. In that case, larger thorax in the

highland Ethiopian population presents an example of counter-

gradient variation (Conover and Schultz 1995) wherein

genotypes give rise to phenotypes in contrast to

environmental variation. Thus even under hypoxic conditions

at high altitude, the joint effect of temperature was correlated

with larger body size.

2.2 Stress resistance and energy reserve
clines

High altitudinal species D. takahashii and D. nepalensis were

more desiccation tolerant than their low altitude counterparts

(Parkash et al., 2005). Alternately, low altitudinal populations

were more starvation tolerant than the high altitudinal ones. D.

nepalensis, which is more colder adapted than D. takahashii

exhibited higher tolerance to desiccation/starvation stressors

than D. takahashii. The link between higher altitudes and

physiological traits (e.g., body size, pigmentation, stress

response) need further investigation.

The maintenance of body processes requires a threshold

amount of energy which is reflected as the standard metabolic

rate (Norin and Metcalfe 2019). The metabolic rate of an

organism indicates its ability to grow and reproduce, which

relates to overall performance, making it a possible target for

selection. There are several hypotheses in existence that explore

the relationship between the metabolic rate and the longevity of

an organism. For example, the “compensation hypothesis”

(Pettersen et al., 2018) states that organisms with a lower

standard or basal metabolic rate are at an advantage since it

results in lower maintenance costs, which allows allocation of

energy towards functions such as reproduction. In contrast, higher

standard or basal metabolic rates allow the sustenance of larger

organs, which may contribute to higher reproductive yield. This is

known as the “increased-intake hypothesis.” The variance in

metabolic rate has been found to be heritable, and hence

expected to evolve (Norin and Metcalfe 2019).
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Energy acquisition by ectotherms is restricted by their ability to

commute to acquire resources. Plasticity inmetabolism can only be

considered advantageous if there is a balance between energy

acquisition and energy expenditure which can be modulated as

per the energy demand. Metabolic plasticity could prove beneficial

since it takes environmental cues into consideration and adjusts

life-history accordingly; less resources means lesser energy

expenditure, abundant resources means enhanced growth (Auer

et al., 2015). This makes metabolic plasticity a likely clinal

candidate to investigate in the face of climate change (Norin

and Metcalfe 2019).

The “metabolic cold adaptation hypothesis” posits that in a

set thermal range, ectotherms originating from chilly climates

will have a higher metabolism than those from hotter

environments (Carrasco and Antonio, 2004). This hypothesis

also assumes that populations from higher latitudes are more

sensitive to changes in ambient temperature and would therefore

be more likely to rapidly cope with rising temperatures (Nielsen

et al., 1999). Studies have shown that flies selected for rapid

recovery from chill comma have increased metabolic rates and

are able to suppress their metabolic rates and maintain

homeostasis in response to chronic cold exposure. Indeed

numerous studies have suggested that latitudinal clines for

allele frequency of central metabolism-related enzymes are

products of selection brought by climate change or seasonal

fluctuation (Williams et al., 2014). On the Indian subcontinent

Drosophilidae exhibit differences in storage as well as utilization

of energy metabolites carbohydrate and lipids. However, storage

and utilization of metabolites may differ under different stressful

conditions such as desiccation and starvation. In order to cope

with physiological stresses, adaptive responses in insects involve

metabolite storage, e.g., trehalose (Chippindale et al., 1998). This

has been corroborated with laboratory studies investigating

desiccation resistance in D. melanogaster (Folk, 2001).

Trehalose is one of the most abundant sugars in insect

hemolymph and helps cope with climatic stressors like

dehydration (Ring 1998). While clinal variation runs in

parallel to latitudinal gradient, an opposing trend is noted for

lipids in D. melanogaster (Chippindale et al., 1998).

3 Genetic and genomic basis of clinal
variation

Climate change could trigger changes at the genetic level in

populations (Hoffmann and Sgrò 2011). Latitudinal clinal

variation for both genetic and genomic levels is known from

Drosophilidae species of North America, Eastern Australia, and

Europe (Adrion et al., 2015; Machado et al., 2021). The clines

observed demonstrate parallel variation in alleles and genomic

regions for temperate flies and these variations were correlated

with seasons. Clines could thus be used to track populations

across changing seasons to predict population responses. Clines

also exist at the gene level with known variation in markers. For,

e.g., latitudinal clines are also observed at the genetic level, at the

levels of allozymes, DNA, and chromosomal inversions (Mettler

et al., 1977; Knibb 1982) in Drosophila species. A case of

chromosomal inversion under local selection is that of D.

subobscura (Balanyá et al., 2006). Clinal variations are also

known for the alcohol dehydrogenase (Adh) (also see Table 1)

and acetaldehyde dehydrogenase (Aldh) loci (Berry and

Kreitman 1993). These enzymes regulating the alcohol

detoxification pathway exhibit latitudinal clines in North

American Drosophilidae populations (Fry et al., 2008).

