## scientific reports



#### OPEN

# Generic multidimensional economic environmental operation of power systems using equilibrium optimization algorithm

Mohamed T. Mouwafi<sup>1</sup>, Adel A. Abou El-Ela<sup>1</sup>, Amany A. El-Hamoly<sup>1</sup> & Ragab A. El-Sehiemy<sup>2,3⊠</sup>

The economic emission load dispatch (EELD) problem is one of the main challenges to power system operators due to the complexity of the interconnected power systems and the non-linear characteristics of the objective functions (OFs). Therefore, the EELD problem has attracted significant attention in the electric power system because it has important objectives. Thus, this paper proposes the equilibrium optimization algorithm (EOA) to solve the EELD problem in electrical power systems by minimizing the total fuel cost and emissions, considering system and operational constraints. The OFs are optimized with and without considering valve point effects (VPE) and transmission system loss. The multi-OF, which aims to optimize these objectives simultaneously, is considered. In the proposed EOA, agents are particles and concentrations that express the solution and position, respectively. The proposed EOA is evaluated and tested on different-sized standard test systems having 10, 20, 40, and 80 generation units through several case studies. The numerical results obtained by the proposed EOA are compared with other optimization techniques such as grey wolf optimization, particle swarm optimization (PSO), differential evolution algorithm, and other optimization techniques in the literature. To show the reliability of the proposed algorithm for solving the considered OFs on a large-scale power system with and without considering different practical constraints such as VPE, ramp-rate limits (RRL), and prohibited operating zones (POZs) of generating units, the proposed EOA is evaluated and tested on the 140-unit test system. Also, the proposed multi-objective EOA (MOEOA) successfully acquires the Pareto optimal front to find the best compromise solution between the considered OFs. Also, the statistical analysis and the Wilcoxon signed rank test between the EOA and other optimization techniques for solving the EELD problem are performed. From numerical results, the total fuel cost obtained without considering VPE using the proposed EOA is reduced by 0.1414%, 0.1295%, 0.6864%, 5.8441% than the results of PSO, with maximum savings of 150 \$/hr, 78 \$/hr, 820 \$/hr, and 14,730 \$/hr for 10, 20, 40, and 80 units, respectively. The total fuel cost considering VPE is reduced by 0.0753%, 0.2536%, 2.8891%, and 3.6186% than the base case with maximum savings of 80 \$/hr, 158 \$/hr, 3610 \$/hr, 9230 \$/hr for 10, 20, 40, and 80 units, respectively. The total emission is reduced by 1.7483%, 12.8673%, and 7.5948% from the base case for 10, 40, and 80 units, respectively. For the 140-unit test system, the total fuel cost without and with considering VPE, RRL, and POZs is reduced by 6.4203% and 7.2394%, than the results of PSO with maximum savings of 107,200 \$/hr and 126,400 \$/hr. The total emission is reduced by 2.5688% from the base case. The comparative studies show the superiority of the EOA for the economic/environmental operation of the power system by solving the EELD problem with more accuracy and efficiency, especially as the system size increases.

**Keywords** Economic emission load dispatch, Emission, Equilibrium optimization algorithm, Generation cost function, Valve-points effects

<sup>1</sup>Electrical Engineering Department, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt. <sup>2</sup>Electrical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33511, Egypt. <sup>3</sup>Sustainability Competence Centre, Szecheny Istvan University, Egyetem square 1, gyor H-9026, Hungary. <sup>™</sup>email: elsehiemy@eng.kfs.edu.eg

#### Motivation

The economic dispatch (ED) problem is a subroutine of the unit commitment problem, which aims to find the optimal real power outputs of generation units such that the entire load may be supplied most economically. To reduce the total production costs, we need to satisfy the constraints of total load demand as well as respect the limits of resource capacity<sup>1</sup>. The dispatch problems become more complex when the system and operational constraints are considered, such as network transmission losses and valve-point loading effects. Therefore, the cost function must be represented by a quadratic convex/linear function to become easy and can be solved<sup>2</sup>. There is a rippling effect on the curve of the unit's power cost when a steam valve starts to open. The term "optimization" can be defined as the procedure of detection that provides the minimum or maximum value of an objective function (OF)<sup>3</sup>. Therefore, the economic emission load dispatch (EELD) problem can be formulated as a constrained optimization problem.

#### Literature survey

Initially, conventional optimization methods were used mainly as an optimization tool for solving the ED problem, such as linear programming techniques<sup>3</sup>. In addition, there are methods based on classical calculus or deterministic numerical methods are developed to solve convex ED problems, such as the Lagrangian multipliers (LM) method<sup>4</sup>, base point and participation factors method<sup>5</sup>, lambda-iteration method<sup>6</sup>, interior point method<sup>7</sup>, gradient method<sup>8</sup>, Newton method<sup>9</sup>, linear programming (LP)<sup>10-12</sup>and nonlinear programming (NLP)<sup>13,14</sup>. However, these methods suffer from several drawbacks, such as the convergence to local optima instead of global solution and the theoretical assumptions such as convexity, differentiability, and continuity. Due to the nature of control variables, objectives, and constraints of the ED problem, conventional optimization techniques may not be suitable for solving the ED problem.

Recently, the drawbacks of conventional methods in solving ED problems have been treated successfully by meta-heuristic optimization techniques due to their simplicity, flexibility to solve any optimization problem, capability to find global-optimal solutions, and independence from the nature of the problem since they use a stochastic approach for finding optimal solutions without being concerned about the nonlinearity types of the problem's search space and its constraints<sup>15</sup>. Therefore, these techniques have gained more attention for solving different optimization problems. Many standard meta-heuristic optimization techniques have been applied to solve the ED problem. In 16, a numerical algorithm based on a Python computer program was used to solve the environmental/economic load dispatch (EELD) problem considering emissions constraints, which considers the emissions trading system's effect on electricity generation cost. However, only one small standard test system size is considered. In<sup>17</sup>, The search and rescue optimization algorithm (SAR) was applied to solve the combined emission and economic dispatch (CEED) and economic load dispatch (ELD). However, only two small standard test systems are considered. In<sup>18</sup>, a dual-population adaptive differential evolution (DPADE) algorithm was utilized to solve the complex large-scale and non-convex ED problems considering both multi-fuel options (MFO) and valve-point effects (VPE). Firstly, a dual-population framework was employed to improve the search space efficiency. Then, an adaptive technology was adopted to adjust two important control parameters and avoid inappropriate parameters. However, the emission effects are not considered. In 19, a hybrid algorithm based on a combination of a modified genetic algorithm (GS) and an improved particle swarm optimization (PSO) was used to solve the CEED problem considering practical operational constraints such as VPE, MFO, ramp-rate limits (RRL), prohibited operating zones (POZs) of generating units, and transmission lines losses. In<sup>20</sup>, an improved PSO integrated with a simplex search method (MPSO\_SSM) to perform the hybrid operation using stochastic and deterministic methods was applied to solve the economic-emission power dispatch (EEPD) multi-objective problems considering the VPE and multifuel dispatch. In<sup>21</sup>, a probability distribution arithmetic optimization algorithm (AOA) based on a variable order penalty strategy was utilized to solve the CEED problem considering five probability distribution functions to enhance the searching ability, improve the convergence speed, and enhance the ability to jump out of the local optimal. However, only one small standard test system with 6 units is considered. In<sup>22</sup>, the membrane search algorithm (MSA) was used to solve the combined heat and power economic emission dispatch (CHPEED) problem by allocating heat and electrical power loads to various types of units to minimize the total cost and emissions of thermal generation units, while satisfying system constraints.

In<sup>23</sup>, a comparison between the flower pollination algorithm (FPA) and the bat algorithm (BA) was presented to solve the ED problem with and without emission effects in the power system considering the operational constraints of the generators. In<sup>24</sup>, the quasi-oppositional search-based political optimizer (QOPO) was used to solve a single and bi-objective CEED problem by minimizing total fuel costs and emissions considering different constraints such as the VPE and generator limits were achieved. However, large-scale power systems are not considered. In<sup>25</sup>, a comparison between the Osprey optimization algorithm (OOA) and other optimization algorithms was introduced to solve the ED problem with and without emission effects. However, the optimal values of generations' output powers are not mentioned in the results. In<sup>26</sup>, the non-dominated sorting multi-objective PSO with local best was used to solve the CEED problem in power systems, while a Markov chain state jumping technique was employed to control the Pareto-optimal set size. In<sup>27</sup>, an oppositional driven crisscross gravitational search approach (OCcGSA) was applied to solve the ED problem by minimizing the total operating cost considering operational constraints such as VPE, RRL, and POZs of generating units. However, the emission effects are not considered. In<sup>28</sup>, an updated differential evolution (UDE) algorithm based on a new mutation strategy was used to solve the ED problem considering RRL, POZs, and transmission line capacity. However, only small standard test systems are considered. In<sup>29</sup>, a novel based on constraints handling method was employed to solve the ED problem with VPE, consisting of the power repair strategy to modify the generator output power, and the adaptive penalty function to change according to the fitness value of the OF. In<sup>30</sup>, a semidefinite programming approach was used to solve the ED problem by minimizing the total fuel cost in two areas of an electrical power system, where tie transmission line capacity was considered a constraint. In<sup>31</sup>, the social small group optimization (SSGO) algorithm was applied to solve the ED problem considering VPE, MFO, POZs, and transmission line losses.  $In^{32,33}$ , a reinforcement learning-based DE algorithm was developed to solve the CEED problem considering the quadratic function  $in^{32}$ , and both quadratic function and cubic criterion function  $in^{33}$ .

In<sup>34</sup>, the numerical polynomial homotropy continuation (NPHC) method was applied to solve the CEED problem considering transmission line losses. However, different constraints such as VPE, RRL, and POZs are not considered. In<sup>35</sup>, the hybrid firefly algorithm (FA) and genetic algorithm (GA) were used to solve the EELD problem considering nonlinear constraints such as VPE, POZs, and RRL. The hybrid algorithm started with a potential answer searched around it based on a creative heuristic and then moved on to another potential answer. However, only small standard test systems are considered. In<sup>36</sup>, the DE based on a comprehensive learning strategy (CLS) was applied to solve large-scale power system multi-area ED considering the VPE. Three improved components, including a global guided mutation strategy based on CLS, a time-varying increasing crossover rate, and a crossover strategy based on CLS to address DE's shortcomings were incorporated to enhance the performance of comprehensive learning DE (CLDE). However, the emission effects are not considered. In<sup>37</sup>, the AOA with three-dimensional chaotic mapping in a spherical coordinate system was used to solve the CEED problem. Five three-dimensional chaotic mappings in a spherical coordinate system were employed to improve the algorithms' ability to balance exploration and exploitation and avoid falling into the local optimums. In<sup>38</sup>, the optimization without penalty-based optimization by morphological filter algorithm (OWP-based OMF) was applied to solve the CEED problem considering the equality and inequality constraints such as VPE and transmission line loss. However, large-scale power systems are not considered. In<sup>39</sup>, a hybrid multi-objective algorithm based on Harris Hawks optimization (HHO) and DE was developed to solve the EELD problem with VPE. The concept of Pareto domination was integrated into HHO to deal with the EELD problem with two conflicting objectives. In<sup>40</sup>, the BBO algorithm was utilized to solve the ED problem considering equality and inequality constraints such as transmission line losses, RRL, and POZs. However, the emission effects and largescale power systems are not considered. In<sup>41</sup>, a Chi-square mutated quantum PSO (QPSO-Chi2) was applied to solve the CEED problem with and without VPE considering transmission system losses.

In<sup>42</sup>, a multi-objective learning backtracking search algorithm (MOLBSA) was used to solve the EELD problem considering a leader-choosing strategy and a leader-guiding strategy as two novel learning strategies to improve the uniformity and diversity of obtained Pareto front. However, only small standard test systems are considered. In<sup>43</sup>, an innovative hybrid algorithm based on novel DE and PSO was applied to solve the CEED problem considering different constraints such as VPE, RRL, and POZs. The novel DE introduced an improved mutation and crossover approach, while the novel PSO introduced a new acceleration coefficient, inertia weight, and position improvement equation. However, large-scale power systems are not considered.  $In^{44}$ , a data-driven look-ahead economic dispatch model with the full consideration of N-1 outage contingency based on reinforcement learning and a deep deterministic policy gradient (DDPG) algorithm was employed to solve the ED problem by minimizing the total fuel cost. However, the emission effects are not considered. In<sup>45</sup>, a multi-layer distributed multi-objective consensus algorithm was used to solve the ED problem by determining the optimal power generation of each area of each layer through the network topology and then calculating the power of each unit in each area, in parallel according to the calculated optimal power generation. In<sup>46</sup>, the turbulent flow of water optimization (TFWO) algorithm was applied to solve the ED problem with transmission line losses, and the CEED problem with and without VPE. In<sup>47</sup>, the integration of the traditional sand cat optimization algorithm (SCOA) with the Levy flight (LF) concept was used to solve the CEED problem by minimizing fuel costs and the emission of generation units, while the equality constraints of the CEED problem were transformed into inequality constraints. However, large-scale power systems are not considered. In<sup>48</sup>, an enhanced moth-flame optimization (EMFO) algorithm was utilized to solve the non-convex ED problem with VPE and emissions by minimizing total fuel cost and emission. In<sup>49</sup>, the parallel hurricane optimization algorithm (PHOA) was used to solve the EELD problem in modern power systems by minimizing the total fuel cost and emission with and without considering the VPE.

In<sup>50</sup>, the BSA was used to solve the ED problem, considering the VPE in the generator cost function and the transmission network losses. However, the emission effects are not considered. In<sup>51</sup>, a data-driven surrogateassisted approach was used to solve the multi-area CEED (MACEED) problem. First, a feature engineeringbased support vector regression surrogate model was utilized to replace the traditional OFs in high-dimensional MACEED problems. Then, knowledge distillation was used as a freezing and fine-tuning mechanism for the improved support vector regression surrogate models. Finally, a non-dominated sorting GA was applied to obtain feasible solutions to the high-dimensional MACEED problem. In<sup>52</sup>, the colonial competitive DE (CCDE) that employed a different DE algorithm based on mathematical modeling of socio-political evolution was used to solve the ED problem considering different constraints and operational limitations such as VPE, RRL, and POZs. In<sup>53,54</sup>, a novel hybrid algorithm that combined the DEA and PSO was applied to solve the ED problem considering different constraints such as VPE, RRL, POZs, and spinning reserve. However, the emission effects are not considered. In<sup>55</sup>, a comprehensive review of the ED problem was introduced based on the mathematical formulation and the examination of commonly used problem formulation techniques, including single and multi-objective optimization. In<sup>56,57</sup>, a comprehensive review of the CEED problem was presented based on the comparative analysis of optimization approaches in<sup>56</sup>, and models, categorizing them according to the control of atmospheric pollutants in<sup>57</sup>. In<sup>58–63</sup>, different optimization techniques were used to solve the ED problem in power systems incorporating renewable energy sources (RES) in 58,59, while the CEED problem was solved considering the integration of RES and plug-in electrical vehicle (PEVs) in<sup>60-63</sup>.

Recently, Afshin Faramarzi et al.<sup>64</sup>. proposed the original version of the equilibrium optimization algorithm (EOA) as one of the new meta-heuristic optimization algorithms. The equilibrium optimizer (EO) is inspired by control volume mass balance to estimate dynamic and equilibrium states. In EO, search agents randomly

update their concentration (position) concerning some talented particles called equilibrium candidates to reach an equilibrium state as optimal results. The EOA was applied to solve different optimization problems such as image segmentation<sup>65</sup>, optimal estimation of Schottky diode parameters<sup>66</sup>, optimal allocation of batteries in distribution systems<sup>67,68</sup>, network reconfiguration, distributed generation (DG) allocation<sup>69</sup>, and optimal power flow (OPF)<sup>70</sup>.

From the previous literature review, it can be concluded that,

- Different constraints such as VPE, RRL, and POZs were considered in a few papers. Therefore, this paper considers these constraints when solving the EELD problem.
- The transmission line loss was considered in a few papers. Therefore, this paper proposes the EOA to solve the EELD problem with and without considering transmission line losses.
- The application of optimization techniques on large-scale test systems was introduced in a few papers. Therefore, the proposed algorithm is evaluated and tested on small, and large-scale standard test systems.
- The statistical analysis was considered in a few papers. Therefore, this paper presents statistical analysis to show the superiority of the proposed algorithm for finding optimal solutions.
- The optimal values of control variables reported in some papers lead to infeasible solutions due to violations
  in some constraints. Therefore, this paper presents accurate results that lead to feasible solutions that achieve
  all constraints.

#### Paper contribution

This paper presents a proposed methodology based on the EOA to solve the EELD problem in electrical power systems. The main contributions of this paper are enumerated as follows:

- Applying the EOA as one of the new meta-heuristic optimization techniques to solve the EELD problem considering single and multi-objective functions.
- Two OFs are minimized individually, which are the total fuel cost minimization with and without VPE, and total emission minimization.
- Applying the multi-objective EOA (MOEOA) to minimize the total fuel cost and total emission simultaneously.
- Applying the proposed EOA on different size standard test systems through various case studies.
- Applying the proposed EOA with Pareto front on the large-scale power system to solve the EELD problem with, and without considering different practical constraints such as VPE, RRL, and POZs of generating units.
- Proving the superiority of the proposed methodology for solving the EELD problem by comparing the optimal results with other techniques such as GWO, PSO, DEA, and other optimization methods in the literature.
- A comparative study based on statistical analysis and the Wilcoxon signed rank test is carried out between
  the proposed EOA and other techniques to show the effectiveness of the proposed EOA for solving the EELD
  problem.

#### Paper organization

This paper is organized as follows. The next section presents the problem formulation of the EELD problem. After the problem is formulated, the followed two sections present the proposed EOA followed by several applications for solving the EELD problem. The last section presents the conclusion of this paper.

#### **Problem formulation**

Two OFs are considered in this paper for solving the EELD problem. The first OF aims to minimize the non-linear generation cost function with and without VPE, while the second OF aims to reduce the total emission.

#### Objective functions

The generation cost function can be modeled as a polynomial function, where it is generally described by a quadratic function for each generator. Therefore, the total generation production costs can be formulated as<sup>49</sup>:

$$f_1 = Min\left(\sum_{i=1}^{N_G} a_i + b_i P_{Gi} + c_i P_{Gi}^2\right) \tag{1}$$

where,  $P_{Gi}$  is the real power generation for the generation unit i.  $a_p$   $b_p$  and  $c_i$  are the cost function coefficients of  $i^{th}$  generator.  $N_G$  is the total number of generation buses. Practically, generation units have multi-valve steam turbines. Each steam valve can be controlled to change the power production. Therefore, the fuel cost function considering the non-smooth VPE can be expressed as  $^{48}$ :

$$f_{1} = Min \left[ \sum_{i=1}^{N_{G}} \left( a_{i} + b_{i} P_{Gi} + c_{i} P_{Gi}^{2} \right) + \left| d_{i} \times \sin \left[ e_{i} \left( P_{Gi} - P_{Gi}^{\min} \right) \right] \right| \right]$$
 (2)

where,  $d_i$  and  $e_i$  are the coefficients of the non-smooth operation of valves, and  $P_{Gi}^{\min}$  is the minimum limit of power generation for the generation unit i.

The ecological emissions produced by fossil-fueled thermal units should be considered due to their effects on the environment. Therefore, the second OF aims to minimize the total emission by reducing atmospheric

pollutants such as nitrogen and sulfur oxides. Hence, the total emission pollutants from thermal units can be formulated as  $^{48}$ :

$$f_2 = Min \left[ \sum_{i=1}^{N_G} \left( \alpha_i + \beta_i P_{Gi} + \gamma_i P_{Gi}^2 \right) + \left| \zeta_i \exp\left( \lambda_i P_{Gi} \right) \right| \right]$$
(3)

where,  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\zeta$ <sub>i</sub> and  $\lambda$ <sub>i</sub> are the emission coefficients of  $i^{th}$  generator.

The multi-OF can be performed by transforming different OFs into a single OF using weighting factors to make a balance between different objectives and avoid the dominance of one objective over another. Hence, it can be formulated as:

$$F_t = Min \left[ k_c F_1 + k_E F_2 \right]$$

$$= Min \left[ k_c \left( \frac{f_1}{f_1^{\text{max}}} \right) + k_E \left( \frac{f_2}{f_2^{\text{max}}} \right) \right]$$
(4)

where,  $f_1$  is the total fuel cost for each population (particle) in the optimization technique, and  $f_1^{\max}$  is the maximum value of the total fuel cost among all populations (particles). Similarly,  $f_2$  is the total emission pollutants for each population (particle) in the optimization technique, and  $f_2^{\max}$  is the maximum value of the total emission pollutants among all populations (particles),  $k_c$  and  $k_E$  are the weighting factors that are assumed to be 0.6 and 0.4, respectively. The value of the weighting factor shows the priority of the OF in solving the multi-OF.

#### System constraints

The OFs in Eqs. (1)-(4) are subjected to the following equality and inequality constraints:

• Power balance constraint.

This constraint aims to check the balance between the total generated active power and the sum of the total load demand and the total system losses. Thus, this constraint can be defined as follows:

$$\sum_{i=1}^{N_G} P_{Gi} = \sum_{j=1}^{N_L} P_{Dj} + P_{Loss}^{Total}$$
(5)

where,  $P_{Dj}$  is the load demand at load bus j,  $P_{Loss}^{Total}$  is the total real power loss, and  $N_L$  is the total number of load buses. The total real power loss can be calculated based on the values of B-coefficients as follows<sup>48</sup>:

$$P_{Loss}^{Total} = [P_G]^T [B] [P_G] + [B_0]^T [P_G] + B_{00}$$

$$= \sum_{i=1}^{N_G} \sum_{j=1}^{N_G} P_{Gi} B_{ij} P_{Gj} + \sum_{i=1}^{N_G} B_{0i} P_{Gi} + B_{00}$$
(6)

where,  $[P_G]$  is the vector of all generator buses. [B],  $[B_0]$ , and  $B_{00}$  are the quadratic, linear, and constant parts of B-coefficients, respectively.

• Power generation constraint.

The active power supplied by each generating unit must be within their acceptable limits as follows:

$$P_i^{\min} \leqslant P_i \leqslant P_i^{\max} \tag{7}$$

where,  $P_i^{\min}$  and  $P_i^{\max}$  are the minimum and maximum limits of power generation from the generation unit i (MW), respectively.

• Ramp rate limits.

The power output of each generation unit increases or decreases over time according to the ramp rate limits to keep a suitable balance between power supply and demand and prevent undesirable effects in the power system. Therefore, the change in generation output power should be restricted by the ramp-up and ramp-down constraints, which can be written as follows:

$$\max\left(P_i^{\min}, P_i^0 - DR_i\right) \leqslant P_i \leqslant \min\left(P_i^{\max}, P_i^0 + UR_i\right) \tag{8}$$

where,  $P_i$  is the current real output power from the generation unit i (MW),  $P_i^0$  is the previous real output power of the generation unit i (MW),  $DR_i$  and  $UR_i$  are the upper and lower ramp rate limits of the generation unit i (MW/period), respectively.

• Prohibited operating zones constraint.

Due to physical operation restrictions of some power generation plant components such as faults in power generation units or associated auxiliaries, these thermal generation units may have POZs between their minimum and maximum limits. Therefore, the fuel cost characteristics become discontinuous. To avoid the operation of generation units in the prohibited zones, the POZs constraint in Eq. (9) for such units should be considered.

$$P_{i} \in \begin{cases} P_{i}^{\min} \leqslant P_{i} \leqslant P_{i,1}^{L} \\ P_{i,k-1}^{U} \leqslant P_{i} \leqslant P_{i,k}^{L} \\ P_{i,pz_{i}}^{U} \leqslant P_{i} \leqslant P_{i,\max}^{L} \end{cases}; \quad k = 2, 3, \dots, pz_{i}, \quad i = 1, 2, \dots, n_{pz}$$

$$(9)$$

where,  $P_{i,k}^L$  and  $P_{i,k}^U$  are the lower and upper limits of POZ of the generation unit i (MW), respectively,  $pz_i$  is the number of prohibited zones of the generation unit i, and  $n_{pz}$  is the number units which have POZs.

• Power flow constraint.

The power flow in each line  $(PF_k)$  must be less than its maximum limit of power flow  $(PF_k^{max})$  as:

$$PF_k < PF_k^{\text{max}} \tag{10}$$

### Proposed methodology based on eoa optimization algorithm

The EOA, which was first proposed in <sup>64</sup>, is one of the meta-heuristic optimization techniques that is inspired based on the physics laws. The mathematical model of EOA is illustrated based on the following three steps:

Step 1: Initialization.

Initially, a population matrix is created with random values, where each row refers to the particle that represents the concentration vector. The initial values of concentration vector ( $\overrightarrow{X_i}$ ) are generated randomly, as follows:

$$\overrightarrow{X}_{i} = X^{\min} + rand \times \left(X^{\max} - X^{\min}\right), \qquad i = 1, 2, 3, \dots, n$$
(11)

where,  $X^{min}$  and  $X^{max}$  are the minimum and maximum limits of vector x in d-dimension, respectively. Step 2: Equilibrium pool and candidates  $(\overrightarrow{X}_{eq,pool})$ 

Each particle reaches the optimal solution by searching for the equilibrium state. Then, the best four particles found in the population are assigned as candidates, plus another one calculates the average value of the best four particles. After that, the equilibrium pool vector ( $\overrightarrow{X}_{eq,pool}$ ) is generated based on the five candidates of particles as follows<sup>64</sup>:

$$\overrightarrow{X}_{eq,pool} = \left[ \overrightarrow{X}_{eq(1)} + \overrightarrow{X}_{eq(2)} + \overrightarrow{X}_{eq(3)} + \overrightarrow{X}_{eq(4)} + \overrightarrow{X}_{eq(avg)} \right]$$
(12)

where,  $\overrightarrow{X}_{eq(avg)}$  is the average value of candidates.

Step 3: Updating the concentration.

For each particle, the concentration is updated with random selection among candidates chosen with the same probability as follows<sup>64</sup>:

$$\overrightarrow{X}_{new} = \overrightarrow{X}_{eq} + \left(\overrightarrow{X} - \overrightarrow{X}_{eq}\right) \times \overrightarrow{F} + \frac{G}{\overrightarrow{\lambda} \times V} \times \left(1 - \overrightarrow{F}\right)$$
(13)

where,  $\overrightarrow{X}$  and  $\overrightarrow{X}_{new}$  are the current and new concentration vectors, respectively.  $\overrightarrow{X}_{eq}$  is an equilibrium pool vector.  $\overrightarrow{\lambda}$  is a random vector in the range [0,1]. V is considered a unit.  $\overrightarrow{F}$  is an exponential term that is defined as <sup>64</sup>:

$$\overrightarrow{F} = a_1 \times \sin\left(\overrightarrow{rand} - 0.5\right) \times \left(e^{-\overrightarrow{\lambda} \times t} - 1\right) \tag{14}$$

where, the time t is a function of iteration (T), which can be defined as:

$$t = \left(1 - \frac{T}{T^{\max}}\right)^{\left(a_2 \times \frac{T}{T^{\max}}\right)} \tag{15}$$

where,  $a_1$  and  $a_2$  are constant values for control of the exploration and exploitation, respectively. The values of  $a_1$  and  $a_2$  are assumed to be 2 and 1, respectively. T and  $T^{max}$  are the current and the maximum number of iterations, respectively. The term  $sin\left(\overrightarrow{rand} - 0.5\right)$  affects diversification and intensification progress.

The generation rate (  $\vec{G}$ ) is another term used to improve the intensification operator, which can be defined as

$$\vec{G} = \vec{G}_O \times e^{-\overrightarrow{\lambda}(t-t_o)} \tag{16}$$

where,  $\vec{G}_O$  is the initial value of the generation rate, which is formulated as <sup>64</sup>:

$$\vec{G}_O = \overrightarrow{GCP} \times \left( \overrightarrow{X}_{eq} - \overrightarrow{\lambda} \times \overrightarrow{X} \right)$$
 (17)

where,  $\overrightarrow{GCP}$  is the generation rate control parameter that can be updated based on a probability GP as follows:

$$\overrightarrow{GCP} = \begin{cases} 0.5 \, r_1 & for \quad r_2 \geqslant GP \\ 0 & for \quad r_2 < GP \end{cases} \tag{18}$$

where,  $r_1$  and  $r_2$  are random values in the range [0,1]. GP is a generation probability that takes a specified value. The value of  $G\overline{P}$  is assumed to be 0.5 for the best balance between exploration and exploitation.

#### Solving the EELD problem using EOA

Two individual OFs are presented to reduce total fuel cost with and without valve loading effects and minimize the total emission. In addition, the multi-OF, which aims to reduce these objectives simultaneously, is also presented. The steps of the proposed EOA to solve the EELD problem are presented as follows:

Step 1: Initialization.

- · Insert the control variables that represent the real generated power randomly, between their minimum and maximum limits, and construct the initial concentration vector  $v_i$  for each particle.
- Insert both cost and emission coefficients  $(a, b, c, d, e, \alpha, \beta, \gamma', \zeta, and \hat{\lambda})$  for each generation unit. Also, insert the *B*-coefficients.
- Define the EOA parameters, number of particles (n),  $a_1$ ,  $a_2$ , and GP.
- Create the search space which contains the initial concentration vectors for all control variables.

Step 2: Initial evaluation.

The initial values of the OFs in Eqs. (1)-(4) are obtained based on the initial values of the control variables such as:

$$OF_i^{init} = \left[ OF_1^{init}, OF_2^{init}, OF_3^{init}, \cdots, OF_n^{init} \right]$$
(19)

*Step 3: Check the constraints.* 

For each particle, check the constraints in Eqs. (5)-(10) to exclude the values of OFs that correspond to the index of violation constraints.

Step 4: Initial global best solution.

The initial global best solution of the OF  $(OF_{best}^{initial})$  can be determined among the accepted solutions.

Step 5: Extract the equilibrium pool and candidates.

For each particle, determine the equilibrium pool and candidate vectors plus the average value of candidates using Eq. (12).

Step 6: Form  $\overrightarrow{F}$ ,  $\overrightarrow{GCP}$ ,  $\overrightarrow{G}_O$  and  $\overrightarrow{G}_O$  yectors. For each particle, form the vectors  $\overrightarrow{F}$ ,  $\overrightarrow{GCP}$ ,  $\overrightarrow{G}_O$  and  $\overrightarrow{G}_O$  using Eqs. (14), (18), (17), and (16), respectively. Step 7: Update the concentrations.

Update the concentration for each particle using Eq. (13).

Step 8: Generate new solutions.

After updating the search space, the values of the OFs in Eqs. (1)-(4) are obtained based on the updated values of the control variables as:

$$OF_i^k = \left[ OF_1^k, OF_2^k, OF_3^k, \dots, OF_n^k \right]$$
(20)

Step 9: Check the constraints.

For each particle, check the constraints in Eqs. (5)-(10) to exclude the values of OFs that correspond to the index of violation constraints.

Step 10: Update the best global solution.

The best global solution at iteration k + 1 can be determined

$$OF_{global}^{k+1} = \begin{cases} OF_{best}^{k+1} & if OF_{best}^{k+1} < OF_{best}^{k} \\ OF_{best}^{k} & otherwise \end{cases}$$
 (21)

*Step 11: Check the stopping criterion.* 

Repeat steps 5 to 10 until reaching the maximum number of iterations.

The flow chart of the proposed EOA to solve the EELD problem is shown in Fig. 1.

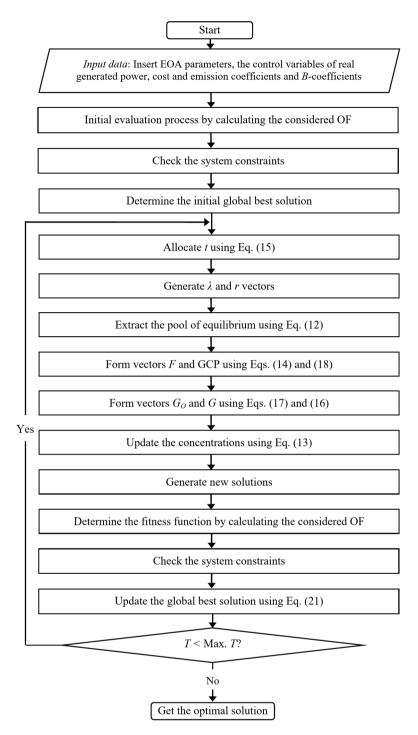



Fig. 1. Flow chart of the proposed EOA to find the optimal solution.

#### Applications Test systems

The proposed methodology is applied to small and large-scale test systems, having 10, 20, 40, and 80 generation units to solve the EELD problem. The results obtained by the proposed algorithm are compared with those obtained using other methods such as DEA, PSO, and GWO. The data of generation power limits and the coefficients of fuel cost and emission for test systems are taken from Refs<sup>23,27,29,42,48–50,71</sup>., and<sup>22,72</sup>for 10, 20, 40, 80, and 140 generation units, respectively. The data of VPE, RRL, and POZs for 140-unit test system is taken from<sup>22,72</sup>. The total power demands for 10, 20, 40, 80, and 140 generation unit systems are 2000 MW, 2500 MW, 10,500 MW, 21,000 MW, and 49,342 MW, respectively. The main parameters used in the proposed EOA, and other optimization methods are illustrated in the Table 1. Table 1 presents the parameters that are used in the proposed EOA, and other optimization techniques.

| Algorithm         | Parameter                                            | Value |  |  |
|-------------------|------------------------------------------------------|-------|--|--|
|                   | Constant for control the exploration ability $(a_1)$ | 2     |  |  |
| EOA <sup>64</sup> | Constant for control the exploration ability $(a_2)$ | 1     |  |  |
| EOA               | Generation probability (GP)                          | 0.5   |  |  |
|                   | Initialization constant (V)                          | 1     |  |  |
| GWO <sup>73</sup> | Linearly vector ( $\overrightarrow{a}$ )             | [0,2] |  |  |
| GWO               | Coefficient vector ( $\overrightarrow{C}$ )          | [0,2] |  |  |
|                   | Minimum inertia weight $(w_{min})$                   | 0.4   |  |  |
| PSO [20]          | Maximum inertia weight ( $w_{max}$ )                 |       |  |  |
| F3O [20]          | Cognitive constant $(C_1)$                           | 2     |  |  |
|                   | Social constant $(C_2)$                              | 2     |  |  |
| DEA <sup>28</sup> | Crossover constant (CR)                              | 0.5   |  |  |
| DLA               | Mutation constant (F)                                | 0.6   |  |  |

**Table 1.** Parameters used for the proposed EOA and other optimization techniques.

| Test system        | Objective function | Case#   | Description                                                                                                |
|--------------------|--------------------|---------|------------------------------------------------------------------------------------------------------------|
|                    |                    | Case 1  | Minimization of generation fuel cost without VPE                                                           |
| 10-unit            | Single OF          | Case 2  | Minimization of generation fuel cost with VPE                                                              |
| 20-unit<br>40-unit |                    | Case 3  | Minimization of total emission                                                                             |
| 80-unit            | Multi-OF           | Case 4  | Minimization of generation fuel cost and emission                                                          |
|                    | Multi-OF           | Case 5  | Minimization of generation fuel cost with VPE and emission                                                 |
|                    | Single OF          | Case 6  | Minimization of generation fuel cost without VPE, RRL, and POZs                                            |
|                    | Single OF          | Case 7  | Minimization of generation fuel cost with VPE, RRL, and POZs                                               |
| 140-unit           |                    | Case 8  | Minimization of total emission                                                                             |
|                    | Multi-OF           | Case 9  | Minimization of generation fuel cost and emission with Pareto optimal front                                |
|                    | Multi-Or           | Case 10 | Minimization of generation fuel cost and emission considering VPE, RRL, and POZs with Pareto optimal front |

Table 2. Summary of the studied cases.

#### Studied cases

Ten cases are considered in this paper to study the capability of the proposed algorithm for solving the EELD problem. These cases are summarized in Table 2.

#### **Results and comments**

The proposed approach is carried out using MATLAB installed on a PC with an Intel Core i7 and 8 GB of RAM.

#### 10-unit system

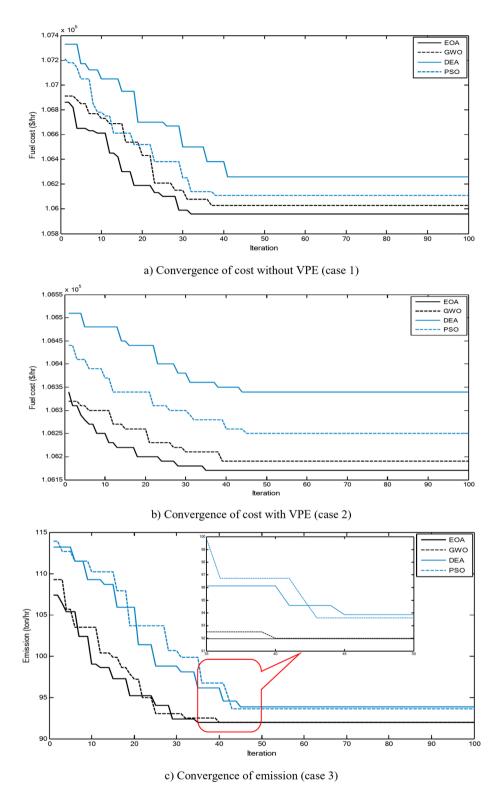

Table 3shows the optimal results obtained using the proposed algorithm and other methods without considering power losses for Cases 1–5 for 10-unit system. For cases 1 and 2 that solve the single OF, it can be observed that the total cost without/with VPE using the proposed EOA is lower than that obtained using DEA, PSO, GWO, and PHOA<sup>49</sup>. The total fuel cost obtained using the proposed EOA is reduced by 0.1414%, and 0.0753% than the PSO base case with savings of 150 \$/hr, and 80 \$/hr for Cases 1 and 2, respectively. For Case 3, the total emission obtained using the proposed EOA is lower than that obtained using other optimization techniques with a maximum percentage reduction of 1.7483% than the base case. Moreover, the total emission obtained using PHOA reported in<sup>49</sup> is incorrect. The exact values of the total emission are 235.9897 ton/hr and 120.1085 ton/hr for Cases 1 and 3, respectively. For Cases 4 and 5, which investigate the multi-OF, the proposed EOA gives better results than other methods for minimizing the total fuel cost and emission with savings in the total fuel cost by 70 \$/hr, and 1700 \$/hr than the base case for cases 4 and 5, respectively. In addition, the total emission is reduced by 4.4067%, and 1.7456% than the base case. Therefore, this comparison reflects the superiority of the proposed EOA in finding the optimal solutions by reducing the total cost and emission.

Figure 2 shows a comparison between the convergence curves recorded by running the proposed EOA, GWO, DEA, and PSO without considering power losses for cases 1–3 for 10-unit system. The proposed EOA gives fast convergence curves to obtain optimal solutions with a minimum number of iterations.

Table 4shows a comparison between the proposed EOA and other methods for minimizing the total fuel cost with and without VPE in cases 1 and 2 and minimizing the total emission in case 3 for 10-unit system. It can be noticed that the proposed EOA gives minimum values of the OFs than obtained using other methods for all cases. Moreover, the results of total emission obtained using MOMSA<sup>22</sup>, OWP-based OMF<sup>38</sup>, TFWO<sup>46</sup>, and PHOA<sup>49</sup> are incorrect. The exact values of the total emission are 136.5409 ton/hr, 134.7503 ton/hr, 238.6139 ton/

|               | Methods            | PG, (MW) | PG <sub>2</sub> | PG, (MW)           | PG <sub>4</sub> (MW) | PG. (MW) | PG, (MW) | PG, (MW) | PG, (MW) | PG, (MW) | PG <sub>10</sub> (MW) | Total cost (\$/hr)     | Emission<br>(ton/hr)   | Saving (\$/hr) | Reduction in cost and emission (%) |
|---------------|--------------------|----------|-----------------|--------------------|----------------------|----------|----------|----------|----------|----------|-----------------------|------------------------|------------------------|----------------|------------------------------------|
| l d           | PHOA <sup>49</sup> | 55.0000  | 80.0000         |                    | 73.2943              | 70.2278  | 72.7025  |          | 340.0000 | 470.0000 | 470.0000              | $1.0621 \times 10^{5}$ | 4285.4729 <sup>a</sup> | -100           | -0.0942                            |
| _             | DEA                | 49.7027  | 75.5900         | 75.5900 105.7511   | 52.0625              | 86.7307  | 85.9315  | 282.0520 | 326.7019 | 465.4775 | 470.0000              | $1.0626 \times 10^{5}$ | 230.4016               | -150           | -0.1414                            |
| l             | Case 1 PSO         | 55.0000  | 80.0000         | 81.5810            | 55.6544              | 77.8345  | 77.8024  | 300.0000 | 340.0000 | 462.1277 | 470.0000              | $1.0611 \times 10^{5}$ | 231.4814               | Base case      | Base case                          |
|               | GWO                | 55.0000  | 75.3325         | 97.0277            | 63.8216              | 77.1391  | 70.9138  | 296.5315 | 324.7287 | 469.5355 | 469.9696              | $1.0603 \times 10^{5}$ | 235.9674               | 80             | 0.0754                             |
| _             | Proposed EOA       | 54.9934  | 79.9998         | 88.8660            | 79.8392              | 66.6021  | 70.0010  | 289.5393 | 330.1612 | 469.9995 | 469.9985              | $1.0596 \times 10^{5}$ | 236.4282               | 150            | 0.1414                             |
| -             | DEA                | 55.0000  | 74.4594         | 80.5467            | 81.8027              | 75.2403  | 80.4598  | 300.0000 | 340.0000 | 442.4911 | 470.0000              | $1.0634 \times 10^{5}$ | 214.9090               | 06-            | -0.0847                            |
|               | PSO                | 55.0000  | 80.0000         | 80.2522            | 87.0732              | 65.2755  | 70.0000  | 300.0000 | 340.0000 | 452.3991 | 470.0000              | $1.0625 \times 10^{5}$ | 223.1825               | Base case      | Base case                          |
|               | GWO                | 55.0000  | 79.4336         | 85.1591            | 75.1395              | 63.9406  | 70.4830  | 300.0000 | 332.3898 | 468.4544 | 470.0000              | $1.0619 \times 10^{5}$ | 236.6569               | 09             | 0.0565                             |
|               | Proposed EOA       | 54.9991  | 79.9975         | 87.6977            | 78.9955              | 66.5905  | 70.0000  | 290.5318 | 331.1880 | 469.9999 | 470.0000              | $1.0617 \times 10^{5}$ | 236.7061               | 80             | 0.0753                             |
|               | PHOA <sup>49</sup> | 55.0000  | 68.0479         | 73.4161            | 70.4446              | 160.0000 | 240.0000 | 275.2700 | 289.1154 | 371.9836 | 396.7219              | $1.1182 \times 10^{5}$ | 3661.8815 <sup>b</sup> |                | -28.3128°                          |
|               | DEA                | 47.1105  | 80.0000         | 80.0000 120.0000   | 122.8291             | 160.0000 | 240.0000 | 290.9278 | 304.9213 | 314.4165 | 319.7948              | $1.1300 \times 10^{5}$ | 93.8757                | ı              | -0.2881                            |
| Case 3        | PSO                | 55.0000  | 80.0000         | 120.0000           | 130.0000             | 160.0000 | 240.0000 | 300.0000 | 340.0000 | 287.5000 | 287.5000              | $1.1360 \times 10^{5}$ | 93.6060                | 1              | Base case                          |
|               | GWO                | 55.0000  | 80.0000         | 80.0000 120.0000   | 130.0000             | 160.0000 | 240.0000 | 290.0601 | 307.5769 | 310.7960 | 306.5669              | $1.1319 \times 10^{5}$ | 91.9960                |                | 1.72                               |
| _             | Proposed EOA       | 55.0000  | 80.0000         | 80.0000 120.0000   | 129.9999             | 160.0000 | 240.0000 | 287.3821 | 311.3577 | 308.0722 | 308.1881              | $1.1320 \times 10^{5}$ | 91.9695                | 1              | 1.7483                             |
|               | DEA                | 54.4965  | 79.1317         | 79.1317   120.0000 | 104.5246             | 132.3285 | 180.9431 | 290.3285 | 336.7214 | 345.3231 | 356.2027              | $1.0967 \times 10^{5}$ | 108.6897               | -170           | -0.1553, 4.0548                    |
|               | PSO                | 46.7362  | 80.0000         | 80.0000 116.3626   | 130.0000             | 94.7519  | 187.0420 | 298.1378 | 340.0000 | 350.3947 | 356.5748              | $1.0950 \times 10^{5}$ | 113.2831               | Base case      | Base case                          |
|               | GWO                | 54.7963  | 61.0399         | 61.0399 103.9788   | 124.4775             | 125.1084 | 176.1284 | 298.8834 | 340.0000 | 354.6344 | 360.9529              | $1.0946 \times 10^{5}$ | 114.0998               | 40             | 0.0365,-0.7209                     |
|               | Proposed EOA       | 54.9866  | 79.9999         | 119.9968           | 128.4341             | 137.4033 | 154.4185 | 299.0185 | 331.1013 | 348.0107 | 346.6303              | $1.0943\times10^5$     | 108.2911               | 70             | 0.0639,4.4067                      |
|               | DEA                | 54.2965  | 79.7724         | 116.2018           | 95.0192              | 150.7132 | 167.7959 | 293.7027 | 333.5432 | 353.3094 | 355.6457              | $1.0983 \times 10^{5}$ | 109.6576               | -70            | -0.0638, 0.7273                    |
|               | PSO                | 41.9993  | 80.0000         | 80.0000   120.0000 | 124.7120             | 142.5894 | 158.8998 | 292.2151 | 332.7795 | 351.5694 | 355.2353              | $1.0976\times10^5$     | 110.4610               | Base case      | Base case                          |
| $\overline{}$ | GWO                | 54.6239  | 77.2864         | 77.2864 118.6727   | 130.0000             | 126.1082 | 167.6864 | 296.8275 | 327.1831 | 353.4531 | 348.1587              | $1.0964\times10^{5}$   | 109.0389               | 120            | 0.1093, 1.2874                     |
| _             | Proposed EOA       | 54.9998  | 80.0000         | 80.0000 119.9280   | 129.6212             | 136.2215 | 154.7365 | 300.0000 | 326.2905 | 349.3834 | 348.8191              | $1.0959 \times 10^{5}$ | 108.5328               | 170            | 0.1549,1.7456                      |
|               | •                  |          |                 |                    |                      |          |          |          |          |          |                       |                        |                        | 4              |                                    |

**Table 3.** Simulation results using different algorithms without considering power losses for 10-unit system. <sup>a</sup>The exact value of total emission is 120.1085 ton/hr, which is lower than that reported in <sup>49</sup>. <sup>c</sup> The percentage reduction is determined based on the exact value of the total emission.



**Fig. 2.** Convergence curves of the proposed EOA and other algorithms without considering power losses for 10-unit system.

hr, and 235.9897 ton/hr for these algorithms, respectively. Therefore, this comparison reflects the superiority of the proposed EOA for minimizing the total fuel cost and total emission individually as single OFs.

Table 5shows a comparison between the proposed EOA and other methods for minimizing the total fuel cost and emission simultaneously with and without VPE for 10-unit system. The total fuel cost and emission obtained using the proposed EOA are lower than those obtained using other methods for all cases. In addition, the results of total emission obtained using MOMSA<sup>22</sup>, QOPO<sup>24</sup>, and OWP-based OMF<sup>38</sup> are incorrect. The exact values of

| Method                      | Case 1                    | Case 2                   | Case 3                   |
|-----------------------------|---------------------------|--------------------------|--------------------------|
| Proposed EOA                | 1.0596 × 10 <sup>5</sup>  | 1.0617 × 10 <sup>5</sup> | 91.9695                  |
| GWO                         | 1.0603 × 10 <sup>5</sup>  | 1.0619 × 10 <sup>5</sup> | 91.9960                  |
| PSO                         | 1.0611 × 10 <sup>5</sup>  | 1.0625 × 10 <sup>5</sup> | 93.6060                  |
| DEA                         | 1.0626 × 10 <sup>5</sup>  | 1.0634×10 <sup>5</sup>   | 93.8757                  |
| MPSO_SSM <sup>20</sup>      | 1.1321 × 10 <sup>5</sup>  | N/A                      | N/A                      |
| MOMSA <sup>22</sup>         | 1.1150 × 10 <sup>5</sup>  | N/A                      | 3933.845a                |
| FPA <sup>22</sup>           | 1.1181 × 10 <sup>5</sup>  | N/A                      | N/A                      |
| BA <sup>23</sup>            | 1.1247 × 10 <sup>5</sup>  | N/A                      | N/A                      |
| ELD <sup>38</sup>           | 1.11497 × 10 <sup>5</sup> | N/A                      | N/A                      |
| OWP-based OMF <sup>38</sup> | N/A                       | $1.11497 \times 10^{5}$  | 3932.2538 <sup>b</sup>   |
| TFWO <sup>46</sup>          | 1.3300 × 10 <sup>5</sup>  | $1.12148 \times 10^{5}$  | 4516.249847 <sup>c</sup> |
| PHOA <sup>49</sup>          | 1.0621 × 10 <sup>5</sup>  | N/A                      | 3661.8815 <sup>d</sup>   |

**Table 4**. Comparison between the single OFs using the proposed EOA and other methods for 10-unit system (Cases 1–3). N/A: Not available. <sup>a</sup> The exact value of total emission is 136.5409 ton/hr, which is lower than that reported in<sup>22</sup>. <sup>b</sup> The exact value of total emission is 134.7503 ton/hr, which is lower than that reported in<sup>38</sup>. <sup>c</sup> The exact value of total emission is 238.6139 ton/hr, which is lower than that reported in<sup>46</sup>. <sup>d</sup> The exact value of total emission is 235.9897 ton/hr, which is lower than that reported in<sup>49</sup>.

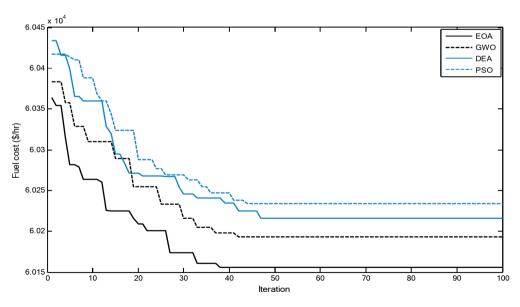
|                             | Case 4                    |                         | Case 5                    |                         |
|-----------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Method                      | Total fuel cost (\$/hr)   | Total emission (ton/hr) | Total fuel cost (\$/hr)   | Total emission (ton/hr) |
| Proposed EOA                | 1.0943 × 10 <sup>5</sup>  | 108.2911                | 1.0959 × 10 <sup>5</sup>  | 108.5328                |
| GWO                         | 1.0946 × 10 <sup>5</sup>  | 114.0998                | 1.0964 × 10 <sup>5</sup>  | 109.0389                |
| PSO                         | 1.0950 × 10 <sup>5</sup>  | 113.2831                | 1.0976 × 10 <sup>5</sup>  | 110.4610                |
| DEA                         | 1.0967 × 10 <sup>5</sup>  | 108.6897                | 1.0983 × 10 <sup>5</sup>  | 109.6576                |
| MOMSA <sup>22</sup>         | 1.1349 × 10 <sup>5</sup>  | 4109.035 <sup>a</sup>   | N/A                       | N/A                     |
| FPA <sup>23</sup>           | 1.1564 × 10 <sup>5</sup>  | 321.822                 | N/A                       | N/A                     |
| BA <sup>23</sup>            | 1.13795 × 10 <sup>5</sup> | 325.252                 | N/A                       | N/A                     |
| QOPO <sup>24</sup>          | N/A                       | N/A                     | 1.11892 × 10 <sup>5</sup> | 3653.34 <sup>b</sup>    |
| OWP-based OMF <sup>38</sup> | N/A                       | N/A                     | 1.16391 × 10 <sup>5</sup> | 3932.4035 <sup>c</sup>  |

**Table 5**. Comparison between the multi-OF using the proposed EOA and other methods for 10-unit system (Cases 4,5).

the total emission are 170.3037 ton/hr, 116.1860 ton/hr, and 136.1811 ton/hr for these algorithms, respectively. This comparison reflects the great capability of the proposed EOA to solve the multi-OF.

#### 20-unit system

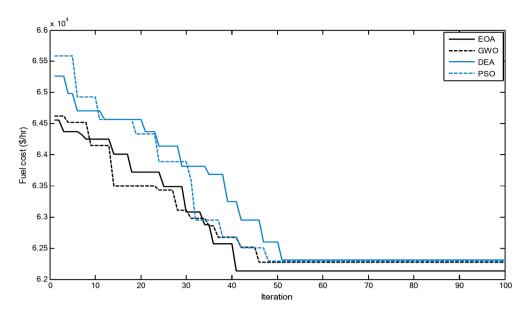
Table 6 shows the optimal results obtained using the proposed algorithm and other methods with and without considering power losses for case 1 for 20-unit system. It can be observed that the total cost obtained using the proposed EOA is lower than that obtained using other methods. The total fuel cost obtained using the proposed EOA is reduced by 0.1295%, and 0.2536% than the base case (results of PSO) with savings of 78 \$/hr, and 158 \$/hr. Moreover, the results of total power loss obtained using BSA<sup>50</sup> and BBA<sup>40</sup> are incorrect. The exact values of total power loss are 86.1602 MW and 85.6647 MW for BSA<sup>50</sup> and BBA<sup>40</sup>, respectively. Therefore, this comparison reflects the great capability of the proposed EOA to reduce the total fuel cost with a maximum saving and percentage reduction in the total fuel cost.


Figures 3 and 4 show comparisons between the convergence curves recorded by running the proposed EOA, GWO, DEA, and PSO with and without considering power losses for case 1 for 20-unit system. The proposed EOA has a great capability for reaching the optimal solution with a minimum number of iterations compared with other methods.

#### 40-unit system

Table 7 shows the optimal results obtained using the proposed algorithm and other methods without considering power losses for cases 1 and 2, which aim to minimize the total fuel cost for 40-unit system. It can be observed that the total cost without and with the VPE obtained using the proposed EOA is lower than that obtained using other methods. The proposed EOA gives better solutions with maximum savings in the total fuel cost by 820 \$/ hr and 3610 \$/hr with a percentage reduction of 0.6864%, and 2.8891% than the base case (results of PSO) for cases 1 and 2, respectively. Moreover, the total cost with VPE obtained using EMFO reported in 48 is incorrect.

|                    | Without con            | sidering powe          | r losses                 |                          | Considering p             | ower losses               |                          |                        |                          |                          |
|--------------------|------------------------|------------------------|--------------------------|--------------------------|---------------------------|---------------------------|--------------------------|------------------------|--------------------------|--------------------------|
| Unit (MW)          | DEA                    | PSO                    | GWO                      | Proposed EOA             | BSA <sup>50</sup>         | BBO <sup>40</sup>         | DEA                      | PSO                    | GWO                      | Proposed EOA             |
| PG <sub>1</sub>    | 590.1193               | 599.8953               | 585.6155                 | 599.9904                 | 510.4477                  | 513.0892                  | 507.3634                 | 499.2181               | 526.1767                 | 576.4824                 |
| PG <sub>2</sub>    | 119.4657               | 50.0000                | 94.5697                  | 155.5490                 | 168.3973                  | 173.3533                  | 184.5956                 | 182.1609               | 151.2558                 | 154.0055                 |
| PG <sub>3</sub>    | 50.0000                | 50.0000                | 56.9854                  | 50.0004                  | 125.9721                  | 126.9231                  | 116.8091                 | 100.2173               | 131.5119                 | 106.4809                 |
| PG <sub>4</sub>    | 75.4933                | 51.4731                | 58.0260                  | 51.3003                  | 103.5291                  | 103.3292                  | 108.9801                 | 102.2124               | 105.6489                 | 101.6510                 |
| PG <sub>5</sub>    | 96.7198                | 159.5090               | 100.6521                 | 92.5731                  | 113.8218                  | 113.7741                  | 110.2493                 | 132.9044               | 103.9641                 | 113.7186                 |
| PG <sub>6</sub>    | 33.6557                | 20.0000                | 23.8110                  | 25.2951                  | 73.7901                   | 73.0669                   | 62.9342                  | 63.8970                | 56.7748                  | 56.0358                  |
| PG <sub>7</sub>    | 96.4455                | 124.7846               | 125.0000                 | 124.9982                 | 115.0664                  | 114.9843                  | 100.4223                 | 101.3374               | 106.1682                 | 103.1087                 |
| PG <sub>8</sub>    | 63.6076                | 50.2154                | 56.1031                  | 50.0209                  | 116.3401                  | 116.4238                  | 101.1378                 | 106.0637               | 121.9277                 | 114.9353                 |
| PG <sub>9</sub>    | 111.3790               | 50.0000                | 95.5021                  | 115.0173                 | 100.7093                  | 100.6948                  | 122.1784                 | 114.2827               | 106.7044                 | 121.2489                 |
| PG <sub>10</sub>   | 45.2964                | 49.8183                | 52.5347                  | 34.5347                  | 107.1366                  | 99.998                    | 122.4164                 | 102.4863               | 108.1397                 | 93.3365                  |
| PG <sub>11</sub>   | 300.0000               | 299.0180               | 300.0000                 | 288.8634                 | 150.7060                  | 148.9770                  | 142.6052                 | 139.8769               | 141.0712                 | 140.8361                 |
| PG <sub>12</sub>   | 394.8572               | 443.2583               | 476.3256                 | 433.8479                 | 291.1304                  | 294.0207                  | 283.3382                 | 280.2072               | 280.1421                 | 295.4732                 |
| PG <sub>13</sub>   | 86.6005                | 119.5617               | 113.2458                 | 120.3679                 | 119.1528                  | 119.5754                  | 101.6246                 | 118.9740               | 105.4251                 | 121.3481                 |
| PG <sub>14</sub>   | 94.6171                | 130.0000               | 71.7165                  | 59.1153                  | 32.4521                   | 30.5479                   | 44.8411                  | 49.0385                | 83.8805                  | 66.3473                  |
| PG <sub>15</sub>   | 88.9110                | 78.4021                | 52.4695                  | 93.0795                  | 116.1479                  | 116.4546                  | 110.2168                 | 126.2255               | 100.9735                 | 99.8723                  |
| PG <sub>16</sub>   | 36.1381                | 36.0756                | 36.2869                  | 36.0305                  | 36.2816                   | 36.2279                   | 43.7435                  | 55.3976                | 34.0279                  | 29.0350                  |
| PG <sub>17</sub>   | 48.0895                | 37.8243                | 33.9607                  | 30.0218                  | 67.7355                   | 66.8594                   | 78.1829                  | 56.8549                | 55.4891                  | 54.7175                  |
| PG <sub>18</sub>   | 55.2177                | 41.9559                | 45.7686                  | 33.4837                  | 87.2547                   | 88.5470                   | 87.8959                  | 84.1129                | 115.4591                 | 76.2522                  |
| PG <sub>19</sub>   | 83.2787                | 78.1037                | 87.3999                  | 75.9108                  | 101.5359                  | 100.9802                  | 98.1346                  | 112.0895               | 95.2552                  | 105.4336                 |
| PG <sub>20</sub>   | 30.1079                | 30.1047                | 34.0269                  | 30.0000                  | 54.2861                   | 54.2725                   | 55.9538                  | 56.2153                | 50.7753                  | 50.4279                  |
| Total PG (MW)      | 2500                   | 2500                   | 2500                     | 2500                     | 2591.8930                 | 2592.1011                 | 2583.6                   | 2583.8                 | 2580.8                   | 2580.7                   |
| Total loss (MW)    | NC                     | NC                     | NC                       | NC                       | 91.8930 <sup>a</sup>      | 92.1011 <sup>b</sup>      | 83.6232                  | 83.7725                | 80.7712                  | 80.7468                  |
| Total cost (\$/hr) | $6.0216 \times 10^{4}$ | 6.0234×10 <sup>4</sup> | 6.0193 × 10 <sup>4</sup> | 6.0156 × 10 <sup>4</sup> | 6.24566 × 10 <sup>4</sup> | 6.24567 × 10 <sup>4</sup> | 6.2311 × 10 <sup>4</sup> | 6.2294×10 <sup>4</sup> | 6.2271 × 10 <sup>4</sup> | 6.2136 × 10 <sup>4</sup> |
| Saving (\$/hr)     | 18                     | Base case              | 41                       | 78                       | -162.6                    | -162.7                    | -17                      | Base case              | 23                       | 158                      |
| Reduction (%)      | 0.0299                 | Base case              | 0.0681                   | 0.1295                   | -0.2610                   | -0.2612                   | -0.0273                  | Base case              | 0.0369                   | 0.2536                   |


**Table 6**. Simulation results using different algorithms with and without considering power losses for 20-unit system (Case 1).



**Fig. 3**. Convergence curves of the proposed EOA and other algorithms without considering power losses for 20-unit system (Case 1).

The exact value of the total cost is  $1.3038 \times 10^5$  \$/hr. Therefore, this comparison reflects the superiority of the proposed EOA for reducing the total cost without and with the VPE as a single OF.

Table 8shows the optimal results obtained using the proposed algorithm and other methods without considering power losses for case 3, which aims to minimize the total emission for 40-unit system. The total



**Fig. 4.** .Convergence curves of the proposed EOA and other algorithms considering power losses for 20-unit system (Case 1).

emission obtained using the proposed EOA is lower than that obtained using other methods. The total emission obtained using the proposed EOA is reduced by 12.8673% than the base case (results of PSO). Moreover, the total generation power (total PG) obtained using EMFO reported in  $^{48}$  is lower than the total load demand, which violates the equality constraint between the total generation power and the total load. In addition, the total emission obtained using EMFO reported in  $^{48}$  is incorrect. The exact value of the total emission is  $0.98519\times10^5$  ton/hr. Therefore, this comparison reflects the great capability of the proposed EOA to find the optimal solution for reducing the total emission as a single OF.

Table 9 presents the optimal results obtained using the proposed algorithm and other methods without considering power losses for cases 4 and 5, which aim to minimize the total fuel cost and emission as a multi-OF for 40-unit system. The proposed EOA gives better results than other methods with maximum savings in the total fuel cost by 1230 \$/hr, and 4960 \$/hr than the base case (results of PSO) for cases 4 and 5, respectively. In addition, the total emission is reduced by 10.7355%, and 9.2553% than the base case. Moreover, the total generation power (total PG) obtained using EMFO reported in \$^{48}\$ is higher than the total load demand in case 4 and lower than the total load demand in case 5, which violates the equality constraint between the total generation power and the total load. Also, in case 5, the total fuel cost and emission obtained using EMFO reported in  $^{48}$  are incorrect. The exact values of total fuel cost and total emission are  $1.2855 \times 10^5$  \$/hr and  $3.1999 \times 10^5$  ton/hr, respectively. Finally, this comparison reflects the superiority of the proposed EOA for finding the optimal solutions for reducing the total fuel cost and emission simultaneously.

Table 10shows a comparison between the proposed EOA and other methods when considering different single OFs for 40-unit system. It can be observed that the proposed EOA gives minimum values of the OFs than those obtained using other methods for all cases. Moreover, the total fuel cost considering VPE obtained using EMFO reported in  $^{48}$  is incorrect. The exact value of total fuel cost is  $1.3038 \times 10^5$  \$/hr. Also, the results of total emission obtained using QPSO-Chi2 $^{41}$ , and EMFO  $^{48}$  are incorrect. The exact values of the total emission are  $1.2360 \times 10^5$  ton/hr, and  $0.98519 \times 10^5$  ton/hr for these algorithms, respectively. Therefore, this comparison reflects the superiority of the proposed EOA for minimizing the total fuel cost and emission individually as single OFs.

Table 11 presents a comparison between the proposed EOA and other methods for minimizing the considered OFs simultaneously with and without VPE for 40-unit system. It can be observed that the total fuel cost and total emission obtained using the proposed EOA are lower than those obtained using other methods. This comparison reflects the great capability of the proposed EOA to solve the multi-OF.

Figure 5 compares the convergence curves recorded by running the proposed EOA, GWO, DEA, and PSO without considering power losses for cases 1–3 for 40-unit system. From these figures, it can be observed that the proposed EOA reaches the optimal solution with a minimum number of iterations.