The trident pigment variation on the thorax regions in D.

melanogaster has also been explored for its underlying genetic

basis (Hoffmann and Sgro 2011; Telonis Scott et al., 2011).

Accordingly, the ebony locus present in the cosmopolitan

inversion In3R(P) was found to display clinal variation

(Umina et al., 2005). This study confirmed the significance of

the ebony gene in the clinal variation of trident pigmentation. D.

melanogaster populations from Northern and Southern Japan

were found to differ with respect to the In(3R)P inversions (Inoue

andWatanabe 1979), in that southern populations possess higher

number of inversions than the northern ones (see Figure 2).

Similar trend of In(3R)P inversions was found along latitudinal

gradients along the eastern coast of Australia, North America

(Knibb 1982) as well as in Asian populations (Singh and Das

1992) of D. melanogaster. Chromosomal inversion studies hint

that inversions also play a central role in evolutionary processes

(through local adaptation) (Kirkpatrick and Barton 2006).

However, clinal patterns can also occur as a result of genetic

drift or population history (Hoffmann andWeeks 2007). Genetic

drift could cause alleles to be fixed in populations narrowing the

cline, but changes within the alleles could broaden the cline

(Polechová and Barton 2011). Spatial genetic structure has also

been observed along the east coast of Australia and substantial

symmetrical gene flow is seen (Gockel et al., 2001). Taylor et al.

(2016) in their experiments on D. pseudoobscura highlighted the

role of female genotype on re-mating. However, the most

plausible explanation for the genetic basis of polyandry is the

chromosome inversions (Herrera et al., 2014). Interestingly, in

many species chromosomal inversions have been found to be

impacted by temperature gradients.

4 Clinal shifts

Changes in the global climate have led to shifts in the

geographical boundaries of the species and not surprisingly in

clines as well (Vitousek 1992; Bradshaw and Holzapfel 2008).

Studies have tracked the population movements at species

borders (Parmesan 1996). Potential impacts of climate change

have also been investigated in Drosophila (Etges et al., 2006).

Several studies also investigated shifts in allele frequency, such as

the shifts in the loci of allozymes (Oakeshott et al., 1982). Clinal
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variations with regards to climate change have been recorded in a

variety of organisms (Franks and Hoffmann 2012). Climate

changes and phenology (the timing of an organism’s life cycle

activities) are interconnected, and change in climate is likely to

modify these dynamics (Prendeville et al., 2013). Modification in

the environmental gradients leads to shifts in cline position and

also phenotypic variation along a species range. This effect is

termed as “clinal translocation” by Koch (Koch 1986). One of the

best cases of trait shift is the alcohol dehydrogenase (Adh) locus

in D. melanogaster which exhibits a genetic latitudinal cline

(Vigue and Johnson 1973). The Adh allelic frequency

increases with decrease in latitude in the northern as well as

southern hemispheres. Variation in the latitudinal cline of the

Adh has revealed genetic changes correlated to increasing

temperatures and drought-related conditions (Umina et al.,

2005).

Many organisms are migrating or extending their habitats

towards higher latitudes and altitudes in search of cooler

temperatures, in response to climate change. Summers are

getting warmer, but winters are getting rapidly warm too. The

cold of winter is an essential part of many systems in organisms

that involve both behavioural and physiological traits. Numerous

species of ectotherms from colder climates decrease their energy

expenditure which allows them to retain energy stores (Williams

et al., 2015). The resource status of an organism in the winter will

also determine its performance in the summer that follows. A

clinal shift that depicts this phenomenon of migration that shows

an extension of an existing cline along Indian latitudes has been

observed (Rajpurohit et al. 2008).D. ananassae is a tropical warm

adapted species but in the last couple of decades has extended its

distribution to lowlands of Western Himalayas (Rajpurohit et al.,

2008b). This extension of distribution can be explained on the

basis of plastic changes which were documented in viability and

fecundity correlated with changes in temperature (Rajpurohit

et al., 2008a).

5 Rapid adaptations

Documented evidence of the impact of rapid climate change

on the eco-system demonstrates considerable loss, shifts and

alterations in phenology/lifecycles of several species (Pörtner

et al., 2022). Evolutionary adaptation can be extremely fast,

especially in response to rapidly changing habitats. Rapid

adaptation is possible through genetic accommodation or is

shaped by natural selection (Shimada et al., 2010).