#### 80-unit system

Tables 12 and 13 show the optimal results obtained using the proposed EOA and other methods without considering power losses for cases 1 and 2, which aim to minimize the total fuel cost with and without considering the VPE for 80-unit system. The total cost obtained using the proposed EOA is lower than that obtained using other methods. The proposed EOA gives better solutions with maximum savings in the total fuel cost by 14,730 \$/hr and 9230 \$/hr with a percentage reduction of 5.8441%, and 3.6186% than the base case (results of PSO) for cases 1 and 2, respectively. Moreover, the total generation power (total PG) obtained using EMFO<sup>48</sup>in case 2 is higher than the total load demand, which violates the equality constraint between the total generation power

|                    | Case 1                   |                          |                        |                        |                          | Case 2                   |                          |                          |                        |                           |
|--------------------|--------------------------|--------------------------|------------------------|------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------|---------------------------|
| Unit (MW)          | EMFO [48]                | DEA                      | PSO                    | GWO                    | Proposed<br>EOA          | EMFO <sup>48</sup>       | DEA                      | PSO                      | GWO                    | Proposed<br>EOA           |
| PG <sub>1</sub>    | 110.8000                 | 113.7425                 | 114.0000               | 112.7622               | 113.9939                 | 72.4810                  | 109.3649                 | 103.5694                 | 111.9383               | 111.313                   |
| PG <sub>2</sub>    | 110.8300                 | 109.5840                 | 114.0000               | 113.8601               | 113.9917                 | 103.0314                 | 113.7127                 | 101.5144                 | 112.1129               | 111.998                   |
| PG <sub>3</sub>    | 97.4000                  | 103.1941                 | 68.3115                | 116.5891               | 119.3923                 | 83.2726                  | 109.2182                 | 102.7456                 | 115.7113               | 97.401                    |
| PG <sub>4</sub>    | 179.7300                 | 186.2181                 | 189.4817               | 171.2819               | 189.8808                 | 182.3106                 | 180.0701                 | 179.4893                 | 181.8185               | 179.733                   |
| PG <sub>5</sub>    | 87.8100                  | 52.8047                  | 85.0929                | 89.2021                | 97.0000                  | 76.16690                 | 47.1511                  | 88.3478                  | 91.4447                | 88.286                    |
| PG <sub>6</sub>    | 140.0000                 | 131.8428                 | 137.0624               | 87.7816                | 139.9897                 | 126.1346                 | 68.1194                  | 116.6377                 | 139.7743               | 140.000                   |
| PG <sub>7</sub>    | 259.6000                 | 298.3631                 | 300.0000               | 298.6929               | 299.9906                 | 258.8452                 | 260.8024                 | 260.9451                 | 269.9102               | 259.686                   |
| PG <sub>8</sub>    | 284.6000                 | 293.5636                 | 300.0000               | 300.0000               | 299.9888                 | 297.1636                 | 289.8194                 | 299.4184                 | 287.8571               | 284.686                   |
| PG <sub>9</sub>    | 284.6000                 | 291.6018                 | 271.5001               | 297.7745               | 300.0000                 | 290.8899                 | 300.0000                 | 294.4794                 | 299.1560               | 284.648                   |
| PG <sub>10</sub>   | 130.0000                 | 143.0376                 | 131.1118               | 141.5428               | 130.4154                 | 274.8232                 | 130.0000                 | 134.0914                 | 208.2818               | 130.000                   |
| PG <sub>11</sub>   | 94.0000                  | 185.9344                 | 101.9670               | 99.4702                | 94.3739                  | 356.9806                 | 94.6843                  | 239.5202                 | 243.6188               | 168.800                   |
| PG <sub>12</sub>   | 94.0000                  | 109.1644                 | 99.6541                | 141.4999               | 94.0000                  | 124.4054                 | 94.9139                  | 137.4244                 | 94.2880                | 168.800                   |
| PG <sub>13</sub>   | 214.7600                 | 205.2311                 | 125.8488               | 149.0470               | 125.0363                 | 493.3764                 | 484.2977                 | 231.0112                 | 215.8268               | 214.760                   |
| PG <sub>14</sub>   | 394.2800                 | 259.0914                 | 378.9173               | 290.5184               | 263.9599                 | 344.9029                 | 483.8292                 | 362.4239                 | 304.6650               | 304.520                   |
| PG <sub>15</sub>   | 394.2800                 | 374.1713                 | 295.2477               | 275.5262               | 265.6368                 | 372.3864                 | 396.1995                 | 401.2256                 | 394.2111               | 394.279                   |
| PG <sub>16</sub>   | 394.2800                 | 199.8125                 | 300.8785               | 255.8366               | 275.1177                 | 345.4624                 | 307.4974                 | 307.8325                 | 308.0857               | 394.279                   |
| PG <sub>17</sub>   | 489.2800                 | 491.5980                 | 493.6305               | 496.5113               | 499.9912                 | 422.6378                 | 491.2989                 | 500.0000                 | 491.1036               | 489.280                   |
| PG <sub>18</sub>   | 489.2800                 | 500.0000                 | 494.3846               | 495.7260               | 499.9999                 | 434.4065                 | 492.7472                 | 489.5268                 | 490.6632               | 489.280                   |
| PG <sub>19</sub>   | 511.2800                 | 537.4658                 | 544.4749               | 546.8444               | 549.9537                 | 461.3107                 | 549.6755                 | 529.5771                 | 512.1506               | 511.280                   |
| PG <sub>20</sub>   | 511.2800                 | 512.5663                 | 550.0000               | 546.5685               | 549.9891                 | 434.3828                 | 511.6987                 | 516.8540                 | 520.6192               | 511.280                   |
| PG <sub>21</sub>   | 523.2800                 | 547.8014                 | 550.0000               | 549.3160               | 549.9991                 | 545.2846                 | 527.6592                 | 533.3350                 | 525.2025               | 523.280                   |
| PG <sub>22</sub>   | 523.2800                 | 550.0000                 | 548.9185               | 549.8513               | 549.9976                 | 490.3572                 | 530.0630                 | 526.4301                 | 525.4243               | 523.281                   |
| PG <sub>23</sub>   | 523.2800                 | 549.8647                 | 550.0000               | 549.2702               | 549.9957                 | 506.0639                 | 534.7742                 | 538.9574                 | 533.9092               | 523.292                   |
| PG <sub>24</sub>   | 523.2800                 | 546.7106                 | 550.0000               | 549.4001               | 549.9983                 | 467.3109                 | 529.4045                 | 527.0739                 | 544.2299               | 523.295                   |
| PG <sub>25</sub>   | 523.2800                 | 547.3854                 | 549.1253               | 547.8111               | 550.0000                 | 488.1203                 | 527.7690                 | 537.2021                 | 538.6999               | 523.286                   |
| PG <sub>26</sub>   | 523.2800                 | 550.0000                 | 550.0000               | 549.2038               | 549.9979                 | 486.9091                 | 526.6999                 | 525.9084                 | 548.3362               | 523.288                   |
| PG <sub>27</sub>   | 10.0000                  | 22.6329                  | 15.0288                | 20.4894                | 10.3777                  | 16.8002                  | 10.1911                  | 29.4482                  | 13.1744                | 10.001                    |
| PG <sub>28</sub>   | 10.0000                  | 17.8608                  | 10.0203                | 15.2850                | 10.0049                  | 39.3475                  | 10.0000                  | 26.9607                  | 10.2931                | 10.001                    |
| PG <sub>29</sub>   | 10.0000                  | 16.6034                  | 13.6060                | 13.5449                | 10.0007                  | 23.6359                  | 10.1030                  | 10.1148                  | 13.3658                | 10.030                    |
| PG <sub>30</sub>   | 87.9300                  | 97.0000                  | 49.6644                | 96.2780                | 97.0000                  | 86.3295                  | 87.6388                  | 88.7939                  | 49.9024                | 89.229                    |
| PG <sub>31</sub>   | 190.0000                 | 184.2557                 | 190.0000               | 189.4573               | 189.9968                 | 165.9924                 | 188.7021                 | 188.3093                 | 189.4597               | 190.000                   |
| PG <sub>32</sub>   | 190.0000                 | 190.0000                 | 189.0069               | 190.0000               | 190.0000                 | 174.5707                 | 188.0284                 | 115.2628                 | 190.0000               | 190.000                   |
| PG <sub>33</sub>   | 190.0000                 | 190.0000                 | 190.0000               | 189.7785               | 189.9999                 | 184.0570                 | 176.2269                 | 168.3865                 | 189.8296               | 190.000                   |
| PG <sub>34</sub>   | 164.8000                 | 196.7967                 | 195.9627               | 200.0000               | 200.0000                 | 193.6668                 | 139.2982                 | 165.1321                 | 173.4684               | 165.000                   |
| PG <sub>35</sub>   | 194.2200                 | 194.1554                 | 198.2829               | 200.0000               | 200.0000                 | 191.6152                 | 197.9548                 | 166.0533                 | 171.3421               | 165.426                   |
| PG <sub>36</sub>   | 200.0000                 | 194.2074                 | 197.9483               | 199.8346               | 199.9947                 | 196.1763                 | 97.8741                  | 194.6182                 | 200.0000               | 165.002                   |
| PG <sub>37</sub>   | 110.0000                 | 81.7037                  | 101.0525               | 109.8446               | 109.9542                 | 90.0101                  | 66.1189                  | 100.4049                 | 57.5882                | 110.000                   |
| PG <sub>38</sub>   | 110.0000                 | 98.4409                  | 109.9790               | 107.2475               | 109.9970                 | 37.5421                  | 94.6512                  | 104.3700                 | 89.2502                | 110.000                   |
| PG <sub>39</sub>   | 110.0000                 | 103.2594                 | 109.6439               | 109.7493               | 109.9854                 | 89.4239                  | 27.5218                  | 34.4897                  | 30.9007                | 110.000                   |
| PG <sub>40</sub>   | 511.2800                 | 522.3341                 | 114.0000               | 536.6027               | 549.9984                 | 471.4405                 | 514.2204                 | 522.1145                 | 512.3863               | 511.280                   |
| Total cost (\$/hr) | 1.2039 × 10 <sup>5</sup> | 1.1998 × 10 <sup>5</sup> | $1.1947 \times 10^{5}$ | 1.1914×10 <sup>5</sup> | 1.1865 × 10 <sup>5</sup> | $1.21074 \times 10^{5a}$ | 1.2468 × 10 <sup>5</sup> | 1.2502 × 10 <sup>5</sup> | 1.2344×10 <sup>5</sup> | 1.21408 × 10 <sup>5</sup> |
| Emission (ton/hr)  | $3.5991 \times 10^{5}$   | $4.1426 \times 10^{5}$   | $4.6272 \times 10^{5}$ | $4.5634 \times 10^{5}$ | $4.8821 \times 10^{5}$   | $1.9226 \times 10^{5}$   | $3.4534 \times 10^{5}$   | $3.2223 \times 10^{5}$   | $3.3784 \times 10^{5}$ | $2.8588 \times 10^{5}$    |
| Saving (\$/hr)     | -920                     | -510                     | Base case              | 330                    | 820                      | -5360                    | 340                      | Base case                | 1580                   | 3610                      |
| Reduction (%)      | -0.7701                  | -0.4269                  | Base case              | 0.2762                 | 0.6864                   | -4.2873                  | 0.2720                   | Base case                | 1.2638                 | 2.8891                    |

**Table 7**. Simulation results using different algorithms without considering power losses for cases 1 and 2 for 40-unit system.

and the total load. In addition, the total fuel cost obtained using EMFO<sup>48</sup> in case 2 is incorrect. The exact value of total fuel cost is  $2.5558 \times 10^5$  \$/hr. Therefore, this comparison reflects the superiority of the proposed EOA for reducing the total fuel cost with and without considering the VPE as a single OF.

Table 14presents the optimal results obtained using the proposed algorithm and other methods without considering power losses for case 3, which aims to minimize the total emission for 80-unit system. The total emission obtained using the proposed EOA is lower than that obtained using other methods. The total emission obtained using the proposed EOA is reduced by 7.5948% than the base case (results of PSO). Moreover, the total generation power (total PG) obtained using EMFO reported in<sup>48</sup> is lower than the total load demand, which

| Unit (MW)          | EMFO [48]                 | DEA                      | PSO                     | GWO                      | Proposed EOA           |
|--------------------|---------------------------|--------------------------|-------------------------|--------------------------|------------------------|
| PG <sub>1</sub>    | 112.8970                  | 80.0360                  | 96.2703                 | 108.1279                 | 113.9989               |
| PG <sub>2</sub>    | 114.0000                  | 54.7755                  | 113.2980                | 112.7034                 | 113.9617               |
| PG <sub>3</sub>    | 119.3100                  | 116.9597                 | 64.7910                 | 117.5331                 | 117.1639               |
| PG <sub>4</sub>    | 170.0000                  | 171.4494                 | 167.1702                | 162.3247                 | 158.5357               |
| PG <sub>5</sub>    | 98.0000                   | 88.7911                  | 53.0096                 | 95.7592                  | 97.0000                |
| PG <sub>6</sub>    | 127.0000                  | 108.3477                 | 119.2845                | 121.1412                 | 115.8582               |
| PG <sub>7</sub>    | 297.1050                  | 287.7893                 | 296.9227                | 273.2306                 | 281.3628               |
| PG <sub>8</sub>    | 297.1020                  | 280.9017                 | 287.3587                | 281.6929                 | 281.2955               |
| PG <sub>9</sub>    | 297.0000                  | 286.5895                 | 272.7832                | 287.7084                 | 280.6144               |
| PG <sub>10</sub>   | 135.0000                  | 289.8043                 | 292.7528                | 287.2052                 | 279.4520               |
| PG <sub>11</sub>   | 298.0010                  | 294.0234                 | 287.9340                | 284.2721                 | 280.6241               |
| PG <sub>12</sub>   | 296.0000                  | 289.4270                 | 292.8815                | 277.3760                 | 280.9754               |
| PG <sub>13</sub>   | 433.9870                  | 424.8134                 | 423.2242                | 420.9713                 | 412.7630               |
| PG <sub>14</sub>   | 421.0000                  | 422.5442                 | 413.6543                | 421.6184                 | 413.6677               |
| PG <sub>15</sub>   | 423.0230                  | 431.8827                 | 420.4433                | 414.0262                 | 412.6818               |
| PG <sub>16</sub>   | 421.6980                  | 427.1605                 | 406.2808                | 421.4475                 | 412.7961               |
| PG <sub>17</sub>   | 441.3980                  | 432.1009                 | 414.0222                | 414.5179                 | 413.1261               |
| PG <sub>18</sub>   | 436.7750                  | 436.7498                 | 420.8522                | 424.1612                 | 413.2410               |
| PG <sub>19</sub>   | 435.9980                  | 423.7473                 | 419.7882                | 418.8646                 | 413.1523               |
| PG <sub>20</sub>   | 439.3450                  | 436.6625                 | 422.2224                | 420.0762                 | 412.6896               |
| PG <sub>21</sub>   | 436.7950                  | 423.7132                 | 421.2336                | 424.6677                 | 412.8341               |
| PG <sub>22</sub>   | 441.8600                  | 428.5236                 | 427.2699                | 431.4046                 | 412.7201               |
| PG <sub>23</sub>   | 438.4250                  | 433.8020                 | 431.8115                | 421.7286                 | 413.1669               |
| PG <sub>24</sub>   | 438.2890                  | 431.5250                 | 400.7021                | 418.7168                 | 413.4240               |
| PG <sub>25</sub>   | 442.0000                  | 429.4588                 | 423.5722                | 416.3636                 | 413.0637               |
| PG <sub>26</sub>   | 441.5230                  | 429.2610                 | 420.5306                | 417.4766                 | 413.0864               |
| PG <sub>27</sub>   | 29.4587                   | 149.7097                 | 146.6846                | 58.3812                  | 149.9992               |
| PG <sub>28</sub>   | 27.8974                   | 38.7376                  | 148.6261                | 146.3222                 | 150.0000               |
| PG <sub>29</sub>   | 31.4587                   | 145.4200                 | 146.3781                | 148.0957                 | 150.0000               |
| PG <sub>30</sub>   | 98.0000                   | 94.7900                  | 97.0000                 | 82.3113                  | 96.9999                |
| PG <sub>31</sub>   | 170.9780                  | 151.0178                 | 153.0211                | 162.1750                 | 158.6735               |
| PG <sub>32</sub>   | 173.6450                  | 98.4941                  | 153.9441                | 153.7356                 | 157.8839               |
| PG <sub>33</sub>   | 173.4820                  | 164.7913                 | 171.8004                | 159.5147                 | 158.8297               |
| PG <sub>34</sub>   | 200.0000                  | 200.0000                 | 175.9004                | 200.0000                 | 200.0000               |
| PG <sub>35</sub>   | 200.0000                  | 200.0000                 | 200.0000                | 199.8801                 | 200.0000               |
| PG <sub>36</sub>   | 200.0000                  | 199.2145                 | 189.6263                | 200.0000                 | 199.9875               |
| PG <sub>37</sub>   | 100.3390                  | 94.1498                  | 102.3508                | 96.6063                  | 93.4460                |
| PG <sub>38</sub>   | 100.3390                  | 78.4659                  | 104.5599                | 89.3317                  | 94.5717                |
| PG <sub>39</sub>   | 100.3390                  | 96.4918                  | 72.1938                 | 91.9680                  | 93.0526                |
| PG <sub>40</sub>   | 438.4560                  | 427.8780                 | 427.8504                | 416.5623                 | 413.3006               |
| Total PG (MW)      | 10,498 <sup>a</sup>       | 10,500                   | 10,500                  | 10,500                   | 10,500                 |
| Total cost (\$/hr) | 1.2479 × 10 <sup>5</sup>  | 1.4665 × 10 <sup>5</sup> | $1.5588 \times 10^{5}$  | 1.4673 × 10 <sup>5</sup> | $1.5667 \times 10^{5}$ |
| Emission (ton/hr)  | 1.7648 × 10 <sup>5b</sup> | $0.82389 \times 10^{5}$  | $0.76434 \times 10^{5}$ | $0.72978 \times 10^{5}$  | $0.66599 \times 10^5$  |
| Reduction (%)      | -28.8942°                 | -7.7910                  | Base case               | 4.5215                   | 12.8673                |

**Table 8**. Simulation results using different algorithms without considering power losses for case 3 for 40-unit system. <sup>a</sup> The total PG is smaller than the total load demand. <sup>b</sup> The exact value of total emission is  $0.98519 \times 10^5$  ton/hr, which is lower than that reported in [48]. <sup>c</sup> The percentage reduction is determined based on the exact value of the total emission.

violates the equality constraint between the total generation power and the total load. This comparison reflects the great capability of the proposed EOA to reduce the total emission as a single OF.

Tables 15 and 16 show the optimal results obtained using the proposed EOA and other methods without considering power losses for cases 4 and 5 to minimize the total fuel cost and total emission for 80-unit system. The proposed EOA gives better results than other methods by reducing the total cost and total emission by 6.7355% and 15.4641% for case 4, and 5.4103% and 14.2918% for case 5 than the base case (results of PSO). In addition, the proposed EOA gives maximum savings in the total fuel cost by 18,470 \$/hr and 15,270 \$/hr than

|                                        | Case 4                   |                          |                            |                           |                           | Case 5                     |                          |                            |                          |                             |
|----------------------------------------|--------------------------|--------------------------|----------------------------|---------------------------|---------------------------|----------------------------|--------------------------|----------------------------|--------------------------|-----------------------------|
| Unit (MW)                              | EMFO <sup>48</sup>       | DEA                      | PSO                        | GWO                       | Proposed<br>EOA           | EMFO <sup>48</sup>         | DEA                      | PSO                        | GWO                      | Proposed<br>EOA             |
| PG <sub>1</sub>                        | 108.0000                 | 41.1089                  | 101.9403                   | 108.4218                  | 113.8165                  | 43.4050                    | 94.3044                  | 92.6034                    | 112.1121                 | 112.8313                    |
| PG <sub>2</sub>                        | 109.0145                 | 57.4596                  | 113.2408                   | 107.7630                  | 113.9814                  | 113.9500                   | 98.1316                  | 80.0318                    | 81.6441                  | 112.3304                    |
| PG <sub>3</sub>                        | 109.0789                 | 106.7802                 | 115.5625                   | 117.2959                  | 94.2411                   | 105.8600                   | 73.8487                  | 60.7702                    | 118.1582                 | 111.8325                    |
| PG <sub>4</sub>                        | 181.0000                 | 174.4763                 | 171.5525                   | 167.4912                  | 170.1354                  | 169.6500                   | 136.3641                 | 182.8740                   | 178.4684                 | 178.9728                    |
| PG <sub>5</sub>                        | 89.0000                  | 87.8401                  | 76.3062                    | 96.1259                   | 93.9931                   | 96.6590                    | 95.4310                  | 80.0220                    | 92.2421                  | 96.7222                     |
| PG <sub>6</sub>                        | 135.0871                 | 85.8669                  | 70.9432                    | 134.5866                  | 101.8396                  | 139.0200                   | 138.7012                 | 104.9378                   | 124.0891                 | 127.0025                    |
| PG <sub>7</sub>                        | 274.0000                 | 295.9179                 | 294.9669                   | 299.4016                  | 295.9777                  | 273.2800                   | 269.0747                 | 298.5290                   | 299.9432                 | 296.6678                    |
| <u> </u>                               | 288.0000                 | 290.4694                 | 296.5037                   | 298.4704                  | 296.8671                  | 285.1700                   | 290.5197                 | 291.1272                   | 299.9432                 | 285.8221                    |
| PG <sub>8</sub>                        | 290.0000                 | 294.8703                 | 298.3291                   | 290.8588                  | 295.9529                  | 241.9600                   | 288.1722                 | 295.6427                   | 296.0795                 | 286.7920                    |
|                                        |                          |                          |                            |                           |                           |                            |                          |                            |                          |                             |
| PG <sub>10</sub>                       | 130.0000                 | 286.7670                 | 291.1344                   | 279.2657                  | 284.5850                  | 131.2600                   | 288.2815                 | 292.0252                   | 294.7174                 | 286.9035                    |
| PG <sub>11</sub>                       | 244.2104                 | 304.9215                 | 291.3841                   | 282.7984                  | 284.7747                  | 312.1300                   | 276.9091                 | 307.1969                   | 309.2490                 | 302.9688                    |
| PG <sub>12</sub>                       | 204.0000                 | 267.6270                 | 288.3816                   | 291.7689                  | 278.8724                  | 362.5800                   | 305.7756                 | 298.4633                   | 311.6282                 | 300.5150                    |
| PG <sub>13</sub>                       | 304.0000                 | 422.2810                 | 427.0098                   | 410.0047                  | 422.2201                  | 346.2400                   | 411.6751                 | 393.3583                   | 435.9831                 | 436.4965                    |
| PG <sub>14</sub>                       | 395.0000                 | 444.2181                 | 422.4219                   | 422.4736                  | 424.3765                  | 306.0600                   | 455.5928                 | 438.8936                   | 445.7176                 | 401.2188                    |
| PG <sub>15</sub>                       | 388.0000                 | 385.3036                 | 429.2686                   | 426.6645                  | 421.3856                  | 358.7800                   | 441.9062                 | 436.4506                   | 412.8814                 | 395.4341                    |
| PG <sub>16</sub>                       | 395.1877                 | 438.1469                 | 424.5896                   | 418.9103                  | 421.6770                  | 260.6800                   | 470.4041                 | 450.1466                   | 400.9534                 | 418.7474                    |
| PG <sub>17</sub>                       | 489.0000                 | 444.0532                 | 437.9156                   | 443.0224                  | 437.3026                  | 415.1900                   | 465.4192                 | 460.1062                   | 447.6640                 | 422.3470                    |
| PG <sub>18</sub>                       | 487.2547                 | 441.0517                 | 451.2911                   | 431.1426                  | 430.8004                  | 423.9400                   | 470.6694                 | 451.8917                   | 464.8816                 | 444.8420                    |
| PG <sub>19</sub>                       | 423.9870                 | 442.9408                 | 439.1687                   | 443.0742                  | 434.8538                  | 549.1200                   | 448.8069                 | 430.2045                   | 425.2665                 | 425.0665                    |
| PG <sub>20</sub>                       | 514.0000                 | 432.9765                 | 440.8140                   | 440.2586                  | 437.4438                  | 496.7000                   | 446.4144                 | 464.8289                   | 428.3645                 | 421.6866                    |
| PG <sub>21</sub>                       | 523.0000                 | 443.1943                 | 441.9672                   | 438.2320                  | 436.3130                  | 539.17000                  | 437.0574                 | 428.7801                   | 434.1019                 | 435.3535                    |
| PG <sub>22</sub>                       | 527.0000                 | 456.6090                 | 442.2559                   | 435.6977                  | 435.3771                  | 546.4600                   | 465.5212                 | 433.5187                   | 437.1779                 | 434.5871                    |
| PG <sub>23</sub>                       | 527.0000                 | 464.0147                 | 445.8949                   | 438.8814                  | 437.2458                  | 540.0600                   | 436.7696                 | 439.6049                   | 434.6472                 | 433.5281                    |
| PG <sub>24</sub>                       | 430.0000                 | 443.6726                 | 444.6438                   | 443.4871                  | 439.7233                  | 514.500                    | 429.5835                 | 434.9574                   | 435.5299                 | 434.7364                    |
| PG <sub>25</sub>                       | 525.0000                 | 447.1077                 | 445.7547                   | 441.5247                  | 439.3128                  | 453.4600                   | 437.4342                 | 440.6249                   | 439.1480                 | 433.4402                    |
| PG <sub>26</sub>                       | 434.0000                 | 453.4280                 | 446.5984                   | 443.5628                  | 439.2050                  | 517.3100                   | 451.1207                 | 439.8483                   | 442.6089                 | 433.6312                    |
| PG <sub>27</sub>                       | 30.0000                  | 38.9940                  | 10.2068                    | 37.9420                   | 12.1021                   | 14.8810                    | 85.5891                  | 51.2874                    | 12.3338                  | 28.6070                     |
| PG <sub>28</sub>                       | 45.6587                  | 63.6750                  | 30.8219                    | 21.0547                   | 14.4010                   | 18.7900                    | 51.9567                  | 60.9520                    | 36.5322                  | 14.7988                     |
| PG <sub>29</sub>                       | 64.2548                  | 13.6978                  | 48.5746                    | 42.4593                   | 34.9041                   | 26.6110                    | 50.0013                  | 56.0187                    | 10.5438                  | 12.2109                     |
| PG <sub>30</sub>                       | 88.0987                  | 87.4898                  | 96.5429                    | 96.7595                   | 96.7013                   | 59.5810                    | 60.3872                  | 54.9748                    | 96.3602                  | 94.9067                     |
| PG <sub>31</sub>                       | 162.0870                 | 181.9984                 | 179.6086                   | 178.5164                  | 175.6386                  | 183.4800                   | 152.2627                 | 189.3629                   | 171.1175                 | 186.1796                    |
| PG <sub>32</sub>                       | 183.5470                 | 173.3939                 | 180.9897                   | 173.2484                  | 173.2062                  | 183.3900                   | 163.2983                 | 161.0145                   | 181.4982                 | 175.3195                    |
| PG <sub>33</sub>                       | 183.5000                 | 172.2331                 | 161.7181                   | 179.1242                  | 171.2746                  | 189.0200                   | 165.5693                 | 156.0151                   | 73.0769                  | 173.8934                    |
| PG <sub>34</sub>                       | 172.0000                 | 172.1836                 | 199.7339                   | 199.5589                  | 199.9957                  | 198.7300                   | 97.5757                  | 194.1622                   | 200.0000                 | 200.0000                    |
| PG <sub>35</sub>                       | 162.6012                 | 186.4367                 | 91.5210                    | 200.0000                  | 199.9843                  | 198.7700                   | 187.6552                 | 184.1930                   | 199.6075                 | 200.0000                    |
| PG <sub>36</sub>                       | 175.0000                 | 198.1587                 | 199.7021                   | 199.9830                  | 199.8101                  | 182.2300                   | 184.4160                 | 193.3303                   | 199.9010                 | 199.9262                    |
| PG <sub>37</sub>                       | 94.0000                  | 78.6118                  | 107.3538                   | 49.1035                   | 103.2469                  | 39.6730                    | 43.3665                  | 107.0288                   | 90.3929                  | 105.8799                    |
| PG <sub>38</sub>                       | 112.4580                 | 109.0885                 | 106.5723                   | 99.5663                   | 99.0938                   | 81.5960                    | 106.1806                 | 56.5950                    | 98.6884                  | 109.0521                    |
| PG <sub>39</sub>                       | 97.0000                  | 109.6541                 | 94.4586                    | 35.3264                   | 103.0315                  | 42.9600                    | 97.1878                  | 84.8067                    | 107.0686                 | 105.4785                    |
| PG <sub>40</sub>                       | 422,0000                 | 461.2814                 | 442.3562                   | 436.1726                  | 434.3361                  | 537.1700                   | 430.6651                 | 422.8204                   | 427.1979                 | 423.2711                    |
| Total PG (MW)                          | 10,516 <sup>a</sup>      | 10,500                   | 10,500                     | 10,500                    | 10,500                    | 10,499 <sup>b</sup>        | 10,500                   | 10,500                     | 10,500                   | 10,500                      |
| Total cost (\$/hr)                     | 1.2510 × 10 <sup>5</sup> | 1.2719 × 10 <sup>5</sup> | 1.2615<br>×10 <sup>5</sup> | 1.2598 × 10 <sup>5</sup>  | 1.2492 × 10 <sup>5</sup>  | 1.2317 × 10 <sup>5c</sup>  | 1.3529 × 10 <sup>5</sup> | 1.3334<br>×10 <sup>5</sup> | 1.2989 × 10 <sup>5</sup> | 1.2838<br>×10 <sup>5</sup>  |
| Emission (ton/hr)                      | 2.5026 × 10 <sup>5</sup> | 1.0991 × 10 <sup>5</sup> | 1.0456<br>×10 <sup>5</sup> | 0.97028 × 10 <sup>5</sup> | 0.93335 × 10 <sup>5</sup> | 2.0846 × 10 <sup>5 d</sup> | 1.1230 × 10 <sup>5</sup> | 1.0501<br>×10 <sup>5</sup> | 1.0305 × 10 <sup>5</sup> | 0.95291<br>×10 <sup>5</sup> |
| Saving (\$/hr)                         | 1050                     | -1040                    | Base case                  | 170                       | 1230                      | 4790 <sup>e</sup>          | -1950                    | Base case                  | 3450                     | 4960                        |
| Reduction in cost,<br>and emission (%) | 0.8323,<br>-139.3458     | -0.8244,<br>-5.1224      | Base case                  | 0.1348,<br>7.2035         | 0.975, 10.7355            | 3.5923,<br>-98.5144        | -1.4624,<br>-6.9422      | Base case                  | 2.5874,<br>1.8665        | 3.7198,<br>9.2553           |

**Table 9**. Simulation results of multi-OF using different algorithms without considering power losses for cases 4 and 5 for 40-unit system.

the base case (results of PSO) for cases 4 and 5, respectively. Therefore, this comparison reflects the superiority of the proposed EOA for minimizing total cost and emission as a multi-OF.

Table 17shows a comparison between the proposed EOA and other methods when the considered OFs are minimized individually for 80-unit system. It can be observed that the proposed EOA gives minimum values

| Method                      | Case 1                   | Case 2                     | Case 3                    |
|-----------------------------|--------------------------|----------------------------|---------------------------|
| Proposed EOA                | $1.1865 \times 10^{5}$   | 1.21408 × 10 <sup>5</sup>  | $0.66599 \times 10^{5}$   |
| GWO                         | 1.1914 × 10 <sup>5</sup> | 1.2344 × 10 <sup>5</sup>   | $0.72978 \times 10^{5}$   |
| PSO                         | 1.1947 × 10 <sup>5</sup> | $1.2502 \times 10^{5}$     | $0.76434 \times 10^{5}$   |
| DEA                         | 1.1998 × 10 <sup>5</sup> | 1.2468 × 10 <sup>5</sup>   | $0.82389 \times 10^{5}$   |
| CCDE <sup>52</sup>          | N/A                      | $1.21412 \times 10^{5}$    | N/A                       |
| DPD <sup>53,54</sup>        | N/A                      | 1.21411 × 10 <sup>5</sup>  | N/A                       |
| MGAIPSO <sup>19</sup>       | 1.2466 × 10 <sup>5</sup> | N/A                        | N/A                       |
| QOPO <sup>24</sup>          | 1.2179 × 10 <sup>5</sup> | N/A                        | N/A                       |
| OCcGSA <sup>27</sup>        | 1.2141 × 10 <sup>5</sup> | N/A                        | N/A                       |
| NPF + NPRS <sup>29</sup>    | 1.2141 × 10 <sup>5</sup> | N/A                        | N/A                       |
| SSGO <sup>31</sup>          | 1.2141 × 10 <sup>5</sup> | N/A                        | N/A                       |
| CLDE <sup>36</sup>          | $1.2159 \times 10^{5}$   | N/A                        | N/A                       |
| OWP-based OMF <sup>38</sup> | 1.2131 × 10 <sup>5</sup> | N/A                        | 1.76682 × 10 <sup>5</sup> |
| BBO <sup>40</sup>           | 1.2148 × 10 <sup>5</sup> | N/A                        | -                         |
| QPSO-Chi2 <sup>41</sup>     | 1.2126 × 10 <sup>5</sup> | N/A                        | 2.0141 × 10 <sup>5a</sup> |
| ihPSODE <sup>43</sup>       | 1.2142 × 10 <sup>5</sup> | N/A                        | N/A                       |
| EMFO <sup>48</sup>          | 1.2039 × 10 <sup>5</sup> | 1.21074 × 10 <sup>5b</sup> | 1.7648 × 10 <sup>5c</sup> |

**Table 10.** Comparison between the single OFs using the proposed EOA and other methods for 40-unit system (Cases 1–3). N/A: Not available <sup>a</sup> The exact value of total emission is  $1.2360 \times 10^5$  ton/hr, which is lower than that reported in <sup>41</sup>. <sup>b</sup> The exact value of total fuel cost is  $1.3038 \times 10^5$  \$/hr, which is higher than that reported in <sup>48</sup>. <sup>c</sup> The exact value of total emission is  $0.98519 \times 10^5$  ton/hr, which is lower than that reported in <sup>48</sup>.

|                             | Case 4                    |                           | Case 5                   |                           |
|-----------------------------|---------------------------|---------------------------|--------------------------|---------------------------|
| Method                      | Total fuel cost (\$/hr)   | Total emission (ton/hr)   | Total fuel cost (\$/hr)  | Total emission (ton/hr)   |
| Proposed EOA                | 1.2492 × 10 <sup>5</sup>  | 0.93335 × 10 <sup>5</sup> | 1.2838 × 10 <sup>5</sup> | 0.95291 × 10 <sup>5</sup> |
| GWO                         | 1.2598 × 10 <sup>5</sup>  | 0.97028 × 10 <sup>5</sup> | 1.2989 × 10 <sup>5</sup> | $1.0305 \times 10^{5}$    |
| PSO                         | 1.2615 × 10 <sup>5</sup>  | 1.0456 × 10 <sup>5</sup>  | 1.3334×10 <sup>5</sup>   | 1.0501 × 10 <sup>5</sup>  |
| DEA                         | 1.2719 × 10 <sup>5</sup>  | 1.0991 × 10 <sup>5</sup>  | 1.3529 × 10 <sup>5</sup> | 1.1230 × 10 <sup>5</sup>  |
| QOPO <sup>24</sup>          | N/A                       | N/A                       | 1.2954 × 10 <sup>5</sup> | 1.76886 × 10 <sup>5</sup> |
| OWP-based OMF <sup>38</sup> | 1.28595 × 10 <sup>5</sup> | 1.78557 × 10 <sup>5</sup> | N/A                      | N/A                       |
| ihPSODE <sup>43</sup>       | 1.2225 × 10 <sup>5</sup>  | 2.0985 × 10 <sup>5</sup>  | N/A                      | N/A                       |
| EMFO <sup>48</sup>          | 1.2492 × 10 <sup>5</sup>  | $0.93335 \times 10^5$     | 1.2838 × 10 <sup>5</sup> | $0.95291 \times 10^5$     |

**Table 11**. Comparison between the multi-OF using the proposed EOA and other methods for 40-unit system (Cases 4,5).

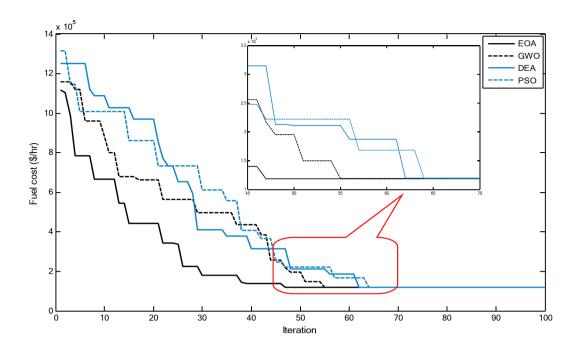
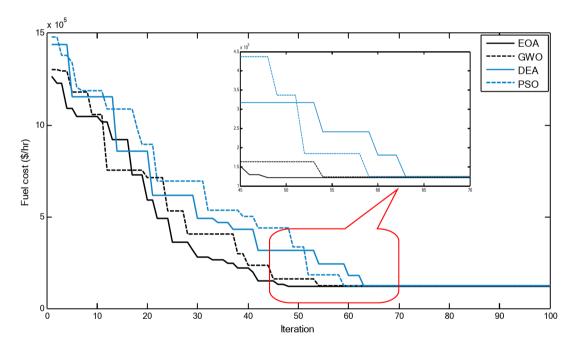

of the OFs than obtained using other methods for all cases. Moreover, the total fuel cost considering VPE obtained using EMFO reported in  $^{48}$  is incorrect. The exact value of total fuel cost is  $2.5558 \times 10^5$  \$/hr. Therefore, this comparison reflects the superiority of the proposed EOA for minimizing the total fuel cost and emission individually as single OFs.

Table 18 presents a comparison between the proposed EOA and other methods for minimizing the OFs simultaneously with and without VPE for 80-unit system. It can be noticed that the total fuel cost and total emission obtained using the proposed EOA are lower than those obtained using other methods for all cases. This comparison reflects the great capability of the proposed EOA to solve the multi-OF.


Figure 5 compares the convergence curves recorded by running the proposed EOA, GWO, DEA, and PSO without considering power losses for cases 1–3 for 80-unit system. The proposed EOA reaches the optimal solution with a minimum number of iterations compared with other methods.

Large-scale power system: 140-unit system

Tables 19 and 20 show the optimal results obtained using the proposed EOA and other methods without considering power losses for cases 6 and 7, which aim to minimize the total fuel cost with and without considering the VPE, RRL, and POZs for 140-unit system. The total cost obtained using the proposed EOA is lower than that obtained using other methods. The proposed EOA gives better solutions with maximum savings in the total fuel cost by 107,200 \$/hr and 126,400 \$/hr with a percentage reduction of 6.4203%, and 7.2394% than the base case (results of PSO) for cases 6 and 7, respectively. This comparison reflects the superiority of the proposed EOA for reducing the total fuel cost with and without considering the VPE, RRL, and POZs for large-scale power systems.



a) Convergence of cost without VPE (case 1)



b) Convergence of cost with VPE (case 2)

 $\textbf{Fig. 5.} \ \ \text{Convergence curves of the proposed EOA and other algorithms without considering power losses for 40-unit system$ 

Table 21 presents the optimal results obtained using the proposed algorithm and other methods without considering power losses for case 8, which aims to minimize the total emission for 140-unit system. The total emission obtained using the proposed EOA is lower than that obtained using other methods. The total emission obtained using the proposed EOA is reduced by 2.5688% than the base case (results of PSO). This comparison reflects the great capability of the proposed EOA to reduce the total emission for large-scale power systems.

Table 22shows a comparison between the proposed EOA and other methods when the considered OFs are minimized individually for 140-unit system as a large-scale power system. The proposed EOA gives minimum values of the OFs than other methods for all cases. Moreover, the results of total fuel cost without considering VPE, RRL, and POZs obtained using MPSO\_SSM<sup>20</sup>, and MOMSA<sup>22</sup> are incorrect. The exact values of total fuel

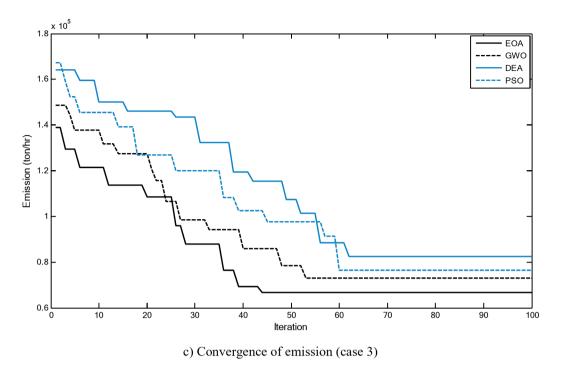



Figure 5. (continued)

cost are  $2.0717 \times 10^6$  \$/hr and  $1.8740 \times 10^6$  \$/hr for these algorithms, respectively. Therefore, this comparison reflects the superiority of the proposed EOA for minimizing the total fuel cost and total emission individually as single OFs for large-scale power systems.

Figures 6 and 7 compares the convergence curves recorded by running the proposed EOA, GWO, DEA, and PSO without considering power losses for cases 1–3 for 80-unit system and for cases 6–8 for 140-unit system, respectively. The proposed EOA reaches the optimal solution with a minimum number of iterations compared with other methods.

Table 23 shows the multi-objective optimization results obtained using the proposed EOA and other methods to minimize the total fuel cost and total emission without considering VPE, RRL, and POZs for 140-unit system. In addition, the Pareto front is obtained to find the best compromise between the total fuel cost and emission. The proposed EOA gives better results than other methods by finding the best compromise solution for reducing the total fuel cost and total emission. Figure 8 shows the results of the Pareto front obtained by the proposed EOA and other methods for 140-unit system. From Table 23; Fig. 8, the optimal values of total fuel cost and emission using the proposed EOA are  $1.6063 \times 10^6$  \$/hr and 714.4009 ton/hr, respectively. Therefore, this comparison reflects the superiority of the proposed EOA with the Pareto front for minimizing total cost and emission as a multi-OF.

Table 24 shows the multi-objective optimization results obtained using the proposed EOA and other methods to minimize the total fuel cost and emission considering VPE, RRL, and POZs for 140-unit system. Moreover, the Pareto front is obtained to find the best compromise between the total fuel cost and emission. The best compromise solution between the total fuel cost and total emission is obtained using the proposed EOA. Figure 9 shows the results of the Pareto front obtained by the proposed EOA and other methods for the 140-unit system. From Table 24; Fig. 9, the optimal values of total fuel cost and emission using the proposed EOA are  $1.6417 \times 10^6$  \$/hr and 663.6264 ton/hr, respectively. Therefore, this comparison reflects the great capability of the proposed EOA with the Pareto front for minimizing total fuel cost and emission as a multi-OF.

Table 25 presents a comparison between the proposed EOA and other methods for minimizing the total fuel cost and emission simultaneously with and without VPE, RRL, and POZs for 140-unit system. The proposed EOA gives better results than other methods by finding the best compromise solution for reducing the total fuel cost and total emission. This comparison reflects the superiority of the proposed EOA for solving the multi-OF for large-scale power systems.

#### Results of statistical analysis

Comparison based on the statistical analysis between the proposed EOA and other algorithms such as GWO, PSO, and DEA has been carried out to evaluate the capability of the proposed EOA to reduce the total fuel cost and emission. Table 26 shows the statistical summary by finding the best, mean, worst, and standard deviation (SD) for each single OF after 50 random trials with the same parameters for test systems. Better performance is obtained using the proposed EOA because of the convergence to the best solution in most trials. In addition, the lower values of SDs based on the proposed EOA are great evidence for this convergence. This comparison

| Unit (MW)        | EMFO <sup>48</sup> | DEA      | PSO      | GWO      | Proposed EOA | Unit (MW)         | EMFO <sup>48</sup>       | DEA                    | PSO                    | GWO                      | Proposed EOA             |
|------------------|--------------------|----------|----------|----------|--------------|-------------------|--------------------------|------------------------|------------------------|--------------------------|--------------------------|
| PG <sub>1</sub>  | 114.0000           | 114.0000 | 96.8125  | 101.9660 | 113.9999     | PG <sub>44</sub>  | 185.8800                 | 142.6444               | 90.2758                | 154.4198                 | 189.9815                 |
| PG <sub>2</sub>  | 113.2900           | 43.3896  | 99.4539  | 92.4340  | 113.9517     | PG <sub>45</sub>  | 55.0000                  | 91.9878                | 69.2869                | 91.5438                  | 96.9997                  |
| PG <sub>3</sub>  | 109.3500           | 111.0642 | 65.1480  | 118.1647 | 119.9243     | PG <sub>46</sub>  | 97.5580                  | 72.2611                | 82.6704                | 122.1170                 | 139.9235                 |
| PG <sub>4</sub>  | 189.1800           | 155.6961 | 170.3453 | 178.1466 | 189.4065     | PG <sub>47</sub>  | 272.6500                 | 294.1458               | 298.8832               | 293.8632                 | 299.9995                 |
| PG <sub>5</sub>  | 90.8380            | 97.0000  | 76.2143  | 97.0000  | 97.0000      | PG <sub>48</sub>  | 299.5800                 | 243.6702               | 243.2733               | 291.3174                 | 299.9942                 |
| PG <sub>6</sub>  | 132.1700           | 79.5429  | 140.0000 | 110.6830 | 139.9761     | PG <sub>49</sub>  | 299.9200                 | 293.8696               | 299.8140               | 298.5502                 | 299.9998                 |
| PG <sub>7</sub>  | 299.9600           | 260.6922 | 298.8929 | 298.2767 | 299.9976     | PG <sub>50</sub>  | 190.4500                 | 212.4926               | 250.9279               | 131.5665                 | 130.0802                 |
| PG <sub>8</sub>  | 295.8700           | 223.5185 | 254.5944 | 295.1637 | 299.9109     | PG <sub>51</sub>  | 146.7500                 | 139.1646               | 239.8126               | 126.7527                 | 94.0106                  |
| PG <sub>9</sub>  | 300.0000           | 299.7529 | 271.6826 | 297.9216 | 299.9963     | PG <sub>52</sub>  | 141.9200                 | 210.3094               | 158.6992               | 157.3312                 | 94.0194                  |
| PG <sub>10</sub> | 200.6400           | 132.7297 | 212.6796 | 139.6435 | 130.0077     | PG <sub>53</sub>  | 125.0400                 | 481.4632               | 473.2048               | 149.7481                 | 125.0001                 |
| PG <sub>11</sub> | 103.0400           | 273.0569 | 165.4518 | 100.1926 | 94.0438      | PG <sub>54</sub>  | 309.0900                 | 385.4573               | 407.9992               | 254.1883                 | 248.2456                 |
| PG <sub>12</sub> | 154.5200           | 191.8132 | 319.5829 | 184.9170 | 94.0288      | PG <sub>55</sub>  | 277.5700                 | 448.5935               | 499.6039               | 363.7120                 | 270.1128                 |
| PG <sub>13</sub> | 199.9000           | 262.3375 | 387.0170 | 213.7687 | 126.8778     | PG <sub>56</sub>  | 325.0400                 | 360.4044               | 423.6766               | 289.5072                 | 267.7985                 |
| PG <sub>14</sub> | 291.1700           | 267.9271 | 483.5692 | 233.7271 | 279.0214     | PG <sub>57</sub>  | 500.0000                 | 485.4145               | 461.5894               | 483.8692                 | 499.5468                 |
| PG <sub>15</sub> | 190.4300           | 355.1339 | 384.6046 | 348.5614 | 250.5830     | PG <sub>58</sub>  | 499.2900                 | 420.2477               | 301.6736               | 485.1689                 | 499.9962                 |
| PG <sub>16</sub> | 330.0000           | 354.1818 | 463.5760 | 305.8937 | 294.6593     | PG <sub>59</sub>  | 549.9900                 | 508.7896               | 450.0719               | 528.8364                 | 549.9793                 |
| PG <sub>17</sub> | 499.9600           | 484.0204 | 500.0000 | 492.8023 | 499.9999     | PG <sub>60</sub>  | 549.9800                 | 550.0000               | 520.6422               | 525.7851                 | 549.9825                 |
| PG <sub>18</sub> | 452.6200           | 493.7118 | 499.9261 | 499.3153 | 500.0000     | PG <sub>61</sub>  | 550.0000                 | 543.6099               | 550.0000               | 545.6508                 | 550.0000                 |
| PG <sub>19</sub> | 549.9900           | 548.0229 | 360.1751 | 534.9289 | 549.9267     | PG <sub>62</sub>  | 550.0000                 | 525.0138               | 417.2986               | 547.2944                 | 549.9892                 |
| PG <sub>20</sub> | 543.8900           | 534.6733 | 549.3262 | 539.3469 | 549.9827     | PG <sub>63</sub>  | 550.0000                 | 531.0868               | 549.5890               | 548.3968                 | 549.9965                 |
| PG <sub>21</sub> | 550.0000           | 535.3074 | 546.4561 | 548.9342 | 549.9967     | PG <sub>64</sub>  | 550.0000                 | 550.0000               | 516.7856               | 548.0493                 | 550.0000                 |
| PG <sub>22</sub> | 550.0000           | 534.6745 | 547.8913 | 547.5282 | 550.0000     | PG <sub>65</sub>  | 550.0000                 | 549.7875               | 549.2777               | 546.5453                 | 549.9972                 |
| PG <sub>23</sub> | 550.0000           | 544.0075 | 440.2246 | 550.0000 | 549.9913     | PG <sub>66</sub>  | 549.99                   | 534.9044               | 525.8593               | 546.1994                 | 549.9901                 |
| PG <sub>24</sub> | 550.0000           | 550.0000 | 254.5402 | 544.5965 | 550.0000     | PG <sub>67</sub>  | 10.9140                  | 10.3231                | 32.3869                | 19.8561                  | 10.0519                  |
| PG <sub>25</sub> | 549.9800           | 547.8841 | 513.1178 | 550.0000 | 549.9944     | PG <sub>68</sub>  | 10.4250                  | 10.2241                | 18.1594                | 10.3814                  | 10.2239                  |
| PG <sub>26</sub> | 550.0000           | 548.5072 | 549.9541 | 550.0000 | 549.9934     | PG <sub>69</sub>  | 12.5020                  | 10.3247                | 41.7725                | 11.9698                  | 10.2549                  |
| PG <sub>27</sub> | 10.6050            | 10.7164  | 20.3977  | 11.8191  | 10.0419      | PG <sub>70</sub>  | 96.3790                  | 52.6813                | 97.0000                | 96.4156                  | 96.9933                  |
| PG <sub>28</sub> | 10.0000            | 10.6319  | 51.5707  | 11.2969  | 10.0061      | PG <sub>71</sub>  | 190.0000                 | 189.8871               | 94.6183                | 189.0532                 | 189.9999                 |
| PG <sub>29</sub> | 10.1190            | 11.7506  | 22.9361  | 10.8830  | 10.1785      | PG <sub>72</sub>  | 190.0000                 | 142.2474               | 190.0000               | 189.0217                 | 189.9917                 |
| PG <sub>30</sub> | 60.7560            | 87.8887  | 86.5792  | 88.2649  | 96.9829      | PG <sub>73</sub>  | 189.9300                 | 88.1918                | 72.7829                | 189.9458                 | 189.9937                 |
| PG <sub>31</sub> | 190.0000           | 183.1313 | 181.6685 | 188.8252 | 189.9996     | PG <sub>74</sub>  | 197.8700                 | 125.7622               | 195.2636               | 189.0541                 | 199.9971                 |
| PG <sub>32</sub> | 190.0000           | 186.0829 | 149.2146 | 189.5687 | 189.9990     | PG <sub>75</sub>  | 200.0000                 | 159.2427               | 175.5479               | 198.6953                 | 199.9990                 |
| PG <sub>33</sub> | 190.0000           | 119.4154 | 146.2689 | 190.0000 | 189.9991     | PG <sub>76</sub>  | 200.0000                 | 115.4807               | 200.0000               | 194.5141                 | 199.9986                 |
| PG <sub>34</sub> | 137.1700           | 177.2106 | 130.4096 | 197.9287 | 199.9997     | PG <sub>77</sub>  | 108.1000                 | 109.6512               | 37.2913                | 105.6737                 | 109.9271                 |
| PG <sub>35</sub> | 170.0600           | 161.4160 | 108.2394 | 199.6865 | 199.9663     | PG <sub>78</sub>  | 93.3730                  | 35.3481                | 85.5080                | 76.0142                  | 109.9401                 |
| PG <sub>36</sub> | 199.9900           | 199.4960 | 182.0734 | 199.6980 | 199.9700     | PG <sub>79</sub>  | 63.8150                  | 106.7374               | 55.4254                | 106.5094                 | 109.9853                 |
| PG <sub>37</sub> | 96.0490            | 109.9203 | 85.2623  | 94.8032  | 109.9474     | PG <sub>80</sub>  | 549.9300                 | 493.0541               | 533.7239               | 535.2555                 | 549.9429                 |
| PG <sub>38</sub> | 79.8770            | 55.1866  | 106.8002 | 102.5829 | 109.9984     | Total PG          | 21,000                   | 21,000                 | 21,000                 | 21,000                   | 21,000                   |
| PG <sub>39</sub> | 109.8300           | 90.7019  | 108.2583 | 104.3216 | 109.9476     | Cost (\$/hr)      | 2.3978 × 10 <sup>5</sup> | $2.4540 \times 10^{5}$ | $2.5205 \times 10^{5}$ | 2.3943 × 10 <sup>5</sup> | 2.3732 × 10 <sup>5</sup> |
| PG <sub>40</sub> | 545.3400           | 492.4271 | 476.6022 | 536.9131 | 549.9994     | Emission (ton/hr) | 9.3960 × 10 <sup>5</sup> | $7.3599 \times 10^{5}$ | $6.0421 \times 10^5$   | 8.4005 × 10 <sup>5</sup> | $9.7608 \times 10^{5}$   |
| PG <sub>41</sub> | 105.9600           | 114.0000 | 79.0482  | 112.2572 | 114.0000     | Saving (\$/hr)    | 12,270                   | 6650                   | Base case              | 12,620                   | 14,730                   |
| PG <sub>42</sub> | 112.1800           | 106.6531 | 96.0556  | 49.4749  | 113.9897     | ournig (w/m/)     | 12,270                   | 0030                   | Duoc cuoc              | 12,020                   | 11,750                   |
| PG <sub>43</sub> | 82.3740            | 116.2516 | 106.9834 | 94.9906  | 118.7616     | Reduction (%)     | 4.8681                   | 2.6384                 | Base case              | 5.0069                   | 5.8441                   |

**Table 12.** Simulation results using different algorithms without considering power losses for 80-unit system (Case 1).

reflects the superiority and robustness of the proposed EOA to reach either optimum value or very near to it in every trial for small, medium, and large-scale systems.

#### Results of nonparametric statistical analysis

Comparison based on the Wilcoxon signed-rank test between the proposed EOA and other algorithms such as GWO, PSO, and DEA has been carried out to compare the OF values from each run with a 5% significance threshold. Table 27 shows the results of the p-value obtained for test systems for the Wilcoxon signed-rank test using the proposed EOA and other methods after 50 random trials with the same parameters and iterations for test systems. It can be observed that all the p-values are less than 0.05 for all cases, indicating that the proposed EOA is significantly different than other methods. This test reflects the superiority of the proposed EOA for finding better solutions than other methods when solving the EELD problem.

| Unit (MW)        | EMFO <sup>48</sup> | DEA      | PSO      | GWO      | Proposed EOA | Unit (MW)         | EMFO <sup>48</sup>      | DEA                      | PSO                      | GWO                      | Proposed EOA             |
|------------------|--------------------|----------|----------|----------|--------------|-------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| PG <sub>1</sub>  | 112.4040           | 89.3659  | 105.4398 | 112.8277 | 113.2405     | PG <sub>44</sub>  | 179.6450                | 158.6995                 | 131.3212                 | 82.6104                  | 179.7251                 |
| PG <sub>2</sub>  | 113.5470           | 106.1395 | 110.8598 | 36.8185  | 113.6320     | PG <sub>45</sub>  | 88.2450                 | 92.9849                  | 94.5424                  | 95.2467                  | 96.2600                  |
| PG <sub>3</sub>  | 97.4540            | 70.9244  | 100.4905 | 101.5329 | 117.3534     | PG <sub>46</sub>  | 140.0000                | 112.0955                 | 135.9816                 | 111.3025                 | 126.3536                 |
| PG <sub>4</sub>  | 179.7350           | 82.9767  | 175.8308 | 102.0443 | 180.9481     | PG <sub>47</sub>  | 260.0000                | 300.0000                 | 293.8280                 | 293.7982                 | 295.0925                 |
| PG <sub>5</sub>  | 95.0010            | 82.5430  | 91.0567  | 94.2688  | 89.3905      | PG <sub>48</sub>  | 285.1240                | 285.1009                 | 280.2700                 | 297.2886                 | 286.2727                 |
| PG <sub>6</sub>  | 140.0000           | 123.0285 | 70.8108  | 138.1473 | 139.9999     | PG <sub>49</sub>  | 184.6540                | 216.9584                 | 286.4417                 | 295.4732                 | 284.9750                 |
| PG <sub>7</sub>  | 260.0000           | 247.4203 | 275.3933 | 278.0357 | 297.0023     | PG <sub>50</sub>  | 130.0000                | 258.9830                 | 238.2898                 | 262.1847                 | 165.0361                 |
| PG <sub>8</sub>  | 284.6230           | 279.8924 | 265.1147 | 293.5406 | 290.2204     | PG <sub>51</sub>  | 168.0010                | 156.2050                 | 299.2779                 | 315.4814                 | 94.0069                  |
| PG <sub>9</sub>  | 285.1750           | 256.6108 | 269.3019 | 292.1016 | 288.5580     | PG <sub>52</sub>  | 94.0000                 | 317.4918                 | 264.7834                 | 262.0040                 | 98.7673                  |
| PG <sub>10</sub> | 130.0000           | 278.7514 | 207.7485 | 202.0039 | 130.4360     | PG <sub>53</sub>  | 125.0000                | 390.2028                 | 296.6578                 | 236.1408                 | 125.0742                 |
| PG <sub>11</sub> | 94.0000            | 320.7968 | 277.4434 | 177.0853 | 94.2226      | PG <sub>54</sub>  | 304.5007                | 370.3429                 | 485.6418                 | 306.4326                 | 394.3146                 |
| PG <sub>12</sub> | 168.5010           | 286.0342 | 94.2235  | 159.9513 | 172.0694     | PG <sub>55</sub>  | 394.3250                | 454.0652                 | 484.0698                 | 394.9238                 | 304.6167                 |
| PG <sub>13</sub> | 214.8450           | 478.1661 | 376.4644 | 303.2894 | 127.6572     | PG <sub>56</sub>  | 394.3250                | 200.6246                 | 286.1282                 | 304.6006                 | 394.3045                 |
| PG <sub>14</sub> | 394.1480           | 471.4515 | 394.6591 | 395.7031 | 394.6735     | PG <sub>57</sub>  | 488.4000                | 483.8196                 | 499.8185                 | 487.7389                 | 493.7946                 |
| PG <sub>15</sub> | 393.5710           | 473.8898 | 399.3584 | 331.2232 | 304.5064     | PG <sub>58</sub>  | 489.0000                | 484.2142                 | 233.4522                 | 489.7039                 | 498.5902                 |
| PG <sub>16</sub> | 393.6980           | 442.9755 | 481.0431 | 395.3663 | 485.1419     | PG <sub>59</sub>  | 511.4570                | 512.7713                 | 508.6927                 | 513.4261                 | 511.4442                 |
| PG <sub>17</sub> | 489.4424           | 489.2945 | 479.9293 | 499.9669 | 489.3442     | PG <sub>60</sub>  | 511.5450                | 320.1484                 | 513.4123                 | 512.1937                 | 511.8761                 |
| PG <sub>18</sub> | 489.2856           | 484.8351 | 481.0066 | 489.4870 | 489.4535     | PG <sub>61</sub>  | 523.2037                | 527.0937                 | 527.2740                 | 529.6159                 | 549.1368                 |
| PG <sub>19</sub> | 511.2839           | 513.1632 | 505.6326 | 516.7826 | 511.2594     | PG <sub>62</sub>  | 523.4000                | 439.6251                 | 436.8953                 | 525.7344                 | 523.2810                 |
| PG <sub>20</sub> | 511.3010           | 515.9635 | 512.2458 | 514.9375 | 511.4014     | PG <sub>63</sub>  | 523.3120                | 523.6483                 | 525.0315                 | 523.9331                 | 549.7494                 |
| PG <sub>21</sub> | 523.2835           | 539.2342 | 513.2941 | 534.7622 | 524.9422     | PG <sub>64</sub>  | 523.2965                | 507.0438                 | 526.9781                 | 527.1024                 | 549.9407                 |
| PG <sub>22</sub> | 523.2828           | 509.1249 | 533.2573 | 525.7621 | 523.4803     | PG <sub>65</sub>  | 523.4120                | 523.1870                 | 529.7070                 | 528.1863                 | 523.5807                 |
| PG <sub>23</sub> | 523.2793           | 545.0101 | 522.9027 | 524.2651 | 546.9243     | PG <sub>66</sub>  | 523.3497                | 479.0421                 | 525.3622                 | 527.8549                 | 544.5363                 |
| PG <sub>24</sub> | 523.2968           | 346.2088 | 527.2468 | 523.7527 | 528.7207     | PG <sub>67</sub>  | 10.0000                 | 48.6984                  | 10.0484                  | 30.3707                  | 10.2043                  |
| PG <sub>25</sub> | 523.2236           | 519.3506 | 516.7344 | 548.5895 | 524.8906     | PG <sub>68</sub>  | 110.0000                | 29.3739                  | 22.6986                  | 30.0540                  | 10.1046                  |
| PG <sub>26</sub> | 523.2925           | 532.6313 | 524.6226 | 529.2068 | 524.3518     | PG <sub>69</sub>  | 110.0000                | 31.7640                  | 16.4543                  | 22.9459                  | 10.1657                  |
| PG <sub>27</sub> | 10.0000            | 42.3015  | 51.5443  | 25.1756  | 10.1383      | PG <sub>70</sub>  | 90.0000                 | 78.5924                  | 83.0670                  | 47.6394                  | 47.0471                  |
| PG <sub>28</sub> | 10.0000            | 20.4702  | 14.4170  | 10.7804  | 11.0875      | PG <sub>71</sub>  | 190.0000                | 84.3276                  | 155.1280                 | 172.7776                 | 189.9438                 |
| PG <sub>29</sub> | 10.0000            | 38.2444  | 12.5584  | 17.5508  | 10.7987      | PG <sub>72</sub>  | 190.0000                | 164.2021                 | 175.6718                 | 160.6749                 | 187.5153                 |
| PG <sub>30</sub> | 88.1227            | 88.3966  | 66.9321  | 88.5045  | 47.5566      | PG <sub>73</sub>  | 190.0000                | 119.2173                 | 77.6981                  | 164.8486                 | 188.8537                 |
| PG <sub>31</sub> | 190.0000           | 187.0516 | 156.8056 | 181.5694 | 178.8103     | PG <sub>74</sub>  | 165.3210                | 143.7529                 | 197.7047                 | 181.9391                 | 199.8714                 |
| PG <sub>32</sub> | 190.0000           | 178.7657 | 91.8098  | 170.4224 | 189.8402     | PG <sub>75</sub>  | 200.0000                | 122.6443                 | 198.9916                 | 157.5548                 | 199.9746                 |
| PG <sub>33</sub> | 190.0000           | 169.7875 | 181.5587 | 161.7743 | 189.8025     | PG <sub>76</sub>  | 200.0000                | 171.8222                 | 90.0600                  | 191.1549                 | 168.8301                 |
| PG <sub>34</sub> | 165.2210           | 178.7120 | 187.7985 | 196.8499 | 199.5468     | PG <sub>77</sub>  | 110.0000                | 76.4822                  | 108.0456                 | 51.1919                  | 100.6512                 |
| PG <sub>35</sub> | 200.0000           | 108.5198 | 91.6313  | 168.3030 | 199.9756     | PG <sub>78</sub>  | 110.0000                | 51.3769                  | 99.3187                  | 70.4360                  | 108.9560                 |
| PG <sub>36</sub> | 200.0000           | 104.1936 | 95.5380  | 127.9498 | 199.9862     | PG <sub>79</sub>  | 110.0000                | 61.9204                  | 30.4431                  | 50.7340                  | 57.6241                  |
| PG <sub>37</sub> | 110.0000           | 56.2800  | 78.3856  | 87.6518  | 109.9995     | PG <sub>80</sub>  | 512.0000                | 511.4786                 | 513.8113                 | 514.8271                 | 511.3592                 |
| PG <sub>38</sub> | 110.0000           | 106.8644 | 27.6208  | 100.1022 | 105.8548     | Total PG          | 21,100 <sup>a</sup>     | 21,000                   | 21,000                   | 21,000                   | 21,000                   |
| PG <sub>39</sub> | 110.0000           | 71.0193  | 98.9435  | 31.4686  | 106.7964     | Cost (\$/hr)      | $2.4290 \times 10^{5b}$ | 2.6017 × 10 <sup>5</sup> | 2.5507 × 10 <sup>5</sup> | 2.5132 × 10 <sup>5</sup> | 2.4584 × 10 <sup>5</sup> |
| PG <sub>40</sub> | 511.3210           | 511.1673 | 526.4975 | 512.3710 | 549.7587     | Emission (ton/hr) | $5.7274 \times 10^{5}$  | $5.1196 \times 10^{5}$   | $5.5321 \times 10^{5}$   | $5.9572 \times 10^{5}$   | $7.0120 \times 10^{5}$   |
| PG <sub>41</sub> | 114.0000           | 104.1299 | 112.9712 | 72.0998  | 110.7939     | Saving (\$/hr)    | -510°                   | -5100                    | Base case                | 3750                     | 9230                     |
| PG <sub>42</sub> | 110.6470           | 62.1963  | 104.8138 | 53.5703  | 113.4035     | Saving (\$/111)   | -310                    | -3100                    | Dase Case                | 3/30                     | 9230                     |
| PG <sub>43</sub> | 97.5000            | 76.1157  | 105.0644 | 102.2779 | 60.1997      | Reduction (%)     | -0.1999                 | -1.9995                  | Base case                | 1.4702                   | 3.6186                   |

**Table 13**. Simulation results using different algorithms without considering power losses for 80-unit system (Case 2).

#### Conclusions

This paper proposed an efficient procedure based on the EOA for an economical/environmental operation of power systems by solving the EELD problem considering single and multi-objective functions. Two OFs have been considered by minimizing the total fuel cost and emission with and without considering practical constraints such as VPE, RRL, POZs, and transmission system losses. In addition, the multi-OF, which aims to minimize these objectives simultaneously, has been considered. The proposed EOA has been evaluated and tested on small, medium, and large-scale test systems having 10, 20, 40, 80, and 140 units. The numerical results have been compared with the results using other optimization techniques such as GWO, PSO, DEA, and other optimization techniques in the literature. Also, the proposed EOA has been evaluated and compared with other optimization techniques based on statistical analysis and statistical checks-based Wilcoxon-score rank test for solving the EELD problem considering different OFs. These comparisons proved the superiority of the proposed