Understanding rapid genomic changes is proving useful to

understand how heritability could sustain organisms in the

face of climate change. An example is that of D. subobscura

native to the Old World, but has demonstrated rapid adaptation

in wing size, where this trait responds differentially across

continents (Huey et al., 2000). D. subobscura was introduced

to North and South America about two decades ago (Brneie et al.,

1981; Beckenbach and Prevosti 1986). Clinal variation with

respect to wing size became evident shortly after the first two

decades of introduction. It was noted that males from North

America displayed less steeper clines for wing size in comparison

to their European counterparts; while females had comparable

wing measurements across continents. This example

demonstrates the rapid pace of trait evolution and adaptation

to local selection pressures.

Evolution of cuticular hydrocarbons (CHCs) across short

time scales also highlights the physiological adaptation to the

changing environment (Rajpurohit et al., 2017a). CHC profiles of

D. melanogaster across a latitudinal gradient were found to

consistently differ both in outdoor mesocosm conditions (fall

and spring seasons) and laboratory conditions (Rajpurohit et al.,

2017b). Sensitivity to temperature was also confirmed by change

in the frequency of alleles across seasons. It is thus interesting to

note that response to climate changes could be fast and several

gene regulatory networks could be involved. Analyses of single-

nucleotide polymorphisms (SNP’s) which could vary at both

temporal and spatial scales across latitudinal populations

could prove particularly insightful. Recently, (Rudman et al.,

2022) populations of D. melanogaster were tracked in real

time in outdoor conditions (mesocosms), across seasons and

adaptation to changing seasons was evident through changes

in allele frequency. If allele frequencies could change across

seasons, long term seasonal changes across years could also

be investigated for similar changes (Figure 1). Indeed

Behrman et al. (2015) showed that seasonally varying

SNP’s could be maintained by balancing selection. Data

collected from D. melanogaster populations in temperate

orchards (North America) revealed that SNP oscillation

across seasons could be adaptive in response to extreme

frost as well warming conditions. Whole genome

comparisons demonstrate a 2.5% increased frequency in

SNPs of northern associated alleles indicating the

presence of latitudinal cline. Rapid adaptation is thus

evident in the phase of climate change with rising

temperatures.

Signaling pathways involved in developmental wiring are

seen as likely candidates to understand the molecular basis of

rapid adaptation. Selection acting on genetic variation differs

across time scales. Some genetic variations might be directionally

selected, while some would be affected by fluctuating

environments over shorter time scales (Rudman et al., 2022).

Nevertheless sampling at regular time-points could yield insights

into the neutral/non-neutral basis of selection (Lange et al.,

2022).

6 Gaps and future prospects

Ectotherms (insects, amphibians, reptiles) are particularly

sensitive to thermal fluctuations and rapid climate change could
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often stretch the thermal limits outside the optimal range

(Kingsolver et al., 2013). Unlike mammals or large organisms,

the comparatively small size of insects is not a constraint in

migration. Hence more studies investigating clines related to life

cycle stages (especially juvenile) could help understand adaptive

responses, e.g., faster growth at larval stage, diapause induction

and even energy balance (metabolites). Low temperatures induce

diapause in temperate regions. Global warming could either

break this diapause earlier or may not induce diapause at all.

Adults eclosing in mismatched environments could face survival

challenges since seasonal changes could still be governed by

photoperiod. It would be interesting to note if insects in

temperate versus tropics have supernumerary (extra)

generations as a consequence of climate change. Clinal

exploration in ectotherms could thus be useful in tracing the

rapid impact of climate on life history traits. The “Climate

variability hypothesis” (CVH) proposed by Stevens (1989)

posits that temperate species will be more capable of

expanding their geographical range of distribution than

tropical species (Sheldon and Tewksbury 2014). This indicates

a positive correlation between the range of thermal tolerance and

increasing latitude, which needs to be further explored (Addo-

Bediako et al., 2000). Climatic fluctuation plays a significant role

in determining the ecological range of species (Currie et al.,

2004). Between 1970 and 2000 more than half of the species have

responded to warming globally. This contribution can also be

indirect via alterations in species’ interactions (Thomas 2010). To

see how climate change influences clines in closely interacting

species, an experiment was conducted by Davis et al. (1998)

wherein three Drosophila species were exposed to simulated

global warming conditions. At low temperatures, dispersal

enhanced fitness in D. subobscura compared to D.

melanogaster and D. simulans. However, at high temperatures,

fitness of all three species was compromised. It is thus becoming

clear that climate change would induce habitat changes, but

interaction with other biotic factors could also influence

organismal fitness. Glancing through existing literature, we

present few perspectives on clinal variation which might yield

further insights into species response to climate change:

6.1 Revisiting older clines, find
comparative traits

Clines: both phenotypic and genomic are largely known from

the temperate zones for Drosophilids (Adrion et al., 2015). Little

is known about the genetic bases for clines in Africa and Asia. It

would be insightful to investigate the genetic and genomic basis

of clinal variation observed in Africa and Asia (Rajpurohit et al.,

2022) and compare these with temperate counterparts. Perhaps

the complex network of biotic interactions available in tropical

and sub-tropical Asia and Africa could mean populations have

options for relocation, alternate host/food sources and thus

lowered vulnerability to extinction. It is then interesting to

note if parallel differentiation is common across latitudinally

similar clines (even with tropics). Considering the global

diversity in the tropics, one would expect variation in both

the number of traits exhibiting clines and the spread (level of

gradient) between/among these clines; to differ from the

temperate species. Thus, clinal variation for stress resistance

traits are more common across the Indian subcontinent

(tropical), while diapause clines were more frequently

associated with temperate climate regimes (see Table 1 and

Supplementary Table S1). This could be due multiple

ecological factors selecting a particular phenotype. Local

selection pressures other than temperature, e.g., hypoxia,

moisture content, predation, and biological interactions could

also likely select traits optimizing fitness for a given environment.

6.2 Investigating wide spread clines

Clinal variation in several cases is known from extreme

phenotypes. However, the magnitude of variation within a

cline remains largely unknown. In the face of climate change,

populations from widespread clines could be expected to have

higher chances of survival even if populations from a particular

zone get wiped out or face extinction. It could be relevant to

explore geographic zones spanning variation in latitudes and

altitudes with known clines. For example, the Indian

subcontinent (Rajpurohit et al., 2017b) offers a series of

graded environments from cold to humid habitats and

elevations ranging from coasts to 3,000 m above sea level

which hitherto remain under-explored.

Global warming predicts that species will migrate poleward

or towards higher altitudes as temperatures rise. To what extent

will this modify/relocate/shift clines? For example, will

pigmentation/body size for populations from lower latitudes/

altitudes increase further when they migrate towards higher

latitudes/altitudes? The clear answer to this question is we do

not know. If there is no heritable variation for a particular trait,

organisms would not be able to adapt even if they relocate to

different geographical locations. It is therefore important to study

the genetic basis of clinal variation broadly across species and

geographic scales. It would also be interesting to connect clinal

traits with the critical thermal tolerances of organisms since

tropical species could have narrower thermal tolerances than

temperate species (Kellermann et al., 2012). If this is the case do

tropical populations migrate poleward or will latitudinal clines

shrink? How high would temperate populations migrate in the

face of climate change? These remain open ended questions and

studies linking existing clines, migration events could shed more

light.

Rapid adaptations present a new area to explore the evolution

of clines. Thus, diapause induction or increased tolerance to cold

was not observed for the ancestral population of D. melanogaster
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from Africa. However, recently migrated D. melanogaster

populations in North America (Schmidt and Conde, 2006)

and Australia (Collinge et al., 2006) exhibit positive clines for

diapause/cold tolerance than African ancestors. It is therefore

likely that D. melanogaster dispersing flies from Europe to North

America passed these differentiated loci (in ca. 200 years) to

North America and Australia (also see Figure 2).

6.3 Disconnect between morphological
and molecular analysis and long term
tracking

The plasticity component for every trait needs to be well

characterized, because these could likely have cross talks with

climatic variables. A plastic trait could enable fitness across

diverse environments only through environmental effects (only

E and not GXE). However, unless the trait is heritable, the

plastic component will not be adaptive in successive

generations. Long-term studies using biomarkers, merging

both molecular and physiological aspects, could be used to

track loss of biodiversity and spread of populations in the face of

climate change.

7 Conclusion

Species unable to adapt to climate change risk extinction.

While climate change has been known through millenia, the pace

has been faster in recent years. Rapid increase in temperature, a

key factor of climate change presents a challenge for organismal

survival. Organisms from lower latitudes and altitudes are more

likely to go extinct than those from higher altitudes and latitudes.

An understanding of how organisms across latitudes/altitudes

are responding to climate change could thus be crucial in

implementing preventive measures, e.g., conservation,

reducing biodiversity loss. We therefore propose clinal

variation studies to complement measures of tackling climate

change. Given their speciose nature and wide distribution, insects

seem promising systems to study climate mediated changes.

Existing knowledge from morphological and life history traits

provides some intriguing clues. However, broader-scale

comparisons of genetic and plastic traits are still less known.

We therefore focus on the amenable (high-throughput

platform available) fruit fly model system, which could serve

to explore adaptations to climate change through key traits

linked with survival and fitness. Molecular studies reveal allelic

changes in response to temperature fluctuation spanning even

shorter time-periods in fruit flies. We discuss clinal variation

with respect to a wide variety of traits which could affect species

fitness and also response to climate change (Figure 1). We

highlight potential shortcomings in clinal studies and suggest

how these could be addressed to understand species

redistribution, clinal shift patterns. Overall our review

emphasizes the necessity to understand climatic change

through an alternative lens of clinal variation, less explored

till now.
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