| Unit (MW)        | EMFO [48] | DEA      | PSO      | GWO      | Proposed EOA | Unit (MW)         | EMFO [48]                | DEA                      | PSO                      | GWO                      | Proposed EOA             |
|------------------|-----------|----------|----------|----------|--------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| PG <sub>1</sub>  | 113.9997  | 110.2970 | 112.1485 | 113.1385 | 113.5706     | PG <sub>44</sub>  | 159.3282                 | 159.1969                 | 155.5548                 | 159.3568                 | 159.0287                 |
| PG <sub>2</sub>  | 113.7379  | 51.8145  | 57.0270  | 113.8443 | 112.7485     | PG <sub>45</sub>  | 73.3021                  | 96.9449                  | 96.9454                  | 96.9219                  | 96.8908                  |
| PG <sub>3</sub>  | 81.8947   | 113.9193 | 110.1596 | 109.3393 | 115.1716     | PG <sub>46</sub>  | 114.3446                 | 116.1541                 | 118.6395                 | 118.8667                 | 117.4027                 |
| PG <sub>4</sub>  | 158.8768  | 165.7169 | 166.3235 | 163.1179 | 157.8143     | PG <sub>47</sub>  | 286.6427                 | 289.6340                 | 288.0365                 | 281.7306                 | 282.5537                 |
| PG <sub>5</sub>  | 71.6054   | 96.8707  | 93.2085  | 96.9835  | 96.9779      | PG <sub>48</sub>  | 272.2790                 | 283.1730                 | 280.4214                 | 285.6532                 | 282.8328                 |
| PG <sub>6</sub>  | 120.5910  | 115.7009 | 116.0652 | 118.7030 | 116.9402     | PG <sub>49</sub>  | 287.0221                 | 286.2560                 | 288.9237                 | 279.5051                 | 280.6837                 |
| PG <sub>7</sub>  | 280.9490  | 283.9009 | 287.1061 | 281.5728 | 279.9768     | PG <sub>50</sub>  | 290.4878                 | 278.8000                 | 283.2435                 | 280.4507                 | 278.6537                 |
| PG <sub>8</sub>  | 276.3689  | 288.7859 | 283.2251 | 281.8725 | 280.7595     | PG <sub>51</sub>  | 285.6921                 | 286.2908                 | 285.6123                 | 285.5782                 | 281.7676                 |
| PG <sub>9</sub>  | 284.1128  | 286.8839 | 287.1293 | 278.1073 | 282.5433     | PG <sub>52</sub>  | 287.0221                 | 291.1168                 | 287.2562                 | 281.7206                 | 281.5702                 |
| PG <sub>10</sub> | 279.9949  | 286.1772 | 285.9724 | 282.4611 | 281.8382     | PG <sub>53</sub>  | 419.6174                 | 424.5270                 | 417.0075                 | 415.5022                 | 409.8640                 |
| PG <sub>11</sub> | 282.6289  | 291.9360 | 286.9668 | 282.7989 | 277.7188     | PG <sub>54</sub>  | 415.6176                 | 417.6484                 | 420.6554                 | 414.9795                 | 412.2371                 |
| PG <sub>12</sub> | 285.6582  | 282.3164 | 286.7357 | 282.1513 | 281.6427     | PG <sub>55</sub>  | 415.6001                 | 422.0331                 | 421.4560                 | 414.7654                 | 409.5663                 |
| PG <sub>13</sub> | 415.0397  | 428.5065 | 420.4635 | 414.6502 | 408.9334     | PG <sub>56</sub>  | 417.7571                 | 424.8659                 | 416.8518                 | 418.2616                 | 413.1109                 |
| PG <sub>14</sub> | 417.7272  | 427.7946 | 419.6376 | 420.6800 | 414.7790     | PG <sub>57</sub>  | 418.5315                 | 427.2277                 | 419.9998                 | 412.5427                 | 413.1169                 |
| PG <sub>15</sub> | 414.7869  | 421.7760 | 415.4620 | 413.7775 | 411.9540     | PG <sub>58</sub>  | 415.5713                 | 428.0526                 | 417.7303                 | 417.2261                 | 413.4947                 |
| PG <sub>16</sub> | 418.9748  | 423.5266 | 421.8994 | 416.8381 | 411.0786     | PG <sub>59</sub>  | 419.5352                 | 426.2538                 | 418.6094                 | 416.3873                 | 411.0216                 |
| PG <sub>17</sub> | 412.8375  | 426.1694 | 414.5125 | 417.0664 | 413.7513     | PG <sub>60</sub>  | 415.9485                 | 422.2463                 | 418.1872                 | 417.4766                 | 414.6536                 |
| PG <sub>18</sub> | 414.8997  | 419.9010 | 419.1983 | 414.9546 | 411.6530     | PG <sub>61</sub>  | 418.0022                 | 425.3447                 | 419.2741                 | 415.6722                 | 412.1630                 |
| PG <sub>19</sub> | 413.9892  | 425.0554 | 416.0978 | 416.4911 | 414.3970     | PG <sub>62</sub>  | 417.7792                 | 418.4665                 | 417.5276                 | 421.9410                 | 415.1245                 |
| PG <sub>20</sub> | 412.0937  | 423.8134 | 417.2706 | 417.3928 | 413.5686     | PG <sub>63</sub>  | 414.5960                 | 426.2831                 | 418.9424                 | 416.8983                 | 412.4575                 |
| PG <sub>21</sub> | 418.8459  | 424.7448 | 413.5340 | 422.4156 | 410.4951     | PG <sub>64</sub>  | 413.3588                 | 421.4370                 | 423.0159                 | 420.5178                 | 415.9058                 |
| PG <sub>22</sub> | 415.5026  | 422.8152 | 417.0406 | 413.9385 | 413.8680     | PG <sub>65</sub>  | 418.5347                 | 421.8019                 | 421.3292                 | 413.9466                 | 412.9376                 |
| PG <sub>23</sub> | 414.3629  | 423.7007 | 415.7098 | 414.2604 | 415.0477     | PG <sub>66</sub>  | 420.4356                 | 425.6717                 | 417.4492                 | 417.0259                 | 414.3344                 |
| PG <sub>24</sub> | 417.0097  | 419.3052 | 420.6775 | 419.8311 | 412.6926     | PG <sub>67</sub>  | 150.0000                 | 150.0000                 | 150.0000                 | 150.0000                 | 149.9995                 |
| PG <sub>25</sub> | 415.9926  | 428.5574 | 416.9730 | 414.3525 | 412.2540     | PG <sub>68</sub>  | 150.0000                 | 149.8047                 | 149.9538                 | 149.8996                 | 149.9803                 |
| PG <sub>26</sub> | 418.4022  | 426.5862 | 419.0847 | 413.1672 | 411.9117     | PG <sub>69</sub>  | 150.0000                 | 149.9914                 | 149.5355                 | 110.0543                 | 149.9532                 |
| PG <sub>27</sub> | 149.9999  | 11.0613  | 149.9431 | 149.9985 | 149.9996     | PG <sub>70</sub>  | 93.38114                 | 56.2314                  | 97.0000                  | 67.7998                  | 96.9520                  |
| PG <sub>28</sub> | 149.9999  | 149.8726 | 149.9506 | 149.9993 | 149.9967     | PG <sub>71</sub>  | 153.7112                 | 162.0672                 | 161.9116                 | 158.4876                 | 158.9887                 |
| PG <sub>29</sub> | 149.9999  | 149.7503 | 18.0051  | 150.0000 | 149.9929     | PG <sub>72</sub>  | 161.6624                 | 152.1103                 | 161.0759                 | 165.2014                 | 157.8164                 |
| PG <sub>30</sub> | 66.9288   | 96.8775  | 96.8676  | 96.7726  | 96.9976      | PG <sub>73</sub>  | 158.2236                 | 165.7228                 | 160.5131                 | 159.0977                 | 161.0183                 |
| PG <sub>31</sub> | 158.3165  | 169.6049 | 157.5837 | 159.9210 | 159.0326     | PG <sub>74</sub>  | 200.0000                 | 200.0000                 | 200.0000                 | 200.0000                 | 199.9584                 |
| PG <sub>32</sub> | 160.0855  | 156.1794 | 161.1795 | 159.4450 | 158.4369     | PG <sub>75</sub>  | 199.9988                 | 199.8843                 | 199.8842                 | 199.9558                 | 199.9998                 |
| PG <sub>33</sub> | 157.9581  | 165.3769 | 160.5010 | 161.4917 | 158.9920     | PG <sub>76</sub>  | 199.9999                 | 199.9615                 | 200.0000                 | 199.8908                 | 199.9895                 |
| PG <sub>34</sub> | 199.9999  | 199.8516 | 199.8789 | 199.8660 | 199.9978     | PG <sub>77</sub>  | 82.1612                  | 92.4157                  | 96.1611                  | 45.3161                  | 95.2093                  |
| PG <sub>35</sub> | 199.9999  | 200.0000 | 199.9381 | 199.9677 | 199.9994     | PG <sub>78</sub>  | 97.2357                  | 47.3985                  | 94.9579                  | 90.6902                  | 94.3910                  |
| PG <sub>36</sub> | 200.0000  | 199.9255 | 199.9901 | 199.9987 | 199.9782     | PG <sub>79</sub>  | 93.2120                  | 95.4706                  | 68.6682                  | 96.1562                  | 92.4730                  |
| PG <sub>37</sub> | 96.9403   | 99.2325  | 96.3267  | 99.0918  | 96.3593      | PG <sub>80</sub>  | 418.7578                 | 425.1603                 | 415.2624                 | 415.5193                 | 414.0448                 |
| PG <sub>38</sub> | 91.1856   | 45.5257  | 91.3748  | 78.7325  | 94.3693      | Total PG          | 20,999 <sup>a</sup>      | 21,000                   | 21,000                   | 21,000                   | 21,000                   |
| PG <sub>39</sub> | 90.3385   | 96.9430  | 82.9594  | 99.0058  | 91.1194      | Cost (\$/hr)      | 3.1386 × 10 <sup>5</sup> | 3.0370 × 10 <sup>5</sup> | 3.0315 × 10 <sup>5</sup> | 3.0853 × 10 <sup>5</sup> | $3.1326 \times 10^{5}$   |
| PG <sub>40</sub> | 415.4988  | 430.6617 | 419.1389 | 418.3397 | 415.5158     | Emission (ton/hr) | 1.3977 × 10 <sup>5</sup> | 1.5562 × 10 <sup>5</sup> | 1.4431 × 10 <sup>5</sup> | 1.3957 × 10 <sup>5</sup> | 1.3335 × 10 <sup>5</sup> |
| PG <sub>41</sub> | 113.9784  | 84.3031  | 113.9191 | 112.6050 | 113.6767     | Reduction (%)     | 3.1460                   | -7.8373                  | Rasa casa                | 3.2846                   | 7.5948                   |
| PG <sub>42</sub> | 113.7000  | 55.3192  | 112.5472 | 105.1433 | 113.1337     | Reduction (%)     | 3.1400                   | -/.03/3                  | Base case                | 3.2040                   | 7.3740                   |
| PG <sub>43</sub> | 108.0896  | 107.2979 | 112.6744 | 114.7192 | 116.1697     |                   |                          |                          |                          |                          |                          |

Table 14. Simulation results using different algorithms without considering power losses for 80-unit system

EOA for solving the EELD problem with more accuracy and efficiency. According to the numerical results and comparisons between the proposed EOA and other methods for different studied cases, it can be concluded that,

- For 10-unit test system, the total fuel cost without and with considering VPE obtained using the proposed EOA is reduced by 0.1414%, and 0.0753% than the base case (results of PSO) with maximum savings of 150 \$/hr, and 80 \$/hr, respectively. The total emission is reduced by 1.7483% than the base case. For multi-OF, the total fuel cost without and with considering VPE is reduced with maximum savings of 70 \$/hr, and 1700 \$/hr than the base case, while the total emission is reduced by 4.4067%, and 1.7456% than the base case.
- For 20-unit test system, the total fuel cost without and with considering system losses is reduced by 0.1295%, and 0.2536% than the base case (results of PSO) with maximum savings of 78 \$/hr and 158 \$/hr.

| Unit<br>(MW)     | EMFO <sup>48</sup> | DEA      | PSO      | GWO      | Proposed<br>EOA | Unit (MW)                          | EMFO <sup>48</sup>       | DEA                        | PSO                      | GWO                        | Proposed<br>EOA            |
|------------------|--------------------|----------|----------|----------|-----------------|------------------------------------|--------------------------|----------------------------|--------------------------|----------------------------|----------------------------|
| PG <sub>1</sub>  | 113.9999           | 67.4591  | 100.8674 | 108.7224 | 113.8998        | PG <sub>44</sub>                   | 170.3741                 | 169.8984                   | 176.8705                 | 168.1865                   | 164.3946                   |
| PG <sub>2</sub>  | 113.6499           | 113.5963 | 39.8535  | 50.5658  | 113.9978        | PG <sub>45</sub>                   | 74.9192                  | 79.4191                    | 68.0666                  | 80.9908                    | 96.8997                    |
| PG <sub>3</sub>  | 112.3172           | 118.3032 | 114.9513 | 107.1558 | 119.9869        | PG <sub>46</sub>                   | 120.8659                 | 129.3672                   | 84.3359                  | 122.4044                   | 121.0678                   |
| $PG_4$           | 150.6439           | 171.1722 | 161.0815 | 172.3984 | 164.3464        | PG <sub>47</sub>                   | 279.0513                 | 297.7686                   | 293.4455                 | 293.1210                   | 291.2999                   |
| PG <sub>5</sub>  | 76.3727            | 96.6180  | 96.6965  | 66.7150  | 96.8976         | PG <sub>48</sub>                   | 279.5596                 | 292.2101                   | 296.8428                 | 296.7112                   | 291.3208                   |
| PG <sub>6</sub>  | 122.4982           | 125.5646 | 124.8154 | 124.9644 | 120.9732        | PG <sub>49</sub>                   | 292.2765                 | 297.8519                   | 286.0777                 | 292.4923                   | 291.2624                   |
| PG <sub>7</sub>  | 292.1958           | 290.0891 | 295.6006 | 296.9416 | 291.2397        | PG <sub>50</sub>                   | 277.0594                 | 293.0281                   | 281.2081                 | 285.7705                   | 285.1517                   |
| PG <sub>8</sub>  | 279.3376           | 290.5592 | 292.7275 | 291.7096 | 291.3177        | PG <sub>51</sub>                   | 287.2516                 | 293.9235                   | 295.4411                 | 294.1225                   | 286.6919                   |
| $PG_9$           | 293.1292           | 299.6611 | 293.0605 | 295.7079 | 291.2442        | PG <sub>52</sub>                   | 286.3244                 | 285.4356                   | 282.9650                 | 301.4271                   | 286.6612                   |
| $PG_{10}$        | 290.9995           | 294.4940 | 291.7477 | 284.2077 | 285.2137        | PG <sub>53</sub>                   | 426.3932                 | 447.9563                   | 441.3068                 | 413.8745                   | 420.8847                   |
| PG <sub>11</sub> | 289.8689           | 283.9739 | 295.0747 | 300.8135 | 286.8473        | PG <sub>54</sub>                   | 424.7795                 | 433.9709                   | 436.6181                 | 427.5390                   | 421.8540                   |
| PG <sub>12</sub> | 291.0160           | 296.9648 | 314.8349 | 287.9074 | 286.5372        | PG <sub>55</sub>                   | 429.9879                 | 438.5726                   | 441.6750                 | 431.4321                   | 421.8821                   |
| PG <sub>13</sub> | 428.0288           | 432.8556 | 440.0791 | 426.6614 | 420.9685        | PG <sub>56</sub>                   | 424.3595                 | 418.6438                   | 433.1353                 | 429.7174                   | 421.9317                   |
| PG <sub>14</sub> | 422.0941           | 410.3082 | 445.9897 | 430.9075 | 421.8101        | PG <sub>57</sub>                   | 433.7129                 | 420.8476                   | 435.3932                 | 432.5731                   | 426.8693                   |
| PG <sub>15</sub> | 428.8010           | 421.2428 | 420.0022 | 428.5070 | 421.9403        | PG <sub>58</sub>                   | 424.5211                 | 439.2636                   | 453.2683                 | 434.0192                   | 426.8114                   |
| PG <sub>16</sub> | 427.8846           | 436.4318 | 427.1392 | 428.6908 | 421.8143        | PG <sub>59</sub>                   | 429.1863                 | 446.3557                   | 435.8464                 | 434.3317                   | 426.7803                   |
| PG <sub>17</sub> | 430.5259           | 435.9814 | 431.3254 | 433.1684 | 426.8103        | PG <sub>60</sub>                   | 430.5255                 | 421.1622                   | 431.2466                 | 433.9153                   | 426.7326                   |
| PG <sub>18</sub> | 421.2732           | 430.2636 | 448.9249 | 432.5117 | 426.8044        | PG <sub>61</sub>                   | 431.6077                 | 431.6574                   | 431.2759                 | 428.2463                   | 428.2240                   |
| PG <sub>19</sub> | 426.7053           | 427.8717 | 436.8352 | 430.2692 | 426.8382        | PG <sub>62</sub>                   | 425.7248                 | 426.9738                   | 442.7410                 | 441.2845                   | 428.3135                   |
| PG <sub>20</sub> | 430.6994           | 440.7731 | 442.7985 | 433.2114 | 426.7518        | PG <sub>63</sub>                   | 433.9700                 | 434.6412                   | 456.4590                 | 428.0524                   | 428.3120                   |
| PG <sub>21</sub> | 433.7768           | 447.5018 | 431.9755 | 424.9403 | 428.1365        | PG <sub>64</sub>                   | 431.9074                 | 412.2893                   | 441.9907                 | 424.4331                   | 428.2925                   |
| PG <sub>22</sub> | 434.7359           | 430.8631 | 445.1384 | 431.8403 | 428.2807        | PG <sub>65</sub>                   | 435.7249                 | 436.0869                   | 441.4996                 | 426.8888                   | 428.6066                   |
| PG <sub>23</sub> | 436.9140           | 443.3633 | 446.7755 | 428.9394 | 428.4194        | PG <sub>66</sub>                   | 436.1900                 | 435.7069                   | 445.6163                 | 423.7348                   | 427.9432                   |
| PG <sub>24</sub> | 435.2508           | 436.1451 | 457.9882 | 433.9120 | 428.3475        | PG <sub>67</sub>                   | 112.9281                 | 83.4224                    | 72.4968                  | 25.4354                    | 51.9788                    |
| PG <sub>25</sub> | 429.6569           | 433.8865 | 449.4263 | 440.2708 | 427.9570        | PG <sub>68</sub>                   | 86.4045                  | 124.1792                   | 79.0028                  | 92.6000                    | 49.8483                    |
| PG <sub>26</sub> | 435.1648           | 415.7085 | 447.9381 | 436.8173 | 427.9670        | PG <sub>69</sub>                   | 68.2295                  | 88.6566                    | 113.9679                 | 68.2413                    | 53.7828                    |
| PG <sub>27</sub> | 75.8447            | 86.2716  | 105.3368 | 67.6055  | 52.6826         | PG <sub>70</sub>                   | 75.2533                  | 61.1235                    | 80.5304                  | 96.8466                    | 96.9879                    |
| PG <sub>28</sub> | 101.9397           | 125.8613 | 58.3110  | 51.9695  | 50.1040         | PG <sub>71</sub>                   | 153.4069                 | 160.5272                   | 63.5344                  | 172.2997                   | 166.2617                   |
| PG <sub>29</sub> | 67.4971            | 101.5711 | 105.2896 | 99.8852  | 53.8155         | PG <sub>72</sub>                   | 171.7399                 | 179.1179                   | 157.2035                 | 166.4096                   | 166.3498                   |
| PG <sub>30</sub> | 95.9052            | 96.4674  | 73.8388  | 94.7035  | 96.7968         | PG <sub>73</sub>                   | 167.3577                 | 177.9908                   | 153.0595                 | 173.5308                   | 166.3663                   |
| PG <sub>31</sub> | 166.6852           | 114.3654 | 163.9341 | 170.7891 | 166.2837        | PG <sub>74</sub>                   | 200.0000                 | 93.8752                    | 198.6686                 | 199.9228                   | 199.9998                   |
| PG <sub>32</sub> | 167.9954           | 177.8766 | 90.6899  | 169.9657 | 166.3019        | PG <sub>75</sub>                   | 199.9999                 | 197.3421                   | 198.9910                 | 199.8925                   | 199.9996                   |
| PG <sub>33</sub> | 172.2518           | 69.6378  | 138.7257 | 146.1738 | 166.3313        | PG <sub>76</sub>                   | 199.9999                 | 199.8823                   | 151.8669                 | 199.5288                   | 199.8879                   |
| PG <sub>34</sub> | 143.3759           | 198.4553 | 180.5342 | 199.7957 | 199.9997        | PG <sub>77</sub>                   | 102.8862                 | 33.5933                    | 43.5937                  | 102.9930                   | 98.5592                    |
| PG <sub>35</sub> | 199.9999           | 199.6723 | 199.1748 | 199.4157 | 199.9989        | PG <sub>78</sub>                   | 57.4447                  | 102.2698                   | 70.7375                  | 29.8546                    | 98.5204                    |
| PG <sub>36</sub> | 199.9989           | 198.7544 | 179.8596 | 199.8013 | 199.9999        | PG <sub>79</sub>                   | 81.7053                  | 49.8814                    | 92.3148                  | 106.5989                   | 98.5196                    |
| PG <sub>37</sub> | 81.0314            | 100.8227 | 83.8946  | 46.4022  | 98.4766         | PG <sub>80</sub>                   | 431.4677                 | 437.8965                   | 433.1062                 | 429.7675                   | 426.8193                   |
| PG <sub>38</sub> | 101.4899           | 83.9416  | 52.8861  | 100.7592 | 98.5184         | Total PG                           | 21,000                   | 21,000                     | 21,000                   | 21,000                     | 21,000                     |
| PG <sub>39</sub> | 98.5705            | 99.9607  | 103.7420 | 88.7644  | 98.5499         | Cost (\$/hr)                       | 2.7037 × 10 <sup>5</sup> | 2.8023<br>×10 <sup>5</sup> | 2.7422 × 10 <sup>5</sup> | 2.6392<br>×10 <sup>5</sup> | 2.5575<br>×10 <sup>5</sup> |
| PG <sub>40</sub> | 429.5575           | 425.6464 | 432.4394 | 428.8428 | 426.7259        | Emission (ton/hr)                  | 1.6997 × 10 <sup>5</sup> | 1.8364<br>×10 <sup>5</sup> | 1.9639 × 10 <sup>5</sup> | 1.7903<br>×10 <sup>5</sup> | 1.6602<br>×10 <sup>5</sup> |
| PG <sub>41</sub> | 92.6124            | 113.6355 | 112.8789 | 71.9106  | 113.9998        | Saving (\$/hr)                     | 3850                     | -6010                      | Base case                | 10,300                     | 18,470                     |
| PG <sub>42</sub> | 73.5692            | 50.3912  | 78.0743  | 111.6158 | 113.9988        |                                    |                          |                            |                          |                            |                            |
| PG <sub>43</sub> | 89.0342            | 92.2278  | 104.3431 | 113.9530 | 119.9995        | Reduction in cost and emission (%) | 1.4040,<br>13.4528       | -2.1917,<br>6.4922         | Base case                | 3.7561,<br>8.8396          | 6.7355,<br>15.4641         |

**Table 15**. Simulation results of multi-OF using different algorithms without considering power losses for 80-unit system (Case 4).

- For 40-unit test system, the total fuel cost without and with considering VPE is reduced by 0.6864%, and 2.8891% than the base case (results of PSO) with maximum savings of 820 \$/hr and 3610 \$/hr, respectively. The total emission is reduced by 12.8673% than the base case. For multi-OF, the total fuel cost without and with considering VPE is reduced with maximum savings of 1230 \$/hr, and 4960 \$/hr than the base case, while the total emission is reduced by 10.7355%, and 9.2553% than the base case.
- For 80-unit test system, the total fuel cost without and with considering VPE is reduced by 5.8441% and 3.6186% than the base case (results of PSO) with maximum savings of 14,730 \$/hr and 9230 \$/hr, respectively. The total emission is reduced by 7.5948% than the base case. For multi-OF, the total fuel cost without and with

| Unit<br>(MW)     | EMFO <sup>48</sup> | DEA      | PSO      | GWO      | Proposed<br>EOA | Unit (MW)                          | EMFO <sup>48</sup>       | DEA                        | PSO                      | GWO                        | Proposed<br>EOA            |
|------------------|--------------------|----------|----------|----------|-----------------|------------------------------------|--------------------------|----------------------------|--------------------------|----------------------------|----------------------------|
| PG <sub>1</sub>  | 113.9998           | 111.9122 | 112.3477 | 114.0000 | 113.9240        | PG <sub>44</sub>                   | 171.8888                 | 169.0788                   | 162.5775                 | 167.1338                   | 165.6596                   |
| PG <sub>2</sub>  | 112.9843           | 38.2656  | 57.9626  | 113.9973 | 113.9999        | PG <sub>45</sub>                   | 92.3995                  | 96.9366                    | 95.4932                  | 96.8141                    | 96.9997                    |
| PG <sub>3</sub>  | 119.8879           | 115.9177 | 60.2918  | 107.0631 | 119.8826        | PG <sub>46</sub>                   | 122.1456                 | 122.0774                   | 127.9529                 | 122.5810                   | 120.0716                   |
| PG <sub>4</sub>  | 166.4089           | 87.0294  | 168.9971 | 169.8160 | 166.2238        | PG <sub>47</sub>                   | 286.2974                 | 295.0995                   | 300.0000                 | 296.7667                   | 291.5360                   |
| PG <sub>5</sub>  | 92.0297            | 49.3522  | 96.3804  | 96.0334  | 96.9998         | PG <sub>48</sub>                   | 288.7699                 | 296.1310                   | 297.6912                 | 292.1747                   | 286.2114                   |
| PG <sub>6</sub>  | 116.3944           | 130.9601 | 118.4543 | 124.2109 | 119.9342        | PG <sub>49</sub>                   | 295.0196                 | 289.4068                   | 295.7636                 | 286.6322                   | 285.6110                   |
| PG <sub>7</sub>  | 285.1152           | 285.5421 | 294.4729 | 294.5134 | 293.9495        | PG <sub>50</sub>                   | 281.45                   | 285.4961                   | 284.4760                 | 284.5349                   | 280.9938                   |
| PG <sub>8</sub>  | 293.4157           | 290.4423 | 298.1156 | 284.6660 | 289.3677        | PG <sub>51</sub>                   | 284.1616                 | 302.8287                   | 296.7632                 | 290.1057                   | 289.0418                   |
| $PG_9$           | 285.6267           | 295.9597 | 290.8963 | 291.2391 | 287.7185        | PG <sub>52</sub>                   | 287.2793                 | 300.8277                   | 295.1168                 | 292.8005                   | 290.0762                   |
| $PG_{10}$        | 286.4371           | 288.2347 | 293.9833 | 282.4503 | 280.6118        | PG <sub>53</sub>                   | 418.8579                 | 413.7348                   | 437.8185                 | 413.9026                   | 415.1819                   |
| PG <sub>11</sub> | 293.1005           | 96.9993  | 286.3448 | 291.2224 | 288.7392        | PG <sub>54</sub>                   | 426.7212                 | 431.0948                   | 430.4956                 | 415.1524                   | 416.8607                   |
| $PG_{12}$        | 289.5353           | 294.7395 | 300.0137 | 292.5213 | 290.3888        | PG <sub>55</sub>                   | 418.5805                 | 415.1755                   | 430.3179                 | 424.4697                   | 414.4936                   |
| PG <sub>13</sub> | 420.9094           | 435.3847 | 430.3493 | 414.8215 | 414.3233        | PG <sub>56</sub>                   | 421.8241                 | 437.3575                   | 438.2787                 | 424.4321                   | 415.4646                   |
| $PG_{14}$        | 421.3507           | 420.5524 | 442.4081 | 422.6416 | 415.2647        | PG <sub>57</sub>                   | 418.7913                 | 444.4473                   | 430.2158                 | 422.7036                   | 420.3379                   |
| PG <sub>15</sub> | 417.9764           | 421.6697 | 433.7745 | 417.4171 | 418.4216        | PG <sub>58</sub>                   | 420.9101                 | 427.2335                   | 437.5927                 | 428.4985                   | 419.7959                   |
| PG <sub>16</sub> | 417.9396           | 432.0765 | 422.3698 | 419.0320 | 415.4530        | PG <sub>59</sub>                   | 424.1026                 | 428.1520                   | 437.5816                 | 423.7496                   | 421.5196                   |
| PG <sub>17</sub> | 420.9704           | 433.7910 | 433.2018 | 422.6201 | 419.2550        | PG <sub>60</sub>                   | 422.9145                 | 429.3454                   | 434.8650                 | 421.7366                   | 421.5196                   |
| PG <sub>18</sub> | 427.1639           | 432.9530 | 437.6341 | 429.5626 | 419.6631        | PG <sub>61</sub>                   | 432.4987                 | 439.9712                   | 432.8475                 | 433.5189                   | 433.5193                   |
| PG <sub>19</sub> | 422.3246           | 430.0507 | 429.0041 | 422.8057 | 421.5196        | PG <sub>62</sub>                   | 433.4056                 | 434.5863                   | 428.8547                 | 433.5542                   | 433.5196                   |
| PG <sub>20</sub> | 421.5259           | 430.5149 | 428.3668 | 422.0895 | 421.5196        | PG <sub>63</sub>                   | 432.9913                 | 436.6250                   | 434.7761                 | 433.5192                   | 433.5195                   |
| $PG_{21}$        | 433.5191           | 434.3612 | 437.0418 | 433.5267 | 433.5194        | PG <sub>64</sub>                   | 433.3517                 | 430.5871                   | 435.3815                 | 433.4409                   | 433.5195                   |
| $PG_{22}$        | 431.0021           | 435.1671 | 339.3776 | 433.0268 | 433.5194        | PG <sub>65</sub>                   | 433.4732                 | 435.4915                   | 436.7599                 | 433.4187                   | 433.5261                   |
| PG <sub>23</sub> | 432.6235           | 432.0027 | 435.3182 | 433.5026 | 433.5193        | PG <sub>66</sub>                   | 431.6136                 | 430.9100                   | 435.8338                 | 433.3664                   | 433.5175                   |
| PG <sub>24</sub> | 433.3824           | 434.4944 | 433.4555 | 433.1360 | 433.5191        | PG <sub>67</sub>                   | 105.5689                 | 74.7850                    | 70.6575                  | 103.4766                   | 56.6788                    |
| PG <sub>25</sub> | 433.5187           | 432.7619 | 441.7734 | 433.4201 | 433.5190        | PG <sub>68</sub>                   | 77.1213                  | 96.4898                    | 99.5014                  | 77.3357                    | 69.3123                    |
| PG <sub>26</sub> | 431.5518           | 436.1086 | 435.5314 | 433.5020 | 433.5193        | PG <sub>69</sub>                   | 96.0653                  | 131.8596                   | 127.7946                 | 57.1346                    | 67.0721                    |
| PG <sub>27</sub> | 52.5079            | 93.2986  | 91.7207  | 38.8370  | 57.8760         | PG <sub>70</sub>                   | 68.5411                  | 61.7063                    | 96.8830                  | 97.0000                    | 96.9989                    |
| PG <sub>28</sub> | 94.8193            | 87.8200  | 10.3601  | 56.7025  | 69.9622         | PG <sub>71</sub>                   | 162.3134                 | 168.7560                   | 178.5991                 | 167.7753                   | 162.5699                   |
| PG <sub>29</sub> | 79.2247            | 124.0403 | 93.7759  | 108.5122 | 71.5699         | PG <sub>72</sub>                   | 160.3917                 | 178.1747                   | 174.4735                 | 161.8283                   | 162.6904                   |
| PG <sub>30</sub> | 96.9895            | 80.2409  | 97.0000  | 96.9626  | 96.9999         | PG <sub>73</sub>                   | 167.1915                 | 166.2438                   | 176.2157                 | 169.2512                   | 163.5822                   |
| PG <sub>31</sub> | 164.6412           | 156.9477 | 174.5576 | 164.7804 | 162.6714        | PG <sub>74</sub>                   | 198.3389                 | 200.0000                   | 199.9462                 | 199.9974                   | 199.9987                   |
| PG <sub>32</sub> | 160.9021           | 160.3148 | 63.5673  | 164.5616 | 162.8752        | PG <sub>75</sub>                   | 199.9999                 | 200.0000                   | 90.1725                  | 199.9866                   | 199.9996                   |
| PG <sub>33</sub> | 167.4437           | 172.6740 | 167.9796 | 166.1761 | 162.1577        | PG <sub>76</sub>                   | 172.2766                 | 199.9918                   | 200.0000                 | 199.9985                   | 199.9988                   |
| PG <sub>34</sub> | 199.9999           | 199.7784 | 199.8879 | 199.9986 | 199.9988        | PG <sub>77</sub>                   | 99.7431                  | 66.9177                    | 105.6932                 | 100.8089                   | 97.7018                    |
| PG <sub>35</sub> | 199.9999           | 199.9441 | 200.0000 | 200.0000 | 199.9999        | PG <sub>78</sub>                   | 69.2547                  | 63.8045                    | 105.8148                 | 101.5720                   | 97.4880                    |
| PG <sub>36</sub> | 199.9999           | 198.7641 | 198.6478 | 199.9933 | 199.9996        | PG <sub>79</sub>                   | 101.5341                 | 98.9975                    | 103.6147                 | 26.5719                    | 96.6474                    |
| PG <sub>37</sub> | 55.4923            | 105.8028 | 101.8867 | 43.8752  | 98.9311         | PG <sub>80</sub>                   | 422.6939                 | 431.1776                   | 435.7589                 | 421.6219                   | 421.5196                   |
| PG <sub>38</sub> | 98.1265            | 99.0309  | 70.1459  | 78.2611  | 95.7300         | Total PG                           | 21,000                   | 21,000                     | 21,000                   | 21,000                     | 21,000                     |
| PG <sub>39</sub> | 69.8698            | 96.5002  | 66.0015  | 103.4558 | 98.7873         | Cost (\$/hr)                       | $2.7665 \times 10^{5}$   | 2.8713<br>×10 <sup>5</sup> | 2.8224 × 10 <sup>5</sup> | 2.7309<br>×10 <sup>5</sup> | 2.6697<br>×10 <sup>5</sup> |
| PG <sub>40</sub> | 421.5194           | 432.9539 | 437.9079 | 422.4914 | 421.5196        | Emission (ton/hr)                  | 1.6293 × 10 <sup>5</sup> | 1.7961<br>×10 <sup>5</sup> | 1.8864×10 <sup>5</sup>   | 1.6662<br>×10 <sup>5</sup> | 1.6168<br>×10 <sup>5</sup> |
| PG <sub>41</sub> | 111.6184           | 101.1462 | 109.9011 | 113.8148 | 113.9991        | Saving (\$/hr)                     | 5590                     | -4890                      | Base case                | 9150                       | 15,270                     |
| PG <sub>42</sub> | 113.9912           | 112.5090 | 36.2265  | 113.1075 | 113.9997        |                                    |                          |                            |                          |                            | , 0                        |
| PG <sub>43</sub> | 111.4607           | 119.4917 | 119.9878 | 106.2665 | 119.8925        | Reduction in cost and emission (%) | 1.9806,<br>13.6291       | -1.7326,<br>4.7869         | Base case                | 3.2419,<br>11.6730         | 5.4103,<br>14.2918         |

**Table 16**. Simulation results of multi-OF using different algorithms without considering power losses for 80-unit system (Case 5).

considering VPE is reduced with maximum savings of 18,470 \$/hr and 15,270 \$/hr than the base case, while the total emission is reduced by 15.4641%, and 14.2918% to the base case.

• For 140-unit test system as a large-scale power system, the total fuel cost without and with considering VPE, RRL, and POZs is reduced by 6.4203%, and 7.2394% with maximum savings of 107,200 \$/hr and 126,400 \$/hr than the base case (results of PSO), respectively. The total emission is reduced by 2.5688% than the base case. For multi-OF with Pareto optimal front, the proposed EOA gives the best compromise between the considered OFs.

| Method                 | Case 1                   | Case 2                   | Case 3                   |
|------------------------|--------------------------|--------------------------|--------------------------|
| Proposed EOA           | $2.3732 \times 10^{5}$   | $2.4584 \times 10^{5}$   | $1.3335 \times 10^{5}$   |
| GWO                    | 2.3943 × 10 <sup>5</sup> | 2.5132 × 10 <sup>5</sup> | 1.3957 × 10 <sup>5</sup> |
| PSO                    | $2.5205 \times 10^{5}$   | $2.5507 \times 10^{5}$   | 1.4431 × 10 <sup>5</sup> |
| DEA                    | $2.4540 \times 10^{5}$   | 2.6017 × 10 <sup>5</sup> | 1.5562 × 10 <sup>5</sup> |
| MPSO_SSM <sup>20</sup> | $2.4286 \times 10^{5}$   | N/A                      | N/A                      |
| SSGO <sup>31</sup>     | $2.4279 \times 10^{5}$   | N/A                      | N/A                      |
| EMFO <sup>48</sup>     | $2.3978 \times 10^{5}$   | $2.4290 \times 10^{5a}$  | $1.3977 \times 10^{5}$   |

**Table 17**. Comparison between different single OFs using the proposed EOA and other methods for 80-unit system (Cases 1–3). N/A: Not available. <sup>a</sup> The exact value of total fuel cost is  $2.5558 \times 10^5$  \$/hr, which is higher than that reported in <sup>48</sup>.

|                    | Case 4                   |                          | Case 5                   |                          |
|--------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Method             | Total fuel cost (\$/hr)  | Total emission (ton/hr)  | Total fuel cost (\$/hr)  | Total emission (ton/hr)  |
| Proposed EOA       | 2.5575 × 10 <sup>5</sup> | 1.6602 × 10 <sup>5</sup> | 2.6697 × 10 <sup>5</sup> | 1.6168 × 10 <sup>5</sup> |
| GWO                | 2.6392 × 10 <sup>5</sup> | 1.7903 × 10 <sup>5</sup> | 2.7309 × 10 <sup>5</sup> | 1.6662 × 10 <sup>5</sup> |
| PSO                | 2.7422 × 10 <sup>5</sup> | 1.9639 × 10 <sup>5</sup> | 2.8224 × 10 <sup>5</sup> | $1.8864 \times 10^{5}$   |
| DEA                | 2.8023 × 10 <sup>5</sup> | 1.8364 × 10 <sup>5</sup> | 2.8713 × 10 <sup>5</sup> | 1.7961 × 10 <sup>5</sup> |
| EMFO <sup>48</sup> | 2.7037 × 10 <sup>5</sup> | 1.6997 × 10 <sup>5</sup> | 2.7665 × 10 <sup>5</sup> | 1.6293 × 10 <sup>5</sup> |

**Table 18.** Comparison between the multi-OF using the proposed EOA and other methods for 80-unit system (Cases 4,5).

- The comparison based on the statistical analysis between the proposed EOA, and other optimization techniques proved the superiority of the proposed EOA for solving the EELD problem.
- The application of non-parametric tests by the Wilcoxon signed-rank test on the results of the proposed EOA
  explains the reliability of the proposed algorithm.

In future work, we plan to solve the EELD problem, considering the integration of renewable energy sources (RES) and plug-in electric vehicles (PEVs) in microgrid (MG).

| Proposed<br>EOA | 958.000          | 1007.000           | 1005.985                   | 1012.989                   | 1019.981         | 953.959          | 951.987           | 1005.999          | 1012.995          | 1020.989          | 1014.995          | 95.336            | 95.272            | 94.000            | 244.879           | 245.624           | 244.002           | 95.999            | 95.012            | 116.018           | 182.810           | 2.042             | 4.084                        | 15.242     | 9.078             | 19.192            | 10.001            | 112.037                      | 5.306                        | 5.047            | 7.191          | 52.886                       | 5.062             | 44.458            | 42.403            | 41.003           | 17.000            | 7.179             | 8.572             | 26.575     |
|-----------------|------------------|--------------------|----------------------------|----------------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------------|------------|-------------------|-------------------|-------------------|------------------------------|------------------------------|------------------|----------------|------------------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|------------|
| GWO             | 952.276          | 1006.149           | 1005.085                   | 1013.000                   | 1013.831         | 954.000          | 952.000           | 998.299           | 1010.038          | 1020.133          | 1011.936          | 123.658           | 114.792           | 100.840           | 278.466           | 245.697           | 290.452           | 122.490           | 101.152           | 126.421           | 259.413           | 17.494            | 10.325                       | 36.643     | 31.146            | 15.402            | 19.052            | 153.243                      | 6.589                        | 10.987           | 14.180         | 77.010                       | 8.603             | 48.801            | 43.982            | 43.882           | 18.365            | 14.868            | 12.646            | 27.855     |
| PSO             | 958.000          | 1007.000           | 1006.000                   | 899.066                    | 1016.997         | 946.889          | 870.939           | 996.871           | 1013.000          | 1011.824          | 1015.000          | 193.723           | 119.259           | 158.185           | 249.872           | 263.214           | 244.000           | 151.710           | 104.300           | 155.923           | 175.223           | 17.921            | 7.601                        | 39.943     | 14.722            | 36.191            | 23.582            | 188.196                      | 4.037                        | 12.199           | 5.221          | 83.986                       | 10.000            | 42.405            | 45.451            | 41.412           | 31.392            | 18.697            | 12.714            | 39.212     |
| DEA             | 951.465          | 096.686            | 994.615                    | 991.721                    | 1018.500         | 952.532          | 940.564           | 1003.070          | 1003.022          | 1010.917          | 1005.830          | 130.266           | 106.603           | 100.602           | 270.247           | 244.552           | 249.743           | 162.226           | 130.163           | 121.684           | 184.268           | 10.707            | 4.229                        | 16.199     | 35.207            | 18.686            | 32.392            | 241.675                      | 12.083                       | 21.039           | 5.781          | 57.824                       | 7.608             | 52.575            | 47.944            | 42.849           | 32.010            | 10.958            | 14.018            | 29.638     |
| Unit (MW)       | $P_{\rm G101}$   | P <sub>G102</sub>  | $P_{\mathrm{G103}}$        | $P_{G104}$                 | $P_{G105}$       | $P_{\rm G106}$   | P <sub>G107</sub> | P <sub>G108</sub> | P <sub>G109</sub> | P <sub>G110</sub> | P <sub>G111</sub> | P <sub>G112</sub> | P <sub>G113</sub> | P <sub>G114</sub> | Р <sub>G115</sub> | P <sub>G116</sub> | P <sub>G117</sub> | P <sub>G118</sub> | P <sub>G119</sub> | P <sub>G120</sub> | P <sub>G121</sub> | P <sub>G122</sub> | $\mathrm{P}_{\mathrm{G123}}$ | $P_{G124}$ | P <sub>G125</sub> | P <sub>G126</sub> | P <sub>G127</sub> | $\mathrm{P}_{\mathrm{G128}}$ | $\mathrm{P}_{\mathrm{G129}}$ | $P_{G130}$       | $P_{\rm G131}$ | $\mathrm{P}_{\mathrm{G132}}$ | P <sub>G133</sub> | P <sub>G134</sub> | P <sub>G135</sub> | $P_{G136}$       | P <sub>G137</sub> | P <sub>G138</sub> | P <sub>G139</sub> | $P_{G140}$ |
| Proposed<br>EOA | 165.521          | 202.323            | 243.607                    | 231.741                    | 181.294          | 181.240          | 104.761           | 198.416           | 311.988           | 285.772           | 163.557           | 95.638            | 217.852           | 163.143           | 207.297           | 196.390           | 489.831           | 478.244           | 131.215           | 296.692           | 149.731           | 428.160           | 233.885                      | 175.007    | 175.546           | 219.141           | 208.730           | 368.213                      | 530.980                      | 530.873          | 262.456        | 56.174                       | 115.519           | 115.134           | 116.339           | 207.351          | 207.000           | 186.613           | 175.130           | 199.148    |
| OMĐ             | 369.578          | 363.819            | 433.181                    | 191.580                    | 322.287          | 266.273          | 247.162           | 200.166           | 119.733           | 168.586           | 249.693           | 228.390           | 338.641           | 160.927           | 220.020           | 199.671           | 355.980           | 392.665           | 139.937           | 291.094           | 183.505           | 215.946           | 441.644                      | 258.091    | 190.554           | 210.376           | 285.643           | 358.015                      | 471.789                      | 387.874          | 451.438        | 56.451                       | 124.495           | 159.861           | 117.105           | 214.232          | 216.804           | 175.340           | 199.633           | 187.070    |
| PSO             | 167.936          | 240.953            | 176.309                    | 186.524                    | 266.387          | 199.665          | 337.875           | 222.226           | 100.910           | 437.311           | 176.399           | 162.849           | 234.506           | 163.778           | 196.570           | 285.348           | 481.670           | 443.510           | 390.808           | 130.173           | 236.303           | 150.896           | 201.931                      | 517.240    | 231.595           | 175.104           | 288.047           | 339.432                      | 318.525                      | 488.537          | 320.526        | 57.895                       | 125.173           | 118.169           | 130.223           | 208.383          | 273.324           | 246.720           | 338.824           | 247.713    |
| DEA             | 278.571          | 295.763            | 271.066                    | 175.351                    | 312.078          | 184.457          | 173.950           | 372.479           | 164.366           | 320.745           | 212.234           | 144.596           | 471.308           | 186.215           | 261.409           | 247.621           | 315.102           | 309.250           | 327.425           | 134.465           | 252.550           | 280.241           | 261.483                      | 325.852    | 450.389           | 233.310           | 381.425           | 335.223                      | 492.299                      | 512.803          | 397.815        | 66.344                       | 187.939           | 124.414           | 116.986           | 258.428          | 207.455           | 253.325           | 195.922           | 210.924    |
| Unit (MW)       | P <sub>G51</sub> |                    |                            |                            | P <sub>G55</sub> |                  | P <sub>G57</sub>  |                   | P <sub>G59</sub>  |                   |                   |                   |                   |                   |                   | P <sub>G66</sub>  |                   | P <sub>G68</sub>  |                   |                   |                   |                   | P <sub>G73</sub>             |            | P <sub>G75</sub>  |                   |                   |                              |                              | P <sub>G80</sub> |                |                              |                   |                   |                   |                  | P <sub>G87</sub>  |                   | P <sub>G89</sub>  |            |
| Proposed<br>EOA | 110.211          | 188.989            | 189.989                    | 189.843                    | 145.871          | 188.288          | 490.000           | 489.972           | 495.985           | 495.948           | 495.996           | 496.000           | 505.971           | 509.000           | 506.000           | 504.975           | 505.999           | 506.000           | 504.996           | 504.987           | 504.983           | 504.987           | 505.000                      | 505.000    | 536.937           | 537.000           | 548.955           | 549.000                      | 500.987                      | 501.000          | 505.899        | 505.995                      | 505.999           | 506.000           | 499.957           | 499.718          | 241.000           | 240.999           | 774.000           | 768.965    |
| GWO             | 76.192           | 133.541            | 127.627                    | 183.507                    | 110.935          | 100.685          | 484.074           | 478.260           | 493.966           | 496.000           | 485.503           | 461.634           | 502.014           | 477.471           | 431.097           | 465.157           | 503.453           | 504.617           | 463.079           | 470.700           | 505.000           | 501.935           | 410.502                      | 497.525    | 471.537           | 521.144           | 414.792           | 534.105                      | 500.322                      | 498.385          | 500.677        | 491.490                      | 491.298           | 504.631           | 492.486           | 490.373          | 225.850           | 213.919           | 748.177           | 762.852    |
| PSO             | 117.623          | 135.412            | 187.239                    | 143.357                    | 168.099          | 155.202          | 485.470           | 490.000           | 471.190           | 486.693           | 485.975           | 492.902           | 451.435           | 314.625           | 481.016           | 488.763           | 395.477           | 502.566           | 406.690           | 489.789           | 501.645           | 492.116           | 499.735                      | 500.538    | 523.068           | 507.675           | 549.000           | 524.537                      | 464.905                      | 471.376          | 495.763        | 501.185                      | 487.522           | 470.205           | 484.589           | 462.150          | 239.275           | 201.826           | 763.631           | 765.617    |
| DEA             | 79.495           | 144.515            | 156.484                    | 183.010                    | 184.400          | 106.286          | 484.866           | 438.753           | 453.698           | 380.978           | 496.000           | 470.914           | 498.652           | 349.637           | 451.558           | 404.556           | 487.343           | 399.539           | 488.777           | 463.902           | 478.492           | 405.197           | 496.570                      | 458.785    | 495.279           | 515.562           |                   | 448.082                      | 484.241                      | 449.909          | 500.025        | 497.129                      | 445.166           | 478.056           | 486.647           | 496.617          | 195.424           | 226.421           | 737.220           | 769.000    |
| Unit (MW)       | $P_{\rm G1}$     | ${\rm P}_{\rm G2}$ | $\mathrm{P}_{\mathrm{G3}}$ | $\mathrm{P}_{\mathrm{G4}}$ | $\rm P_{G5}$     | ${ m P}_{ m G6}$ | P <sub>G7</sub>   |                   | P <sub>G9</sub>   |                   |                   | P <sub>G12</sub>  |                   | $P_{G14}$         |                   | P <sub>G16</sub>  |                   |                   |                   |                   |                   |                   | P <sub>G23</sub>             |            | P <sub>G25</sub>  |                   |                   | P <sub>G28</sub>             |                              | P <sub>G30</sub> |                |                              |                   |                   |                   | P <sub>G36</sub> | P <sub>G37</sub>  |                   | P <sub>G39</sub>  | panni      |

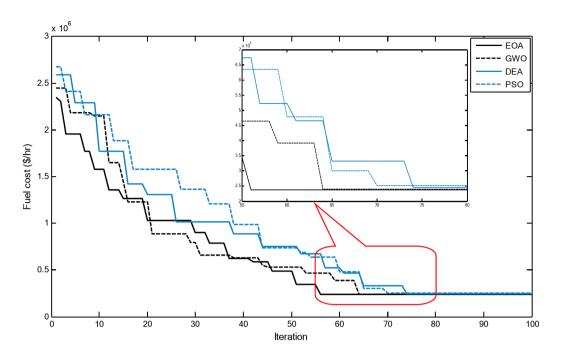
| Unit (MW)                   | DEA     | PSO                         | GWO             | Proposed<br>EOA | Unit (MW) DEA               | DEA     | PSO                                   | GWO     | Proposed<br>EOA | Unit (MW)                  | DEA                | PSO                                                                                  | GWO                  | Proposed<br>EOA      |
|-----------------------------|---------|-----------------------------|-----------------|-----------------|-----------------------------|---------|---------------------------------------|---------|-----------------|----------------------------|--------------------|--------------------------------------------------------------------------------------|----------------------|----------------------|
| $P_{G41}$                   | 5.621   | 14.905                      | 3.966           | 18.945          | $P_{G91}$                   | 207.904 | 298.918                               | 196.444 | 177.498         | Total PG                   | 49,342             | 49,342                                                                               | 49,342               | 49,342               |
| ${ m P}_{{ m G42}}$         | 9.182   | 14.331                      | 15.200          | 3.178           | ${ m P}_{ m G92}$           | 547.309 | 576.750   572.288                     | 572.288 | 580.000         |                            |                    |                                                                                      |                      |                      |
| $P_{G43}$                   | 170.380 | 224.522                     | 214.979 243.789 |                 | $P_{G93}$                   | 637.991 | 640.468 645.000                       | 645.000 | 645.000         | Cost (\$/hr)               | $1.6823\times10^6$ | $1.6823\times 10^{6}  1.6697\times 10^{6}  1.6384\times 10^{6}  1.5625\times 10^{6}$ | $1.6384\times10^{6}$ | $1.5625\times10^{6}$ |
| $\mathrm{P}_{\mathrm{G44}}$ | 214.076 | 214.076   165.035   184.536 | 184.536         | 183.576         | $\mathrm{P}_{\mathrm{G94}}$ | 984.000 | 984.000   976.974   983.453           | 983.453 | 983.989         | Fmission (100/hr) 702 0369 | 707 0760           | 830 5/13                                                                             | 800 3084             | 867 0233             |
| $\mathrm{P}_{\mathrm{G45}}$ | 192.610 | 192.610 162.820 160.789     | 160.789         | 247.581         | $P_{G95}$                   | 940.390 | 940.390   978.000   975.910           | 975.910 | 978.000         | Turnssion (ron/mr)         | (070:70)           | 0.110.000                                                                            | 10077.000            | 6670.700             |
| ${ m P}_{{ m G46}}$         | 181.708 | 181.708   162.473   195.    | 195.876         | .876   244.081  | ${ m P}_{ m G96}$           | 669.480 | 848.699                               | 676.349 | 682.000         | Saving                     | -12 600            | Baca caca                                                                            | 31 300               | 107 200              |
| $P_{G47}$                   | 190.602 | 190.602 201.290             | 206.790         | 160.000         | $P_{G97}$                   | 699.414 | 672.562 718.020                       | 718.020 | 719.986         | (\$/hr)                    | _12,000            | Dase case                                                                            | 000,10               | 107,700              |
| $P_{G48}$                   | 212.235 | 212.235   160.942           | 166.519         | 249.685         | $P_{G99}$                   | 718.000 | 718.000   684.476   714.587   718.000 | 714.587 | 718.000         | Daduction (%)              | 0 7546             | Baca caca                                                                            | 1 9746               | 6 4203               |
| ${\rm P}_{\rm G49}$         | 174.394 | 174.394 214.287             | 162.908         | 246.280         | $P_{G99}$                   | 714.962 | 714.962   720.000   716.232   720.000 | 716.232 | 720.000         | vecurion (70)              | 0., 0.40           | Dase case                                                                            | 01.07.10             | 0.4203               |
| ${ m P}_{{ m G50}}$         | 237.773 | 237.773   248.116   165.185 |                 | 193.186         | P <sub>G100</sub>           | 957.967 | 957.967 959.660 964.000               | 964.000 | 963.985         |                            |                    |                                                                                      |                      |                      |

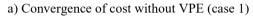
 Table 19.
 Simulation results using different algorithms without considering power losses for 140-unit system (Case 6).

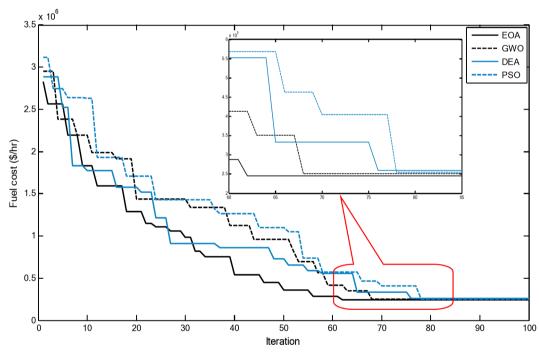
| p               |                   |                            |                   |                   |                   |                   |                   |            |                   |                   |                   |                             |                   |                   |            |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                              |                  |                   |                   |                   |                  |                   |                   |                   |                   |                   |                  |
|-----------------|-------------------|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-----------------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------------|------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| Proposed<br>EOA | 956.368           | 1007.000                   | 1002.207          | 1013.000          | 1020.000          | 924.214           | 951.843           | 997.726    | 1013.000          | 1017.401          | 1015.000          | 290.96                      | 105.250           | 107.498           | 253.541    | 301.451           | 256.440           | 115.055           | 113.764           | 136.788           | 218.052           | 15.327         | 22.589            | 37.473            | 38.468            | 19.919            | 14.333            | 112.220           | 11.176                       | 18.903           | 17.573            | 99.769            | 7.670             | 63.248           | 26.767            | 42.715            | 29.269            | 17.274            | 12.702            | 32.901           |
| GWO             | 927.839           | 1007.000                   | 982.686           | 951.090           | 837.130           | 949.201           | 854.376           | 998.929    | 986.306           | 1017.538          | 894.363           | 158.102                     | 138.071           | 117.875           | 274.747    | 316.760           | 303.366           | 103.787           | 99.755            | 116.366           | 226.417           | 14.134         | 30.138            | 50.720            | 45.494            | 23.420            | 21.227            | 205.950           | 8.118                        | 22.989           | 12.460            | 82.195            | 9.260             | 52.142           | 61.523            | 46.580            | 26.074            | 14.790            | 13.391            | 32.262           |
| PSO             | 853.155           | 1000.304                   | 998.250           | 927.752           | 1015.302          | 940.727           | 942.444           | 900.825    | 869.509           | 1010.996          | 811.927           | 134.833                     | 153.040           | 123.021           | 374.845    | 276.744           | 270.367           | 126.868           | 136.561           | 163.139           | 175.805           | 10.833         | 38.042            | 23.801            | 11.201            | 23.579            | 20.835            | 169.060           | 13.914                       | 22.018           | 5.661             | 80.132            | 7.749             | 57.538           | 69.201            | 74.221            | 20.031            | 12.124            | 17.545            | 35.211           |
| DEA             | 881.744           | 969.827                    | 987.830           | 1013.000          | 950.928           | 834.089           | 910.987           | 1003.326   | 945.943           | 1013.575          | 1007.397          | 104.754                     | 124.902           | 147.762           | 315.633    | 314.528           | 289.703           | 143.419           | 145.635           | 144.900           | 280.875           | 10.087         | 33.901            | 32.192            | 22.213            | 25.042            | 25.357            | 248.624           | 16.868                       | 27.503           | 5.000             | 76.878            | 8.687             | 51.288           | 51.488            | 47.826            | 22.449            | 17.592            | 16.509            | 35.854           |
| Unit (MW)       | P <sub>G101</sub> | P <sub>G102</sub>          | P <sub>G103</sub> | P <sub>G104</sub> | P <sub>G105</sub> | P <sub>G106</sub> | P <sub>G107</sub> | $P_{G108}$ | P <sub>G109</sub> | P <sub>G110</sub> | P <sub>G111</sub> | P <sub>G112</sub>           | Р <sub>Б113</sub> | P <sub>G114</sub> | $P_{G115}$ | P <sub>G116</sub> | P <sub>G117</sub> | P <sub>G118</sub> | P <sub>G119</sub> | P <sub>G120</sub> | P <sub>G121</sub> | $P_{\rm G122}$ | P <sub>G123</sub> | P <sub>G124</sub> | P <sub>G125</sub> | P <sub>G126</sub> | P <sub>G127</sub> | P <sub>G128</sub> | $\mathrm{P}_{\mathrm{G129}}$ | $P_{G130}$       | Р <sub>Б131</sub> | P <sub>G132</sub> | P <sub>G133</sub> | $P_{G134}$       | P <sub>G135</sub> | P <sub>G136</sub> | P <sub>G137</sub> | P <sub>G138</sub> | P <sub>G139</sub> | $P_{G140}$       |
| Proposed<br>EOA | 338.915           | 239.397                    | 242.645           | 174.449           | 180.000           | 205.625           | 183.248           | 274.875    | 258.043           | 203.102           | 186.464           | 181.673                     | 219.602           | 198.933           | 210.360    | 296.093           | 379.717           | 196.766           | 171.224           | 235.985           | 143.018           | 258.443        | 197.309           | 298.376           | 179.676           | 216.321           | 280.180           | 395.843           | 520.443                      | 523.028          | 271.717           | 58.809            | 141.410           | 115.397          | 139.725           | 207.380           | 238.495           | 308.048           | 216.437           | 252.069          |
| GWO             | 244.299           | 381.397                    | 165.000           | 274.607           | 191.133           | 195.836           | 177.893           | 294.729    | 169.833           | 254.892           | 171.313           | 188.151                     | 302.045           | 190.265           | 294.700    | 289.402           | 363.741           | 306.240           | 211.286           | 233.384           | 232.443           | 355.200        | 317.981           | 288.943           | 183.398           | 300.191           | 176.202           | 336.892           | 425.615                      | 496.760          | 379.827           | 80.931            | 123.789           | 138.816          | 142.087           | 242.146           | 238.187           | 309.659           | 265.152           | 269.416          |
| PSO             | 383.724           | 297.216                    | 297.854           | 384.837           | 297.745           | 224.124           | 248.310           | 314.250    | 221.763           | 255.086           | 197.204           | 113.080                     | 434.367           | 278.715           | 317.582    | 305.101           | 328.018           | 373.161           | 283.280           | 266.955           | 390.287           | 244.164        | 199.123           | 177.565           | 182.188           | 452.816           | 228.909           | 403.984           | 509.145                      | 484.076          | 412.312           | 56.000            | 191.531           | 175.950          | 128.428           | 207.000           | 233.178           | 245.337           | 230.842           | 275.526          |
| DEA             | 415.094           | 433.307                    | 346.501           | 263.651           | 249.419           | 201.770           | 261.681           | 425.135    | 250.787           | 247.907           | 368.308           | 176.284                     | 247.575           | 359.155           | 273.513    | 269.718           | 332.515           | 267.758           | 144.616           | 287.790           | 211.075           | 141.039        | 386.321           | 346.599           | 185.799           | 367.465           | 374.264           | 479.106           | 499.493                      | 345.458          | 208.711           | 86.433            | 115.996           | 139.414          | 171.546           | 244.693           | 253.080           | 234.620           | 228.915           | 236.055          |
| Unit (MW)       | P <sub>G51</sub>  |                            | P <sub>G53</sub>  |                   |                   | P <sub>G56</sub>  |                   |            |                   | P <sub>G60</sub>  |                   |                             |                   | P <sub>G64</sub>  |            |                   | P <sub>G67</sub>  |                   |                   | P <sub>G70</sub>  | P <sub>G71</sub>  |                |                   | P <sub>G74</sub>  |                   |                   | P <sub>G77</sub>  | P <sub>G78</sub>  |                              | P <sub>G80</sub> | P <sub>G81</sub>  |                   |                   | P <sub>G84</sub> | P <sub>G85</sub>  |                   | P <sub>G87</sub>  |                   |                   | $P_{G90}$        |
| Proposed<br>EOA | 85.453            | 171.600                    | 186.231           | 150.304           | 116.637           | 168.878           | 488.757           | 481.533    | 468.144           | 496.000           | 475.492           | 496.000                     | 497.843           | 508.242           | 506.000    | 502.170           | 502.900           | 504.716           | 495.483           | 489.071           | 504.310           | 505.000        | 503.539           | 503.765           | 531.576           | 533.023           | 543.191           | 542.977           | 491.695                      | 500.499          | 452.749           | 499.724           | 499.021           | 496.460          | 470.002           | 500.000           | 224.121           | 219.679           | 774.000           | 741.035          |
| GWO             | 90.123            | 156.468                    | 155.486           | 139.536           | 119.019           | 141.190           | 489.329           | 476.634    | 495.343           | 491.021           | 494.793           | 456.212                     | 499.634           | 494.847           | 489.751    | 492.405           | 430.936           | 477.999           | 475.897           | 388.265           | 479.822           | 494.390        | 505.000           | 490.045           | 523.004           | 498.916           | 542.024           | 530.580           | 489.345                      | 493.625          | 499.993           | 490.313           | 494.155           | 502.702          | 493.815           | 478.348           | 206.764           | 223.766           | 712.251           | 719.561          |
| PSO             | 101.111           | 140.213                    | 128.043           | 141.022           | 133.801           | 129.590           | 445.844           | 484.752    | 493.306           | 484.852           | 272.765           | 478.009                     | 503.291           | 406.186           | 506.000    | 470.869           | 497.767           | 495.091           | 494.203           | 494.576           | 453.000           | 505.000        | 463.579           | 483.385           | 480.318           | 497.968           | 545.393           | 497.121           | 436.006                      | 473.112          | 500.053           | 506.000           | 506.000           | 505.359          | 374.372           | 333.785           | 170.696           | 185.522           | 771.274           | 748.106          |
| DEA             | 116.417           | 125.491                    | 149.015           | 157.192           | 172.478           | 137.171           | 433.785           | 456.052    | 489.140           | 422.155           | 492.524           | 494.136                     | 479.941           | 509.000           | 348.710    | 380.410           | 379.723           | 437.822           | 443.973           | 395.615           | 453.510           | 420.882        | 502.482           | 454.918           | 471.575           | 466.012           | 515.071           | 547.536           | 483.413                      | 447.398          | 475.763           | 488.128           | 438.883           | 382.486          | 468.777           | 422.086           | 219.894           | 238.563           | 708.967           | 741.244          |
| Unit (MW)       | $P_{G1}$          | $\mathrm{P}_{\mathrm{G2}}$ | $P_{G3}$          | $P_{G4}$          | $P_{GS}$          | $P_{G6}$          | $P_{G7}$          | $P_{G8}$   |                   |                   |                   | $\mathrm{P}_{\mathrm{G12}}$ | $P_{G13}$         | $P_{G14}$         | $P_{G15}$  |                   |                   |                   | $P_{\rm G19}$     | $P_{\rm G20}$     | $P_{\rm G21}$     |                |                   | P <sub>G24</sub>  |                   | $P_{G26}$         |                   | $P_{G28}$         |                              |                  | $P_{\rm G31}$     |                   | $P_{G33}$         | $P_{G34}$        | $P_{G35}$         |                   | P <sub>G37</sub>  | $P_{G38}$         |                   | P <sub>G40</sub> |

| Unit (MW)                   | DEA     | PSO               | GWO             | Proposed<br>EOA | Unit (MW) DEA     | DEA             | PSO                                   | GWO               | Proposed<br>EOA | Unit (MW)                  | DEA                  | PSO                                                                                          | GWO                | Proposed<br>EOA      |
|-----------------------------|---------|-------------------|-----------------|-----------------|-------------------|-----------------|---------------------------------------|-------------------|-----------------|----------------------------|----------------------|----------------------------------------------------------------------------------------------|--------------------|----------------------|
| $P_{G41}$                   | 17.572  | 11.193            | 10.154          | 7.127           | ${ m P}_{ m G91}$ | 247.799         | 180.368                               | 231.848           | 239.063         | Total PG                   | 49,342               | 49,342                                                                                       | 49,342             | 49,342               |
| $\mathrm{P}_{\mathrm{G42}}$ | 13.873  | 17.976            | 13.455          | 10.240          | ${ m P}_{ m G92}$ | 567.845         | 567.595                               | 567.595   580.000 | 580.000         |                            |                      |                                                                                              |                    |                      |
| $P_{G43}$                   | 198.246 | 198.246   172.170 | 220.780         | 187.816         | $P_{G93}$         | 536.072         | 541.199 573.960                       | 573.960           | 565.248         | Cost (\$/hr)               | $1.7544\times10^{6}$ | $1.7544 \times 10^6 \mid 1.7460 \times 10^6 \mid 1.6871 \times 10^6 \mid 1.6196 \times 10^6$ | $1.6871\times10^6$ | $1.6196\times10^{6}$ |
| $\mathrm{P}_{\mathrm{G44}}$ | 189.826 | 189.826   195.993 | 240.613         | 230.147         | $ m P_{G94}$      | 895.124 896.201 | 896.201                               | 955.078           | 975.251         | Fmission (10n(hr) 760 1316 | 760 4216             | 777 5878                                                                                     | 772 8414           | 808 8675             |
| $P_{G45}$                   | 203.341 | 203.341   186.102 | 215.482         | 210.502         | $P_{G95}$         | 978.000         | 978.000   912.617   978.000   961.640 | 978.000           | 961.640         | Timesion (con/m)           | 00.4210              | 0 /97:37                                                                                     | 115.277            | 0.000                |
| $\mathrm{P}_{\mathrm{G46}}$ | 173.832 | 173.832 224.430   | 196.251 218.953 | 218.953         | ${ m P}_{ m G96}$ | 681.185         | 609.666   681.737                     | 681.737           | 678.253         | Saving                     | -8.400               | Baca caca                                                                                    | 000 85             | 126 400              |
| $P_{G47}$                   | 182.390 | 180.170           | 226.800         | 184.792         | $P_{G97}$         | 715.783         | 716.436 718.900                       | 718.900           | 686.529         | (\$/hr)                    | 0.100                | Dase case                                                                                    | 20,200             | 170,100              |
| $P_{G48}$                   | 193.273 | 235.152           | 170.538         | 232.939         | $P_{G99}$         | 717.295         | 717.295   711.415   709.407   718.000 | 709.407           | 718.000         | Doduction (%)              | 0.4811               | Baca caca                                                                                    | 2 2 7 2 A          | 7 2304               |
| $P_{G49}$                   | 232.137 | 232.137 231.342   | 180.622         | 208.496         | $P_{G99}$         | 706.853         | 706.853   704.450   715.781   719.009 | 715.781           | 719.009         | (%) Weather (%)            | 0.4011               | Dase case                                                                                    | J.57.54            | 1.62.7               |
| $P_{G50}$                   | 185.778 | 185.778   176.488 | 220.201         | 160.000         | $P_{\rm G100}$    | 945.761         | 945.761   963.848   940.732           | 940.732           | 938.973         |                            |                      |                                                                                              |                    |                      |

 Table 20.
 Simulation results using different algorithms considering VPE, RRL, and POZs for 140-unit system (Case 7).


| Unit (MW)         DEA           P <sub>G51</sub> 504.000 |
|----------------------------------------------------------|
| P <sub>G52</sub> 395.644                                 |
| P <sub>G53</sub>   470.988   234.054                     |
|                                                          |
|                                                          |
|                                                          |
| P <sub>G57</sub> 335.172                                 |
| P <sub>G58</sub>   612.198                               |
| P <sub>G59</sub> 100.000                                 |
| P <sub>G60</sub> 400.859                                 |
| P <sub>G61</sub> 315.190                                 |
| P <sub>G62</sub> 108.556                                 |
| P <sub>G63</sub> 438.583                                 |
| P <sub>G64</sub> 496.685                                 |
| P <sub>G65</sub> 476.526                                 |
| P <sub>G66</sub> 308.762                                 |
| P <sub>G67</sub> 196.423                                 |
| P <sub>G68</sub> 198.956                                 |
| P <sub>G69</sub> 130.000                                 |
| P <sub>G70</sub> 394.298                                 |
| P <sub>G71</sub> 280.123                                 |
| P <sub>G72</sub>   453.895                               |
| P <sub>G73</sub> 487.330                                 |
| P <sub>G74</sub> 355.043                                 |
| P <sub>G75</sub> 492.108                                 |
| P <sub>G76</sub> 175.741                                 |
| P <sub>G77</sub> 241.177                                 |
| P <sub>G78</sub> 426.249                                 |
| P <sub>G79</sub> 375.966                                 |
| $P_{G80}$ 523.355                                        |
| $P_{G81}$ 512.649                                        |
| P <sub>G82</sub> 87.725                                  |
| P <sub>G83</sub> 236.224                                 |
| P <sub>G84</sub> 215.939                                 |
| P <sub>G85</sub> 230.112                                 |
| P <sub>G86</sub> 307.000                                 |
| P <sub>G87</sub> 303.693                                 |
| P <sub>G88</sub> 254.997                                 |
| 107 203                                                  |
| r G89                                                    |


| Unit (MW) DEA               | DEA     | PSO               | GWO             | Proposed<br>EOA | Unit (MW) DEA     |         | PSO                             | GWO     | Proposed<br>EOA | Unit (MW)                   | DEA                    | PSO                    | GWO                                                                                 | Proposed<br>EOA        |
|-----------------------------|---------|-------------------|-----------------|-----------------|-------------------|---------|---------------------------------|---------|-----------------|-----------------------------|------------------------|------------------------|-------------------------------------------------------------------------------------|------------------------|
| P <sub>G41</sub>            | 10.324  | 7.541             | 4.986           | 3.0780          | $P_{G91}$         | 334.976 | 334.976 266.236 314.050 339.396 | 314.050 | 339.396         | Total PG                    | 49,342                 | 49,342                 | 49,342                                                                              | 49,342                 |
| $P_{G42}$                   | 10.273  | 12.824            | 7.463           | 11.385          | $P_{G92}$         | 506.104 | 506.104 407.414 540.011         |         | 527.882         |                             |                        |                        |                                                                                     |                        |
| P <sub>G43</sub>            | 229.290 | 239.134           | 228.305         | 168.781         | $P_{G93}$         | 616.751 | 579.460 629.126                 |         | 510.583         | Cost (\$/hr)                | $1.9292 \times 10^{6}$ | $1.9184 \times 10^{6}$ | $1.9292 \times 10^6$ $1.9184 \times 10^6$ $1.9353 \times 10^6$ $1.9886 \times 10^6$ | $1.9886 \times 10^{6}$ |
| P <sub>G44</sub>            | 208.922 | 211.169           | 215.657         | 218.980         | $P_{G94}$         | 838.310 | 900.411                         | 802.511 | 795.009         | Emission (ton/h.n) 469 2050 |                        | 3630 031               | 0230                                                                                | 457 0131               |
| P <sub>G45</sub>            | 203.330 | 165.321           | 190.337         | 186.724         | $P_{G95}$         | 804.861 | 910.180 809.497 795.000         | 809.497 | 795.000         | Emission (1011/111)         |                        | 402.0042               |                                                                                     | 1610.76#               |
| $\mathrm{P}_{\mathrm{G46}}$ | 160.000 | 160.000   191.234 | 238.515         | 161.458         | ${ m P}_{ m G96}$ | 605.033 | 605.033   636.483   599.498     | 599.498 | 578.001         | Doduction (%)               | 21710                  | December               | 0.9752                                                                              | 0072 (                 |
| $P_{G47}$                   | 232.570 | 232.570   178.362 | 207.372 245.928 |                 | ${ m P}_{ m G97}$ | 715.237 | 715.237   698.599   665.361     |         | 617.660         | (%) morrow                  | 6101.0                 | Dast cast              | 66 /9:0                                                                             | 0000.7                 |
| $\mathrm{P}_{\mathrm{G48}}$ | 245.784 | 245.784 209.783   | 241.159         | 246.974         | ${ m P}_{ m G99}$ | 713.258 | 713.258   718.000   659.451     |         | 622.899         |                             |                        |                        |                                                                                     |                        |
| ${ m P}_{{ m G49}}$         | 233.153 | 235.407           | 187.940         | 163.637         | $P_{G99}$         | 657.337 | 677.844   687.111               |         | 715.604         |                             |                        |                        |                                                                                     |                        |
| $P_{G50}$                   | 184.808 | 184.808 194.384   | 190.140         | 163.215         | P <sub>G100</sub> | 948.595 | 948.595 878.766 945.352         | 945.352 | 868.997         |                             |                        |                        |                                                                                     |                        |


 Table 21.
 Simulation results using different algorithms for total emission reduction for 140-unit system (Case 8).

| Method                   | Case 6                      | Case 7                     | Case 8          |
|--------------------------|-----------------------------|----------------------------|-----------------|
| Proposed EOA             | $1.5625 \times 10^{6}$      | $1.6196 \times 10^{6}$     | 457.0131        |
| GWO                      | $1.6384 \times 10^{6}$      | 1.6871 × 10 <sup>6</sup>   | 464.9570        |
| PSO                      | 1.6697 × 10 <sup>6</sup>    | $1.7460 \times 10^{6}$     | 469.0625        |
| DEA                      | 1.6823 × 10 <sup>6</sup>    | $1.7544 \times 10^{6}$     | 468.3059        |
| MPSO_SSM <sup>20</sup>   | 1.5598 × 10 <sup>6a</sup>   | N/A                        | N/A             |
| MOMSA <sup>22</sup>      | 1.629093 × 10 <sup>6b</sup> | N/A                        | 55970.185 lb/hr |
| NPF + NPRS <sup>29</sup> | N/A                         | 1.55971 × 10 <sup>6</sup>  | N/A             |
| CLDE <sup>36</sup>       | 1.65796 × 10 <sup>6</sup>   | N/A                        | N/A             |
| IPSO [72]                | 1.657962 × 10 <sup>6</sup>  | N/A                        | N/A             |
| CCDE <sup>52</sup>       | N/A                         | 1.657963 × 10 <sup>6</sup> | N/A             |

**Table 22**. Comparison between different single OFs using the proposed EOA and other methods for 140-unit system (Cases 6, 7, 8). N/A: Not available <sup>a</sup> The exact value of total fuel cost is  $2.0717 \times 10^6$  \$/hr, which is higher than that reported in [20]. <sup>b</sup> The exact value of total fuel cost is  $1.8740 \times 10^6$  \$/hr, which is higher than that reported in [20].







b) Convergence of cost with VPE (case 2)

**Fig. 6**. Convergence curves of the proposed EOA and other algorithms without considering power losses for 80-unit system

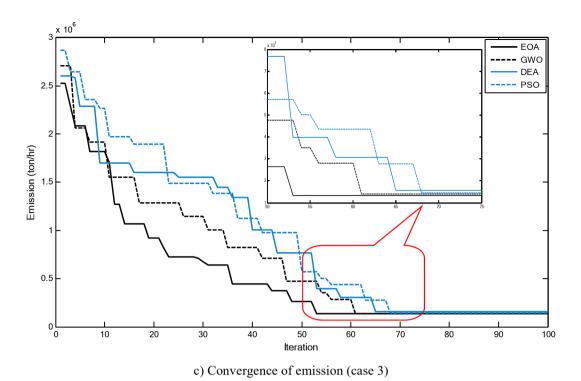
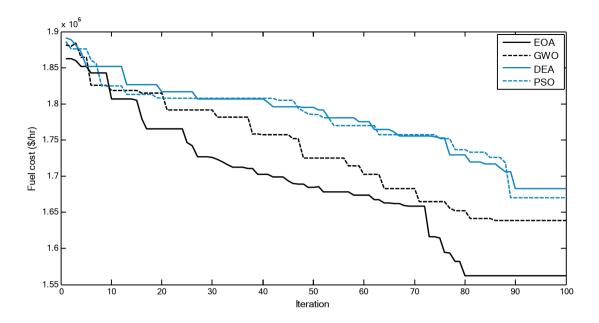
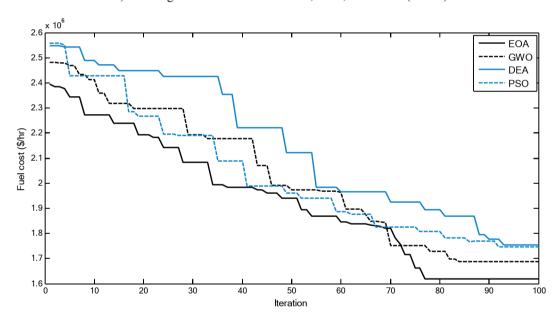
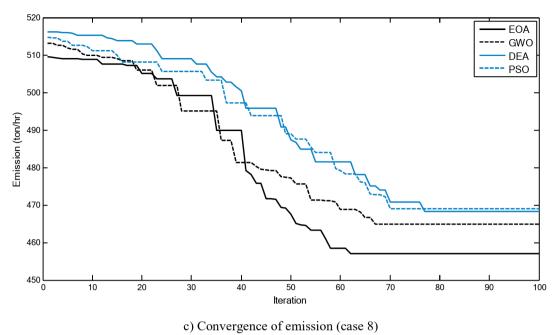





Figure 6. (continued)




a) Convergence of cost without VPE, RRL, and POZs (case 6)



b) Convergence of cost with VPE, RRL, and POZs (case 7)

 $\textbf{Fig. 7}. \ \ \text{Convergence curves of the proposed EOA and other algorithms without considering power losses for 140-unit system}$ 



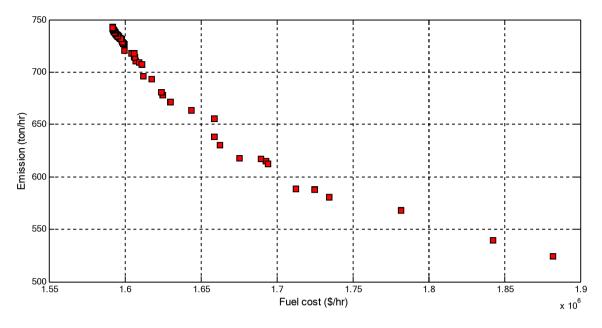

4

Figure 7. (continued)

| Proposed   |                  | 1005.884          | 1005.514         | .8 1013.000       | 6 1019.372       | 954.000          | 951.610           | 803.799          | 983.926           | 1001.793          | 1014.656          | 94.001            | 94.329           | 94.727            | 246.423          | 244.000           | 259.858           | 104.351           | 128.390           | 116.000          | 189.047           | 2.576                        | 6.031             | 15.522            | 44.498           | 12.442            | 15.262            | 112.078           | 5.186      | 5.148      | 8.212            | 55.246            | 8.595             | 48.491            | 49.125            | 41.899                       | 17.000            | _         | 7.000  |
|------------|------------------|-------------------|------------------|-------------------|------------------|------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|------------------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|------------|------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------------------|-------------------|-----------|--------|
| Owo        | 943.252          | 1006.901          | 965.038          | 1001.728          | 1017.866         | 954.000          | 940.427           | 908.657          | 801.010           | 996.950           | 1003.491          | 201.027           | 155.889          | 94.000            | 260.479          | 379.000           | 285.633           | 168.220           | 129.559           | 127.934          | 176.032           | 16.444                       | 4.000             | 81.810            | 12.702           | 12.772            | 25.551            | 127.371           | 5.482      | 6.412      | 18.870           | 62.255            | 10.000            | 42.165            | 42.507            | 55.502                       | 43.128            | _         | 11.285 |
| OSG        | 953.158          | 1007.000          | 1005.954         | 1013.000          | 1009.961         | 954.000          | 840.221           | 834.629          | 795.000           | 1018.566          | 1001.318          | 95.856            | 203.000          | 94.000            | 248.790          | 244.000           | 249.053           | 105.729           | 95.000            | 124.212          | 183.698           | 2.000                        | 37.895            | 22.930            | 22.010           | 22.974            | 34.000            | 112.213           | 8698       | 11.790     | 5.328            | 84.284            | 5.005             | 42.226            | 46.765            | 41.000                       | 18.419            |           | 7.000  |
| DFA        | 958.000          | 890.885           | 1006.000         | 1013.000          | 1020.000         | 954.000          | 952.000           | 822.692          | 795.000           | 978.661           | 1015.000          | 146.934           | 200.736          | 94.000            | 377.707          | 379.000           | 244.000           | 121.166           | 95.000            | 194.000          | 192.078           | 8.919                        | 17.016            | 15.000            | 9.000            | 16.233            | 20.501            | 112.000           | 4.000      | 5.000      | 18.020           | 98.000            | 10.000            | 49.596            | 72.369            | 44.762                       | 17.000            | i i       | 8.717  |
| Unit (MW)  | Peror            | P <sub>G102</sub> | $P_{G103}$       | P <sub>G104</sub> | $P_{G105}$       | $P_{\rm G106}$   | P <sub>G107</sub> | $P_{G108}$       | P <sub>G109</sub> | P <sub>G110</sub> | P <sub>G111</sub> | P <sub>G112</sub> | $P_{G113}$       | P <sub>G114</sub> | $P_{G115}$       | P <sub>G116</sub> | P <sub>G117</sub> | P <sub>G118</sub> | P <sub>G119</sub> | $P_{\rm G120}$   | P <sub>G121</sub> | $\mathrm{P}_{\mathrm{G122}}$ | P <sub>G123</sub> | P <sub>G124</sub> | $P_{G125}$       | P <sub>G126</sub> | P <sub>G127</sub> | P <sub>G128</sub> | $P_{G129}$ | $P_{G130}$ | $P_{G131}$       | P <sub>G132</sub> | P <sub>G133</sub> | P <sub>G134</sub> | P <sub>G135</sub> | $\mathrm{P}_{\mathrm{G136}}$ | P <sub>G137</sub> | ď         | FG138  |
| Proposed   | 299.235          | 165.010           | 184.039          | 190.253           | 180.071          | 192.785          | 188.984           | 220.362          | 302.892           | 394.398           | 213.079           | 183.670           | 511.000          | 207.020           | 223.690          | 198.807           | 198.671           | 198.073           | 146.471           | 355.098          | 143.845           | 167.343                      | 535.769           | 240.624           | 213.030          | 175.096           | 438.916           | 338.457           | 529.258    | 527.757    | 235.868          | 56.012            | 115.000           | 129.825           | 138.778           | 219.486                      | 207.010           | 344 000   |        |
| GWO        | 358.211          | 244.171           | 284.364          | 165.450           | 188.973          | 184.252          | 119.009           | 198.118          | 312.000           | 173.103           | 317.778           | 95.000            | 486.493          | 198.619           | 477.232          | 196.000           | 220.406           | 309.029           | 130.000           | 330.013          | 246.223           | 334.966                      | 195.215           | 406.429           | 175.116          | 424.386           | 175.299           | 358.175           | 531.000    | 531.000    | 200.000          | 57.643            | 115.465           | 162.512           | 118.055           | 231.254                      | 217.846           | 175 000   |        |
| OSd        | 247.138          | 165.000           | 167.559          | 167.439           | 184.963          | 180.000          | 103.000           | 311.360          | 204.091           | 305.674           | 173.614           | 302.000           | 173.314          | 193.377           | 420.460          | 490.000           | 490.000           | 256.085           | 169.078           | 130.000          | 171.070           | 137.000                      | 369.769           | 457.478           | 265.507          | 245.175           | 403.279           | 330.000           | 509.993    | 439.077    | 289.130          | 120.313           | 195.737           | 143.478           | 153.099           | 221.532                      | 210.044           | 188 021   |        |
| DFA        | 504.000          | 178.609           | 184.377          | 348.963           | 180.000          | 180.000          | 103.000           | 227.811          | 300.350           | 334.940           | 500.000           | 269.880           | 350.122          | 160.000           | 349.894          | 428.262           | 245.285           | 196.000           | 130.000           | 403.283          | 164.094           | 420.605                      | 271.592           | 416.010           | 540.000          | 267.695           | 540.000           | 573.224           | 494.915    | 456.229    | 200.000          | 56.007            | 161.264           | 143.804           | 160.401           | 245.323                      | 207.000           | 182.476   | 2      |
| IInit (MW) | P <sub>GS1</sub> | P <sub>G52</sub>  | P <sub>G53</sub> | P <sub>G54</sub>  | P <sub>G55</sub> | P <sub>G56</sub> | P <sub>G57</sub>  | P <sub>G58</sub> | P <sub>G59</sub>  |                   | P <sub>G61</sub>  | P <sub>G62</sub>  | P <sub>G63</sub> |                   | P <sub>G65</sub> |                   | P <sub>G67</sub>  |                   | P <sub>G69</sub>  | P <sub>G70</sub> | P <sub>G71</sub>  | P <sub>G72</sub>             |                   | P <sub>G74</sub>  | P <sub>G75</sub> | P <sub>G76</sub>  | P <sub>G77</sub>  | P <sub>G78</sub>  |            | $P_{G80}$  | P <sub>G81</sub> | P <sub>G82</sub>  | $P_{G83}$         | P <sub>G84</sub>  | P <sub>G85</sub>  | $P_{G86}$                    | P <sub>G87</sub>  | Ъ         | - G88  |
| Proposed   |                  | 120.172           | 158.794          | 174.447           | 90.298           | 90.645           | 483.194           | 490.000          | 495.695           | 496.000           | 494.798           | 488.898           | 506.000          | 506.557           | 505.926          | 496.909           | 505.854           | 503.558           | 504.903           | 501.109          | 498.622           | 503.787                      | 485.144           | 504.480           | 536.461          | 523.188           | 543.373           | 546.286           | 486.201    | 499.212    | 504.827          | 505.392           | 505.760           | 503.766           | 498.795           | 499.818                      | 241.000           | 234 604   |        |
| GWO        | 2                | 164.770           | 167.456          | 152.409           | 115.580          | 103.206          | 461.624           | 467.641          | 451.376           | 488.444           | 495.606           | 496.000           | 504.849          | 491.401           | 493.977          | 499.237           | 501.215           | 462.153           | 479.529           | 447.055          | 502.038           | 448.553                      | 474.592           | 485.436           | 529.367          | 537.000           | 510.537           | 434.332           | 501.000    | 480.134    | 500.513          | 506.000           | 501.023           | 496.545           | 483.579           | 500.000                      | 241.000           | 240.798   | $\neg$ |
| OSa        | 592              | 150.508           | 125.058          | 163.419           | 99.864           | 190.000          | 490.000           | 490.000          | 490.124           | 496.000           | 496.000           | 477.786           | 506.000          | 209.000           | 206.000          | 502.983           | 506.000           | 480.202           | 457.083           | 260.615          | 503.689           | 505.000                      | 505.000           | 504.953           | 537.000          | 536.142           | 493.382           | 498.650           | 478.401    | 501.000    | 484.596          | 468.010           | 501.846           | 433.156           | 489.899           | 497.432                      | 185.074           | 216.937   | ┪      |
| DEA        | 9                | 134.787           | 126.981          | 165.797           | 190.000          | 90.000           | 461.581           | 490.000          | 496.000           | 495.494           | 339.640           | 482.982           | 506.000          | 496.194           | 506.000          | 316.727           | 506.000           | 506.000           | 450.024           | 505.000          | 274.872           | 365.942                      | 505.000           | 505.000           | 518.685          | 537.000           | 549.000           | 359.544           | 291.850    | 501.000    | 506.000          | 486.749           | 506.000           | 473.744           | 397.116           | 365.189                      | 172.348           | 133.554   | -      |
| Unit (MW)  |                  |                   |                  |                   |                  |                  |                   |                  |                   |                   |                   |                   |                  |                   | $P_{G15}$        |                   | $P_{\rm G17}$     |                   |                   | $P_{G20}$        |                   |                              |                   | P <sub>G24</sub>  |                  |                   |                   | P <sub>G28</sub>  |            | $P_{G30}$  | $P_{\rm G31}$    |                   |                   |                   | P <sub>G35</sub>  |                              |                   | $P_{G38}$ |        |

| Unit (MW)                   | DEA     | PSO                                   | OMĐ             | Proposed<br>EOA | Unit (MW) DEA               | DEA     | OSd             | GWO                                   | Proposed<br>EOA                       | Unit (MW)                  | DEA                  | PSO                                                                                                  | GWO                | Proposed<br>EOA      |
|-----------------------------|---------|---------------------------------------|-----------------|-----------------|-----------------------------|---------|-----------------|---------------------------------------|---------------------------------------|----------------------------|----------------------|------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| $P_{G41}$                   | 19.000  | 4.057                                 | 4.956           | 7.655           | $P_{G91}$                   | 345.000 |                 | 210.645   175.152   175.117           | 175.117                               | Total PG                   | 49,342               | 49,342                                                                                               | 49,342             | 49,342               |
| P <sub>G42</sub>            | 3.000   | 15.458                                | 3.460           | 21.564          | $P_{G92}$                   | 533.145 | 580.000         | 533.145 580.000 579.692               | 571.723                               |                            |                      |                                                                                                      |                    |                      |
| $\mathrm{P}_{\mathrm{G43}}$ | 160.000 | 160.000   204.646   211.441   160.023 | 211.441         |                 | $\mathrm{P}_{\mathrm{G93}}$ | 569.635 | 8697.698        | 645.000                               | 569.635   637.698   645.000   641.941 | Cost (\$/hr)               | $1.7563\times10^{6}$ | $1.7563 \times 10^{6}    \ 1.6725 \times 10^{6}    \ 1.6599 \times 10^{6}    \ 1.6063 \times 10^{6}$ | $1.6599\times10^6$ | $1.6063\times10^{6}$ |
| P <sub>G44</sub>            | 250.000 | 250.000 200.873 162.                  | 162.449         | 449 233.537     | P <sub>G94</sub>            | 795.000 | 983.832         | 983.832 984.000 982.987               | 982.987                               | Emission (ton/hr) 601 7356 | 7356                 | 650 3210                                                                                             | 2(13 2)            | 714 4000             |
| $P_{G45}$                   | 229.338 | 245.191                               | 163.225         | 160.037         | $\mathrm{P}_{\mathrm{G95}}$ | 978.000 |                 | 933.538   952.907   973.525           | 973.525                               | Emission (ton/mr)          | 000 /100             | 020.3213                                                                                             | 6770.100           | /111.1007            |
| $P_{G46}$                   | 215.709 | 226.852                               | 175.            | 274 160.000     | $P_{G96}$                   | 627.069 | 651.717 583.231 | 583.231                               | 682.000                               |                            |                      |                                                                                                      |                    |                      |
| $P_{G47}$                   | 171.392 | 171.392 214.257                       | 246.208         | 208 160.500     | $P_{G97}$                   | 684.806 | 720.000         | 684.806   720.000   720.000   717.126 | 717.126                               |                            |                      |                                                                                                      |                    |                      |
| $P_{G48}$                   | 250.000 | 228.784                               | 191.578 218.873 |                 | $P_{G99}$                   | 718.000 | 707.731         | 707.731 711.956 718.000               | 718.000                               |                            |                      |                                                                                                      |                    |                      |
| P <sub>G49</sub>            | 165.375 | 249.703                               | 182.            | 989 248.477     | $P_{G99}$                   | 670.763 | 707.305         | 707.305   697.704   720.000           | 720.000                               |                            |                      |                                                                                                      |                    |                      |
| ${ m P}_{{ m G50}}$         | 202.564 | 202.564   250.000   250.              |                 | 000   232.965   | $P_{\rm G100}$              | 949.345 | 964.000         | 949.345   964.000   963.061   956.922 | 956.922                               |                            |                      |                                                                                                      |                    |                      |

**Table 23.** Simulation results of multi-OF using different algorithms with Pareto front without considering VPE, RRL, and POZs for 140-unit system (Case 9).





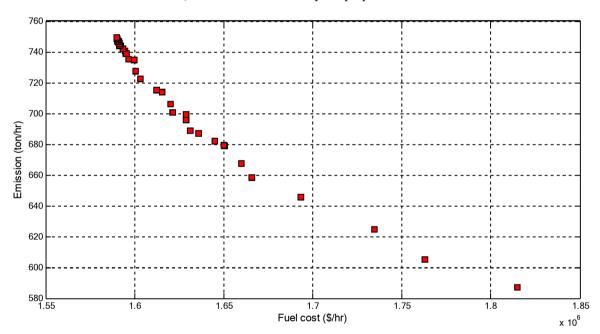
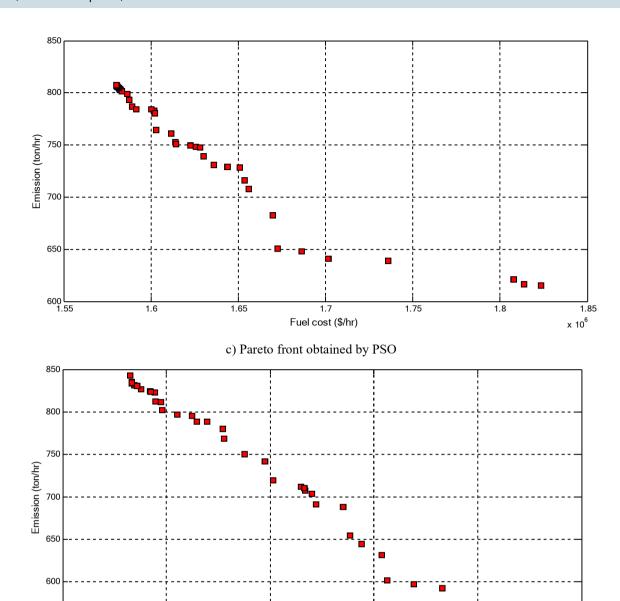




Fig. 8. Pareto front obtained by the proposed EOA, GWO, PSO, and DEA for 140-unit system (Case 9).

b) Pareto front obtained by GWO



d) Pareto front obtained by DEA

Fuel cost (\$/hr)

1.75

Figure 8. (continued)

1.65

550 1.6

1.85

x 10<sup>6</sup>

| p<br>B          |                  | 2                 |            |                   | 6                 |              |                   |                |                   |            | 1                |                   |            |                   |               |                   |                   |                   |                   |                             |                   |                              |                   |                   |            |            |            |                  |                              |            |               |                   |                   |                   |                  |                  |                   |                  |                   |                   |
|-----------------|------------------|-------------------|------------|-------------------|-------------------|--------------|-------------------|----------------|-------------------|------------|------------------|-------------------|------------|-------------------|---------------|-------------------|-------------------|-------------------|-------------------|-----------------------------|-------------------|------------------------------|-------------------|-------------------|------------|------------|------------|------------------|------------------------------|------------|---------------|-------------------|-------------------|-------------------|------------------|------------------|-------------------|------------------|-------------------|-------------------|
| Proposed<br>EOA | 957.244          | 1002.642          | 985.473    | 974.904           | 1019.989          | 954.000      | 864.375           | 886.408        | 830.345           | 269.066    | 1013.241         | 94.000            | 94.000     | 94.000            | 363.289       | 245.852           | 316.479           | 97.601            | 97.571            | 120.209                     | 260.972           | 2.490                        | 6.887             | 18.264            | 27.130     | 12.969     | 10.263     | 117.487          | 5.442                        | 5.000      | 18.952        | 71.006            | 8.682             | 42.531            | 43.257           | 41.777           | 17.000            | 17.974           | 7.001             | 39.811            |
| GWO             | 958.000          | 1007.000          | 1004.272   | 1007.888          | 1015.224          | 940.920      | 952.000           | 795.000        | 795.000           | 972.839    | 1000.093         | 158.991           | 133.673    | 110.301           | 276.266       | 245.155           | 244.000           | 97.442            | 189.000           | 135.497                     | 203.168           | 6.216                        | 58.920            | 39.502            | 16.045     | 31.261     | 10.000     | 112.806          | 4.000                        | 9.004      | 5.000         | 87.652            | 5.000             | 62.879            | 74.000           | 48.631           | 34.131            | 11.835           | 7.556             | 32.837            |
| PSO             | 958.000          | 994.151           | 1006.000   | 976.929           | 1020.000          | 934.042      | 786.000           | 857.235        | 795.000           | 873.021    | 1010.617         | 94.000            | 203.000    | 103.475           | 314.591       | 261.431           | 244.000           | 166.504           | 96.046            | 119.315                     | 179.235           | 2.000                        | 45.071            | 83.000            | 53.000     | 14.378     | 31.278     | 112.000          | 17.001                       | 20.230     | 11.728        | 50.306            | 5.857             | 44.628            | 44.982           | 78.832           | 17.000            | 16.114           | 14.455            | 31.670            |
| DEA             | 847.274          | 869:506           | 929.059    | 1013.000          | 1011.966          | 951.169      | 805.214           | 814.922        | 1009.704          | 980.577    | 1015.000         | 95.037            | 200.382    | 97.560            | 244.000       | 311.030           | 379.000           | 95.604            | 178.210           | 158.434                     | 250.676           | 2.000                        | 31.340            | 81.199            | 32.156     | 37.000     | 10.000     | 269.768          | 16.213                       | 8:338      | 086.9         | 52.220            | 5.000             | 74.000            | 44.981           | 41.931           | 51.000            | 19.000           | 7.016             | 26.381            |
| Unit (MW)       | $P_{\rm G101}$   | P <sub>G102</sub> | $P_{G103}$ | P <sub>G104</sub> | P <sub>G105</sub> | $P_{G106}$   | P <sub>G107</sub> | $P_{\rm G108}$ | P <sub>G109</sub> | $P_{G110}$ | $P_{\rm G111}$   | P <sub>G112</sub> | $P_{G113}$ | P <sub>G114</sub> | $P_{G115}$    | P <sub>G116</sub> | P <sub>G117</sub> | P <sub>G118</sub> | P <sub>G119</sub> | $P_{G120}$                  | P <sub>G121</sub> | $\mathrm{P}_{\mathrm{G122}}$ | P <sub>G123</sub> | P <sub>G124</sub> | $P_{G125}$ | $P_{G126}$ | $P_{G127}$ | $P_{G128}$       | $\mathrm{P}_{\mathrm{G129}}$ | $P_{G130}$ | $P_{G131}$    | P <sub>G132</sub> | P <sub>G133</sub> | P <sub>G134</sub> | $P_{G135}$       | $P_{G136}$       | P <sub>G137</sub> | $P_{G138}$       | P <sub>G139</sub> | P <sub>G140</sub> |
| EOA             | 301.705          | 171.496           | 168.166    | 169.669           | 232.250           | 260.354      | 207.807           | 281.695        | 100.000           | 442.613    | 178.459          | 294.457           | 164.720    | 179.137           | 210.017       | 428.121           | 202.942           | 196.000           | 142.068           | 139.343                     | 352.567           | 137.400                      | 203.285           | 187.561           | 180.664    | 409.826    | 175.523    | 330.000          | 518.728                      | 530.963    | 542.000       | 121.370           | 115.000           | 115.000           | 116.998          | 207.000          | 211.248           | 175.359          | 281.450           | 341.060           |
| GWO             | 165.000          | 165.000           | 504.000    | 195.087           | 227.480           | 282.910      | 289.215           | 252.909        | 100.991           | 452.638    | 167.386          | 114.862           | 161.898    | 496.241           | 366.033       | 490.000           | 486.898           | 241.611           | 178.431           | 431.785                     | 137.319           | 137.076                      | 273.377           | 536.000           | 196.195    | 284.242    | 175.000    | 330.436          | 505.869                      | 525.545    | 278.087       | 56.000            | 120.969           | 125.734           | 138.716          | 212.804          | 250.522           | 345.000          | 306.442           | 295.768           |
| PSO             | 188.046          | 460.435           | 349.706    | 369.035           | 186.741           | 180.000      | 253.190           | 221.452        | 138.382           | 311.440    | 163.000          | 138.743           | 511.000    | 160.932           | 296.181       | 196.000           | 310.995           | 490.000           | 130.000           | 263.501                     | 274.700           | 137.000                      | 229.004           | 536.000           | 540.000    | 350.386    | 175.000    | 330.000          | 531.000                      | 322.669    | 200.000       | 128.223           | 245.000           | 126.734           | 133.629          | 236.383          | 225.468           | 212.378          | 175.000           | 345.000           |
| DEA             | 166.617          | 504.000           | 165.000    | 165.000           | 206.240           | 274.837      | 232.736           | 219.363        | 183.941           | 153.000    | 441.857          | 95.000            | 436.661    | 160.017           | 445.265       | 309.956           | 199.004           | 346.184           | 152.727           | 301.252                     | 446.800           | 137.000                      | 541.000           | 535.393           | 267.558    | 175.421    | 175.000    | 402.686          | 465.837                      | 531.000    | 542.000       | 132.000           | 236.748           | 239.809           | 115.000          | 262.734          | 207.292           | 317.321          | 197.002           | 177.452           |
| Unit (MW)       | P <sub>G51</sub> |                   |            | P <sub>G54</sub>  |                   |              | P <sub>G57</sub>  |                | P <sub>G59</sub>  |            |                  |                   |            | P <sub>G64</sub>  |               | P <sub>G66</sub>  | P <sub>G67</sub>  |                   | P <sub>G69</sub>  |                             | P <sub>G71</sub>  |                              |                   | P <sub>G74</sub>  |            |            |            | P <sub>G78</sub> |                              |            | $P_{G81}$     |                   | P <sub>G83</sub>  |                   | P <sub>G85</sub> |                  |                   |                  |                   | P                 |
| EOA             | 78.789           | 187.500           | 189.545    | 186.323           | 90.674            | 91.734       | 490.000           | 489.273        | 472.803           | 494.787    | 492.591          | 495.879           | 500.954    | 508.798           | 505.253       | 505.000           | 504.432           | 505.935           | 431.099           | 486.437                     | 501.094           | 497.335                      | 505.000           | 504.149           | 526.561    | 527.758    | 547.910    | 548.314          | 496.176                      | 463.157    | 206.000       | 501.851           | 506.000           | 491.905           | 499.198          | 499.996          | 241.000           | 239.077          | 774.000           | 765.634           |
| GWO             | 71.218           | 130.123           | 188.092    | 125.000           | 90.000            | 160.067      | 490.000           | 477.067        | 495.651           | 489.984    | 496.000          | 470.573           | 506.000    | 509.000           | 506.000       | 495.826           | 506.000           | 477.915           | 505.000           | 490.395                     | 460.665           | 439.876                      | 505.000           | 287.138           | 403.012    | 522.922    | 503.823    | 370.188          | 418.708                      | 501.000    | 506.000       | 501.238           | 506.000           | 488.440           | 500.000          | 463.828          | 164.559           | 194.458          | 683.198           | 769.000           |
| PSO             | 102.401          | 120.000           | 179.173    | 127.807           | 90.771            | 134.173      | 438.214           | 452.841        | 260.000           | 496.000    | 484.270          | 376.249           | 506.000    | 506.411           | 506.000       | 505.000           | 505.724           | 506.000           | 505.000           | 489.271                     | 500.915           | 505.000                      | 444.874           | 505.000           | 537.000    | 509.950    | 549.000    | 520.472          | 371.060                      | 467.054    | 503.883       | 388.010           | 506.000           | 498.883           | 499.986          | 500.000          | 241.000           | 241.000          | 773.698           | 766.230           |
| DEA             | 76.749           | 189.000           | 169.374    | 171.115           | 183.874           | 129.748      | 485.839           | 484.081        | 480.288           | 408.846    | 496.000          | 478.152           | 436.984    | 483.200           | 464.569       | 494.931           | 503.813           | 271.274           | 483.839           | 495.806                     | 439.895           | 412.769                      | 505.000           | 424.382           | 465.286    | 530.541    | 386.045    | 441.113          | 379.574                      | 501.000    | 495.431       | 495.427           | 506.000           | 495.052           | 260.000          | 260.000          | 241.000           | 120.251          | 773.315           | 751.665           |
| Unit (MW)       | $P_{\rm Gl}$     | $P_{G2}$          | $P_{G3}$   | $P_{G4}$          | $P_{G5}$          | $_{\rm G_6}$ | P <sub>G7</sub>   | $P_{G8}$       | P <sub>G9</sub>   | $P_{G10}$  | P <sub>G11</sub> | $P_{G12}$         | $P_{G13}$  | $P_{G14}$         | $P_{\rm G15}$ | $P_{\rm G16}$     | $P_{\rm G17}$     | $P_{\rm GI8}$     | P <sub>G19</sub>  | $\mathrm{P}_{\mathrm{G20}}$ | $P_{\rm G21}$     | $P_{G22}$                    | P <sub>G23</sub>  | P <sub>G24</sub>  | $P_{G25}$  | $P_{G26}$  | $P_{G27}$  | $P_{G28}$        | $\mathrm{P}_{\mathrm{G29}}$  | $P_{G30}$  | $P_{\rm G31}$ | $P_{\rm G32}$     | P <sub>G33</sub>  | P <sub>G34</sub>  | P <sub>G35</sub> | P <sub>G36</sub> | P <sub>G37</sub>  | P <sub>G38</sub> | P <sub>G39</sub>  | P                 |

| Unit (MW)                   | DEA     | PSO                                   | GWO                         | Proposed<br>EOA | Unit (MW) DEA     | DEA     | PSO                                   | GWO               | Proposed<br>EOA | Unit (MW)                  | DEA                  | PSO                                                                                                  | GWO                | Proposed<br>EOA        |
|-----------------------------|---------|---------------------------------------|-----------------------------|-----------------|-------------------|---------|---------------------------------------|-------------------|-----------------|----------------------------|----------------------|------------------------------------------------------------------------------------------------------|--------------------|------------------------|
| $\mathrm{P}_{\mathrm{G41}}$ | 6.946   | 4.827                                 | 7.881                       | 3.068           | $P_{G91}$         | 345.000 | 189.948                               | 189.948   175.000 | 344.782         | Total PG                   | 49,342               | 49,342                                                                                               | 49,342             | 49,342                 |
| $P_{G42}$                   | 20.248  | 25.438                                | 8.577                       | 3.057           | $P_{G92}$         | 579.897 | 580.000 580.000                       | 280.000           | 573.693         |                            |                      |                                                                                                      |                    |                        |
| $P_{G43}$                   | 238.054 | 238.054   246.402                     | 178.749 166.752             |                 | $P_{G93}$         | 632.909 | 632.909 631.553 638.925               | 638.925           | 644.933         | Cost (\$/hr)               | $1.7761\times10^{6}$ | $1.7761 \times 10^{6}    \ 1.7219 \times 10^{6}    \ 1.7008 \times 10^{6}    \ 1.6417 \times 10^{6}$ | $1.7008\times10^6$ | $1.6417 \times 10^{6}$ |
| $\mathrm{P}_{\mathrm{G44}}$ | 241.149 | 241.149   249.715                     | 250.000 205.859             |                 | $P_{G94}$         | 984.000 | 984.000   984.000   984.000   984.000 | 984.000           | 984.000         | Emission (ton/hr) 627 1013 | £101 269             | 021/ 229                                                                                             | 90891179           | 1919 199               |
| P <sub>G45</sub>            | 161.868 | 161.868 244.779                       | 160.000 249.407             |                 | $P_{G95}$         | 967.175 | 858.781 978.000 978.000               | 978.000           | 978.000         | Emission (1011/111)        | 6101.120             | 0647.700                                                                                             | 041.0000           | £070.000               |
| ${ m P}_{{ m G46}}$         | 160.000 | 160.000   175.965                     | 174.068                     | 175.938         | $P_{G96}$         | 636.674 | 633.445                               | 989'999           | 655.514         |                            |                      |                                                                                                      |                    |                        |
| $P_{G47}$                   | 160.000 | 250.000                               | 161.374 246.677             |                 | $P_{G97}$         | 713.927 | 720.000   677.525                     | 677.525           | 720.000         |                            |                      |                                                                                                      |                    |                        |
| $P_{G48}$                   | 177.044 | 250.000                               | 179.640 226.540             |                 | $P_{G99}$         | 672.176 | 672.176   655.837   718.000           | 718.000           | 613.333         |                            |                      |                                                                                                      |                    |                        |
| ${ m P}_{{ m G49}}$         | 180.731 | 202.730                               | 202.730   160.905   250.000 |                 | ${ m P}_{ m G99}$ | 672.659 | 672.659   720.000   719.645           | 719.645           | 712.728         |                            |                      |                                                                                                      |                    |                        |
| ${ m P}_{ m G50}$           | 182.570 | 182.570   175.782   199.948   168.211 | 199.948                     |                 | P <sub>G100</sub> | 964.000 | 964.000   964.000   950.632           | 950.632           | 959.222         |                            |                      |                                                                                                      |                    |                        |

Table 24. Simulation results of multi-OF using different algorithms with Pareto front considering VPE, RRL, and POZs for 140-unit system (Case 10).

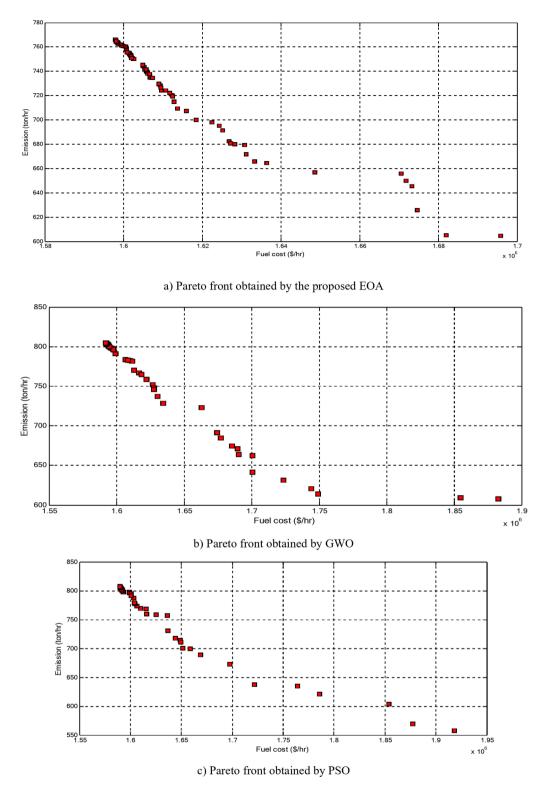
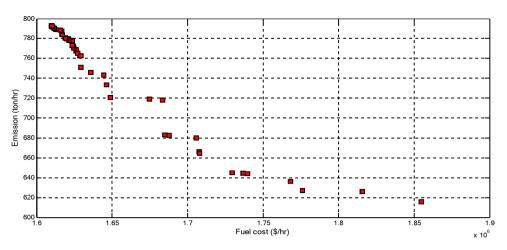




Fig. 9. Pareto front obtained by the proposed EOA, GWO, PSO, and DEA for 140-unit system (Case 10).



d) Pareto front obtained by DEA

Figure 9. (continued)

|                     | Case 9                   |                 | Case 10                  |          |
|---------------------|--------------------------|-----------------|--------------------------|----------|
| Method              | Fuel cost                | Emission        | Fuel cost                | Emission |
| Proposed EOA        | $1.6063 \times 10^{6}$   | 714.4009        |                          |          |
| GWO                 | $1.6599 \times 10^{6}$   | 667.6225        | $1.7008 \times 10^{6}$   | 641.6806 |
| PSO                 | $1.6725 \times 10^{6}$   | 650.3219        | 1.7219 × 10 <sup>6</sup> | 637.2430 |
| DEA                 | $1.7563 \times 10^{6}$   | 601.7356        |                          |          |
| MOMSA <sup>22</sup> | 1.6491 × 10 <sup>6</sup> | 49625.757 lb/hr | N/A                      | N/A      |

Table 25. Comparison between the multi-OF using the proposed EOA and other methods for 140-unit system (Cases 9, 10).

| Test system |                    | Case#  | Method             | Best                      | Worst                     | Average                  | Standard deviation         |
|-------------|--------------------|--------|--------------------|---------------------------|---------------------------|--------------------------|----------------------------|
|             |                    |        | Proposed EOA       | 1.0596 × 10 <sup>5</sup>  | 1.0605 × 10 <sup>5</sup>  | 1.0599 × 10 <sup>5</sup> | $2.59379 \times 10^{-4}$   |
|             |                    |        | GWO                | 1.0603 × 10 <sup>5</sup>  | 1.0631 × 10 <sup>5</sup>  | 1.0617 × 10 <sup>5</sup> | 8.08531 × 10 <sup>-4</sup> |
|             |                    | Case 1 | DEA                | 1.0626 × 10 <sup>5</sup>  | 1.0657 × 10 <sup>5</sup>  | $1.0644 \times 10^{5}$   | $9.16892 \times 10^{-4}$   |
|             |                    |        | PSO                | 1.0611 × 10 <sup>5</sup>  | 1.0639 × 10 <sup>5</sup>  | 1.0626 × 10 <sup>5</sup> | 8.55446 × 10 <sup>-4</sup> |
|             |                    |        | PHOA [49]          | 1.0621 × 10 <sup>5</sup>  | 1.0621 × 10 <sup>5</sup>  | 1.0621 × 10 <sup>5</sup> | $1.7822 \times 10^{-11}$   |
|             |                    |        | Proposed EOA       | 1.0617 × 10 <sup>5</sup>  | 1.0631 × 10 <sup>5</sup>  | 1.0623 × 10 <sup>5</sup> | $3.83231 \times 10^{-4}$   |
| 10-Unit     | Without losses     |        | GWO                | 1.0619 × 10 <sup>5</sup>  | 1.0645 × 10 <sup>5</sup>  | 1.0632 × 10 <sup>5</sup> | $7.76101 \times 10^{-4}$   |
|             |                    | Case 2 | DEA                | 1.0634×10 <sup>5</sup>    | 1.0667 × 10 <sup>5</sup>  | $1.0651 \times 10^{5}$   | $9.42759 \times 10^{-4}$   |
|             |                    |        | PSO                | 1.0625 × 10 <sup>5</sup>  | 1.0653 × 10 <sup>5</sup>  | 1.0640 × 10 <sup>5</sup> | $7.41848 \times 10^{-4}$   |
|             |                    |        | Proposed EOA       | 91.9695                   | 91.9706                   | 91.9698                  | $3.05773 \times 10^{-4}$   |
|             |                    |        | GWO                | 91.9960                   | 92.2431                   | 92.1179                  | 0.0678991                  |
|             |                    | Case 3 | DEA                | 93.8757                   | 94.3543                   | 94.1196                  | 0.1584541                  |
|             |                    |        | PSO                | 93.6060                   | 93.9584                   | 93.7747                  | 0.1053699                  |
|             |                    |        | Proposed EOA       | 6.0156 × 10 <sup>4</sup>  | 6.0171 × 10 <sup>4</sup>  | 6.0161 × 10 <sup>4</sup> | $4.60128 \times 10^{-4}$   |
|             |                    |        | GWO                | 6.0193 × 10 <sup>4</sup>  | 6.0246 × 10 <sup>4</sup>  | 6.0219 × 10 <sup>4</sup> | 0.0016301                  |
|             | Without losses     | Case 1 | DEA                | 6.0216 × 10 <sup>4</sup>  | 6.0261 × 10 <sup>4</sup>  | 6.0239 × 10 <sup>4</sup> | 0.0013085                  |
|             |                    |        | PSO                | $6.0234 \times 10^4$      | 6.0281 × 10 <sup>4</sup>  | $6.0257 \times 10^4$     | 0.0013543                  |
| 20-Unit     |                    |        | Proposed EOA       | 6.2136 × 10 <sup>4</sup>  | 6.2151 × 10 <sup>4</sup>  | 6.2141 × 10 <sup>4</sup> | $4.74109 \times 10^{-4}$   |
|             |                    |        | GWO                | 6.2271×10 <sup>4</sup>    | 6.2308 × 10 <sup>4</sup>  | 6.2291 × 10 <sup>4</sup> | 0.0011424                  |
|             | Considering losses | Case 1 | DEA                | 6.2311×10 <sup>4</sup>    | 6.2364 × 10 <sup>4</sup>  | 6.2336 × 10 <sup>4</sup> | 0.0015726                  |
|             | _                  |        | PSO                | 6.2294×10 <sup>4</sup>    | 6.2357 × 10 <sup>4</sup>  | 6.2327 × 10 <sup>4</sup> | 0.0018873                  |
|             |                    |        | BSA <sup>48</sup>  | 6.24566 × 10 <sup>4</sup> | 6.2458 × 10 <sup>4</sup>  | $6.2457 \times 10^4$     | NA                         |
|             |                    |        | Proposed EOA       | 1.1865 × 10 <sup>5</sup>  | 1.1897 × 10 <sup>5</sup>  | 1.1876 × 10 <sup>5</sup> | 9.91527 × 10 <sup>-4</sup> |
|             |                    |        | GWO                | 1.1914×10 <sup>5</sup>    | 1.2186 × 10 <sup>5</sup>  | 1.2039 × 10 <sup>5</sup> | 0.0084653                  |
|             |                    | Case 1 | DEA                | 1.1998 × 10 <sup>5</sup>  | 1.3054 × 10 <sup>5</sup>  | 1.2427 × 10 <sup>5</sup> | 0.0300562                  |
|             |                    |        | PSO                | 1.1947 × 10 <sup>5</sup>  | 1.2843 × 10 <sup>5</sup>  | 1.2431 × 10 <sup>5</sup> | 0.0261402                  |
|             |                    |        | EMFO <sup>48</sup> | 1.2039 × 10 <sup>5</sup>  | 1.2049 × 10 <sup>5</sup>  | 1.2045 × 10 <sup>5</sup> | 4.02                       |
|             |                    |        | Proposed EOA       | 1.21408 × 10 <sup>5</sup> | 1.2213 × 10 <sup>5</sup>  | 1.2169 × 10 <sup>5</sup> | 0.0013968                  |
|             | Without losses     |        | GWO                | 1.2344×10 <sup>5</sup>    | 1.2947 × 10 <sup>5</sup>  | 1.2651 × 10 <sup>5</sup> | 0.0165992                  |
|             |                    | Case 2 | DEA                | 1.2468 × 10 <sup>5</sup>  | 1.3582 × 10 <sup>5</sup>  | 1.2937 × 10 <sup>5</sup> | 0.0337135                  |
|             |                    |        | PSO                | 1.2502 × 10 <sup>5</sup>  | 1.3746 × 10 <sup>5</sup>  | $1.3154 \times 10^{5}$   | 0.0378627                  |
|             |                    |        | Proposed EOA       | 0.66599 × 10 <sup>5</sup> | 0.66657 × 10 <sup>5</sup> | $0.6662 \times 10^{5}$   | $1.72744 \times 10^{-4}$   |
|             |                    |        | GWO                | 0.72978 × 10 <sup>5</sup> | 0.73816 × 10 <sup>5</sup> | $0.7351 \times 10^{5}$   | 0.0026167                  |
|             |                    | Case 3 | DEA                | 0.82389 × 10 <sup>5</sup> | 0.88519 × 10 <sup>5</sup> | $0.8563 \times 10^{5}$   | 0.0180595                  |
|             |                    |        | PSO                | 0.76434×10 <sup>5</sup>   | 0.82243 × 10 <sup>5</sup> | $0.7944 \times 10^{5}$   | 0.0183292                  |
|             |                    |        | Proposed EOA       | 2.3732 × 10 <sup>5</sup>  | 2.3779 × 10 <sup>5</sup>  | $2.3748 \times 10^{5}$   | 0.0013572                  |
|             |                    |        | GWO                | 2.3943 × 10 <sup>5</sup>  | 2.4108 × 10 <sup>5</sup>  | 2.4032 × 10 <sup>5</sup> | 0.0050623                  |
|             |                    | Case1  | DEA                | 2.4540 × 10 <sup>5</sup>  | 2.5347 × 10 <sup>5</sup>  | $2.4945 \times 10^{5}$   | 0.0243934                  |
|             |                    |        | PSO                | 2.5205 × 10 <sup>5</sup>  | 2.6079 × 10 <sup>5</sup>  | 2.5712 × 10 <sup>5</sup> | 0.0274695                  |
|             |                    |        | Proposed EOA       | 2.4584 × 10 <sup>5</sup>  | 2.4651 × 10 <sup>5</sup>  | 2.4608 × 10 <sup>5</sup> | 0.0021214                  |
|             |                    |        | GWO                | 2.5132 × 10 <sup>5</sup>  | 2.5387 × 10 <sup>5</sup>  | $2.5278 \times 10^{5}$   | 0.0074468                  |
|             | Without losses     | Case 2 | DEA                | 2.6017 × 10 <sup>5</sup>  | 2.6714 × 10 <sup>5</sup>  | 2.6395 × 10 <sup>5</sup> | 0.0203537                  |
|             |                    |        | PSO                | 2.5507 × 10 <sup>5</sup>  | 2.6108 × 10 <sup>5</sup>  | 2.5807 × 10 <sup>5</sup> | 0.0180165                  |
|             |                    |        | EMFO <sup>48</sup> | 2.4290 × 10 <sup>5a</sup> | 2.4325 × 10 <sup>5</sup>  | 2.4303 × 10 <sup>5</sup> | 51.651                     |
|             |                    |        | Proposed EOA       | 1.3335 × 10 <sup>5</sup>  | 1.3378 × 10 <sup>5</sup>  | 1.3342 × 10 <sup>5</sup> | 0.0012851                  |
|             |                    |        | GWO                | 1.3957 × 10 <sup>5</sup>  | 1.4216 × 10 <sup>5</sup>  | 1.4119 × 10 <sup>5</sup> | 0.0070898                  |
|             |                    | Case 3 | DEA                | 1.5562 × 10 <sup>5</sup>  | 1.5682 × 10 <sup>5</sup>  | 1.5637 × 10 <sup>5</sup> | 0.0037674                  |
|             |                    |        | PSO                | 1.4431×10 <sup>5</sup>    | 1.4521 × 10 <sup>5</sup>  | 1.4489 × 10 <sup>5</sup> | 0.0023845                  |
|             | I                  |        |                    | ļ                         | 1                         | l                        | 1                          |

**Scientific Reports** | (2025) 15:16989

| Test system |                | Case#  | Method       | Best                   | Worst                    | Average                  | Standard deviation |
|-------------|----------------|--------|--------------|------------------------|--------------------------|--------------------------|--------------------|
|             |                |        | Proposed EOA | $1.5625 \times 10^{6}$ | 1.5683 × 10 <sup>6</sup> | $1.5649 \times 10^{6}$   | 0.0017213          |
|             |                | Case 6 | GWO          | $1.6384 \times 10^{6}$ | 1.6817 × 10 <sup>6</sup> | 1.6653 × 10 <sup>6</sup> | 0.0062714          |
|             |                | Case o | DEA          | $1.6823 \times 10^{6}$ | 1.7531 × 10 <sup>6</sup> | 1.6291 × 10 <sup>6</sup> | 0.0075812          |
|             |                |        | PSO          | $1.6697 \times 10^{6}$ | 1.8143 × 10 <sup>6</sup> | $1.7512 \times 10^{6}$   | 0.0089176          |
|             |                |        | Proposed EOA | $1.6196 \times 10^{6}$ | $1.6318 \times 10^{6}$   | $1.6237 \times 10^{6}$   | 0.0025041          |
| 140-Unit    | Without losses | Case 7 | GWO          | $1.6871 \times 10^{6}$ | 1.7235 × 10 <sup>6</sup> | $1.7109 \times 10^{6}$   | 0.0083151          |
| 140-0111    | Without losses | Case / | DEA          | $1.7544 \times 10^{6}$ | 1.8565 × 10 <sup>6</sup> | $1.8211 \times 10^{6}$   | 0.0107253          |
|             |                |        | PSO          | $1.7460 \times 10^{6}$ | $1.8392 \times 10^{6}$   | $1.8153 \times 10^{6}$   | 0.0098374          |
|             |                |        | Proposed EOA | 457.0131               | 457.2624                 | 457.1532                 | 0.0013832          |
|             |                | Case 8 | GWO          | 464.9570               | 466.1691                 | 465.7225                 | 0.0051985          |
|             |                | Case o | DEA          | 468.3059               | 469.7316                 | 469.4208                 | 0.0074829          |
|             |                |        | PSO          | 469.0625               | 470.6139                 | 469.8957                 | 0.0089137          |

Table 26. Results of statistical analysis after 50 random trials for test systems. NA: Not available. <sup>a</sup> The exact value of total fuel cost is  $2.5558 \times 10^5$  \$/hr, which is higher than that reported in<sup>48</sup>.

| Test system | Case#                | Algorithms  | P-value                    |
|-------------|----------------------|-------------|----------------------------|
|             |                      | EOA vs. GWO | $2.2414 \times 10^{-8}$    |
|             | 1                    | EOA vs. PSO | 7.4613 × 10 <sup>-10</sup> |
|             |                      | EOA vs. DEA | $5.2661 \times 10^{-12}$   |
|             |                      | EOA vs. GWO | 2.1605 × 10 <sup>-8</sup>  |
| 10-unit     | 2                    | EOA vs. PSO | $1.3418 \times 10^{-11}$   |
|             |                      | EOA vs. DEA | $7.9688 \times 10^{-12}$   |
|             |                      | EOA vs. GWO | 3.2752 × 10 <sup>-7</sup>  |
|             | 3                    | EOA vs. PSO | $8.2913 \times 10^{-11}$   |
|             |                      | EOA vs. DEA | $7.9657 \times 10^{-13}$   |
|             |                      | EOA vs. GWO | 4.2852 × 10 <sup>-9</sup>  |
|             | (Without losses)     | EOA vs. PSO | $7.5362 \times 10^{-11}$   |
| 20          | (vvidious rosses)    | EOA vs. DEA | $7.3041 \times 10^{-11}$   |
| 20-unit     |                      | EOA vs. GWO | $5.1467 \times 10^{-10}$   |
|             | (Considering losses) | EOA vs. PSO | $6.7854 \times 10^{-12}$   |
|             | (Considering rosses) | EOA vs. DEA | $7.2139 \times 10^{-13}$   |
|             |                      | EOA vs. GWO | 5.5853 × 10 <sup>-8</sup>  |
|             | 1                    | EOA vs. PSO | $7.3178 \times 10^{-12}$   |
|             |                      | EOA vs. DEA | $6.8052 \times 10^{-13}$   |
|             |                      | EOA vs. GWO | 3.8192 × 10 <sup>-9</sup>  |
| 40-unit     | 2                    | EOA vs. PSO | $7.1207 \times 10^{-12}$   |
|             |                      | EOA vs. DEA | $8.3514 \times 10^{-12}$   |
|             |                      | EOA vs. GWO | 5.0501 × 10 <sup>-7</sup>  |
|             | 3                    | EOA vs. PSO | $4.1287 \times 10^{-11}$   |
|             |                      | EOA vs. DEA | $6.3514 \times 10^{-12}$   |
|             |                      | EOA vs. GWO | $5.5853 \times 10^{-11}$   |
|             | 1                    | EOA vs. PSO | $7.3178 \times 10^{-13}$   |
|             |                      | EOA vs. DEA | $6.8052 \times 10^{-14}$   |
|             |                      | EOA vs. GWO | $3.7521 \times 10^{-10}$   |
| 80-unit     | 2                    | EOA vs. PSO | $5.6274 \times 10^{-13}$   |
|             |                      | EOA vs. DEA | $6.7359 \times 10^{-14}$   |
|             |                      | EOA vs. GWO | $4.8546 \times 10^{-9}$    |
|             | 3                    | EOA vs. PSO | $6.3587 \times 10^{-11}$   |
|             |                      | EOA vs. DEA | $7.1085 \times 10^{-11}$   |
|             |                      | EOA vs. GWO | $8.1672 \times 10^{-10}$   |
|             | 1                    | EOA vs. PSO | $6.5931 \times 10^{-14}$   |
|             |                      | EOA vs. DEA | $5.8916 \times 10^{-13}$   |
|             |                      | EOA vs. GWO | 5.7213 × 10 <sup>-9</sup>  |
| 140-unit    | 2                    | EOA vs. PSO | $7.1158 \times 10^{-13}$   |
|             |                      | EOA vs. DEA | $9.0734 \times 10^{-12}$   |
|             |                      | EOA vs. GWO | 6.5193 × 10 <sup>-9</sup>  |
|             | 3                    | EOA vs. PSO | $5.8573 \times 10^{-11}$   |
|             |                      | EOA vs. DEA | $7.1842 \times 10^{-12}$   |

Table 27. Results of Wilcoxon signed-rank test after 50 random trials for test systems.

## Data availability

All data generated or analyzed during this study are included in this published article.

Received: 13 January 2025; Accepted: 29 April 2025

Published online: 16 May 2025

#### References

- 1. Chen, G., Ren, J. & Fang, E. N. Distributed Finite-time Economic Dispatch of a Network of Energy Resources, *IEEE Trans. Smart Grid*, Vol. 8, No. 2, pp. 822–832, March (2017). https://doi.org/10.1109/TSG.2016.2516017
- 2. Yang, Z., Xiang, J. & Li, Y. Distributed consensus-based supply-demand balance algorithm for economic dispatch problem in a smart grid with switching graph. *IEEE Trans. Ind. Electron.***64** (2), 1600–1610. https://doi.org/10.1109/TIE.2016.2615037 (February 2017).
- Rao, S. S. Engineering Optimization: Theory and Practice, John Wiley & Sons: Hoboken, NJ, USA, October (2019). https://doi.org/ 10.1002/9781119454816

- 4. Castro, L. M., González-Cabrera, N., Guillen, D., Tovar-Hernández, J. H. & Gutiérrez-Alcaraz, G. Efficient method for the optimal economic operation problem in Point-to-Point VSC-HVDC connected AC grids based on Lagrange multipliers. *Electr. Power Syst. Res.* 187, 1–12. https://doi.org/10.1016/j.epsr.2020.106493 (October 2020).
- Gihare, S. & Pachori, A. An analysis of optimization based algorithms economic load dispatch in power systems. Int. J. Adv. Eng. Manage. 6 (8), 116–121. https://doi.org/10.35629/5252-0608116121 (August 2024).
- Nishad, V. & Singh, O. Lambda Iteration Technique for Economic Load Dispatch Problem, Advanced Eng. Opt. Through Intelligent Tech., pp. 637–645, April (2023). https://doi.org/10.1007/978-981-19-9285-8\_60
- 7. Tijani, M. A., Adepoju, G. A., Sanusi, M. A., Bamikefa, I. A. & Hamzatc, K. A. Economic dispatch of Nigeria power system using interior point method. *Premier J. Eng. Appl. Sci.* 1 (2), 104–113 (2020).
- 8. Bai, C., Li, Q., Zhou, W., Li, B. & Zhang, L. Fast distributed gradient descent method for economic dispatch of microgrids via upper bounds of second derivatives. *Energy Rep.*8, 1051–1060. https://doi.org/10.1016/j.egyr.2022.08.110 (November 2022).
- 9. Qin, J., Wan, Y., Yu, X. & Kang, Y. A Newton Method-Based Distributed Algorithm for Multi-Area Economic Dispatch, *IEEE Trans. Power Syst.*, Vol. 35, No. 2, pp. 986–996, March (2020). https://doi.org/10.1109/TPWRS.2019.2943344
- Sindt, J., Santos, A., Pfetsch, M. E. & Steinke, F. Evaluation of Multiparametric Linear Programming for Economic Dispatch under Uncertainty, 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), pp. 1–5, 18–21 October, (2021). https://doi.org/10.1109/ISGTEurope52324.2021.9640159
- Hossain, M. T., Hossain, M. A. & Adnan, M. A. A Confidentiality-Preserving Distributed Linear Programming Model for Solving Large-Scale Economic Dispatch Problems, Proceedings of the 11th Int. Conf. on Networking, Syst., and Security, pp. 8–15, January (2025). https://doi.org/10.1145/3704522.3704528
- 12. Al-Subhi, A. Dynamic economic load dispatch using linear programming and Mathematical-Based models. *IEEE Trans. Power Syst.* **9** (3), 606–614. https://doi.org/10.18280/mmep.090307 (June 2022).
- Sasson, A. M. Nonlinear programming solutions for load-flow, minimum-loss, and economic dispatching problems, IEEE Trans. Power Syst., Vol. PAS-88, No. 4, pp. 399–409, April (1969). https://doi.org/10.1109/TPAS.1969.292460
- Nanda, J., Hari, L. & Kothari, M. L. Economic emission load dispatch with line flow constraints using a classical technique, IEE
   Proceedings Generation, Transmission and Distribution, Vol. 141, No. 1, pp. 1–10, January (1994). https://doi.org/10.1049/ip-gtd: 19949770
- 15. Cao, J. et al. A low-carbon economic dispatch method for regional integrated energy system based on multi-objective chaotic artificial hummingbird algorithm. Sci. Rep.14 (4129), 1–25. https://doi.org/10.1038/s41598-024-54733-2 (February 2024).
- Bakos, C. & Giakoumis, A. Numerical algorithm for environmental/economic load dispatch with emissions constraints. Sci. Rep. 14 (3327), 1–10. https://doi.org/10.1038/s41598-024-53291-x (February 2024).
- 17. Said, M., Houssein, E. H., Deb, S., Ghoniem, R. M. & Elsayed, A. G. Economic load dispatch problem based on search and rescue optimization algorithm. *IEEE Access.* 10, 47109–47123. https://doi.org/10.1109/ACCESS.2022.3168653 (April 2022).
- 18. Chena, X. Novel Dual-population Adaptive Differential Evolution Algorithm for Large-Scale Multi-fuel Economic Dispatch with Valve-point Effects, *Energy*, Vol. 203, pp. 1–34, 117874, July (2020). https://doi.org/10.1016/j.energy.2020.117874
- 19. Goudarzi, A., Li, Y. & Xiang, J. A hybrid Non-linear Time-varying Double-weighted particle swarm optimization for solving Non-convex combined environmental economic dispatch problem. *Appl. Soft Comput.*86, 1–34. https://doi.org/10.1016/j.asoc.2019.10 5894 (December 2019).
- Chopra, N., Brar, Y. S. & Dhillon, J. S. An improved particle swarm optimization using Simplex-based deterministic approach for Economic-emission power dispatch problem. *Electr. Eng.* 103, 1347–1365. https://doi.org/10.1007/s00202-020-01164-7 (January 2021).
- 21. Hao, W., Wang, J., Li, X., Song, H. & Bao, Y. Probability distribution arithmetic optimization algorithm based on variable order penalty functions to solve combined economic emission dispatch problem. *Appl. Energy.* 316, 1–24. https://doi.org/10.1016/j.apenergy.2022.119061 (June 2022).
- 22. Lai, W. et al. Multi-objective membrane search algorithm: A new solution for economic emission dispatch. *Appl. Energy.* **326**, 1–22. https://doi.org/10.1016/j.apenergy.2022.119969 (November 2022).
- 23. Singh, O. V. & Singh, M. A comparative analysis on economic load dispatch problem using soft computing techniques. *Int. J. Softw. Sci. Comput. Intell.* 12 (2), 50–73. https://doi.org/10.4018/ijssci.2020040104 (June 2020).
- 24. Basetti, V. et al. Economic Emission Load Dispatch Problem with Valve-Point Loading Using a Novel Quasi-Oppositional-Based Political Optimizer, *Electronics*, **10**, 1–21, 016, October 2021. https://doi.org/10.3390/electronics10212596.
- 25. Ismaeel, A. A. et al. Performance of Osprey Optimization Algorithm for Solving Economic Load Dispatch Problem, *Mathematics*, Vol. 11, 4107, pp. 1–19, September (2023). https://doi.org/10.3390/math11194107
- 26. Khalil, M. I. K. et al. A Multi-objective optimisation approach with improved Pareto-optimal solutions to enhance economic and environmental dispatch in power systems. *Sci. Rep.* 14, 1–21. https://doi.org/10.1038/s41598-024-62904-4 (June 2024).
- 27. Kaur, A., Singh, M. & Dhillon, J. S. Oppositionally driven crisscross gravitational search approach for economic load dispatch. Electr. Eng. 1–39. https://doi.org/10.1007/s00202-024-02905-8 (January 2025).
- Tiwari, P., Mishra, V. N. & Parouha, R. P. Optimization of economic dispatch using updated differential evolution algorithm. Int. J. Inf. Tecnol. 16, 2315–2329. https://doi.org/10.1007/s41870-024-01730-3 (February 2024).
- 29. Li, Y. A novel constraints handling method for economic dispatch with Valve–Point effects. *J. Electr. Eng. Technol.* 19, 2875–2887. https://doi.org/10.1007/s42835-023-01739-x (December 2023).
- 30. Ogunfowora, A. R. et al. Solving the economic dispatch problem of a Two-area power system considering transmission constraint using Semi-Definite programming. *Int. J. Allied Res. Eng. Techn.* 15 (5), 1–10. https://doi.org/10.5281/zenodo.11220277 (May 2024)
- 31. Secui, D. C. & Secui, M. L. Social small group optimization algorithm for Large-scale economic dispatch problem with Valve-point effects and Multi-fuel sources. *Appl. Intell.* 57, 8296–8346. https://doi.org/10.1007/s10489-024-05517-8 (June 2024).
- 32. Wang, Y., Yu, X. & Zhang, W. An improved reinforcement Learning-based differential evolution algorithm for combined economic and emission dispatch problems. *Eng. Appl. Artif. Intell.*, **140**, Part C, pp. 1–23, January 25. https://doi.org/10.1016/j.engappai.202 4.109709
- 33. Luo, W., Yu, X. & Wei, W. Solving combined economic and emission dispatch problems using reinforcement Learning-based adaptive differential evolution algorithm. *Eng. Appl. Artif. Intell.* 126, 1–16. https://doi.org/10.1016/j.engappai.2023.107002 (November 2023)
- 34. Barbosa-Ayala, O. I., Montañez-Barrera, J. A. & Damian-Ascencio, C. E. at al., Solution to the Economic Emission Dispatch Problem Using Numerical Polynomial Homotopy Continuation, energies, Vol. 13, 4281, pp. 1–15, August (2020). https://doi.org/10.3390/en13174281
- 35. Dashtdar, M. et al. Solving the environmental/economic dispatch problem using the hybrid FA-GA Multi-Objective algorithm. Energy Rep.8, 13766–13779. https://doi.org/10.1016/j.egyr.2022.10.054 (November 2022).
- 36. Wang, W., Xiong, G. & Xu, S. Suganthan, Large-Scale power system Multi-area economic dispatch considering valve point effects with comprehensive learning differential evolution. *Swarm Evol. Comput.*89, 1–19. https://doi.org/10.1016/j.swevo.2024.101620 (August 2024).
- Li, Y. et al. ., arithmetic optimization algorithm with Three-dimensional chaotic mapping in spherical coordinate system for combined economic emission dispatch problem. Appl. Energy. 380, 1–28. https://doi.org/10.1016/j.apenergy.2024.124953 (February 2025).

- 38. Zaoui, S. Belmadani, solution of combined economic and emission dispatch problems of power systems without penalty. *Appl. Artif. Intell.* **36** (1), 45–66. https://doi.org/10.1080/08839514.2021.1976092 (September 2021).
- 39. Xia, A., Wu, X. & Bai, Y. Hybrid MHHO-DE algorithm for economic emission dispatch with Valve-Point effect. *Arab. J. Sci. Eng.* 46, 9399–9411. https://doi.org/10.1007/s13369-020-05308-6 (January 2021).
- Bhattacharya, A. & Chattopadhyay, P. Solving complex economic load dispatch problems using Biogeography-based optimization. *Expert Syst. Appl.* 37 (5), 3605–3615. https://doi.org/10.1016/j.eswa.2009.10.031 (May 2010).
- 41. Muraleedharan, S., Babu, C. A. & Sasidharanpillai, A. K. Chi-square mutated Quantum-behaved PSO algorithm for combined economic and emission dispatch. Evol. Intell.17, 3961–3984. https://doi.org/10.1007/s12065-024-00966-z (August 2024).
- 42. Xu, X. et al. Multi-objective Learning Backtracking Search Algorithm for Economic Emission Dispatch Problem, Soft Comput., Vol. 25, pp. 2433–2452, Octobdr., (2020). https://doi.org/10.1007/s00500-020-05312-w
- Verma, P. & Parouha, R. P. An innovative hybrid algorithm for solving combined economic and emission dispatch problems. Soft Comput. 26, 12635–12666. https://doi.org/10.1007/s00500-022-07262-x (July 2022).
- 44. Wang, X., Zhong, H., Zhang, G., Ruan, G. & He, Y. Adaptive Look-Ahead economic dispatch based on deep reinforcement learning. *Appl. Energy.* 353, 1–15. https://doi.org/10.1016/j.apenergy.2023.122121 (January 2024).
- Yin, Y. & Sun, Z. Multi-Layer distributed Multi-Objective consensus algorithm for Multi-Objective economic dispatch of Large-Scale Multi-Area interconnected power systems. *Appl. Energy.* 300, 1–17. https://doi.org/10.1016/j.apenergy.2021.117391 (October 2021).
- 46. Deb, S. et al. Performance of turbulent flow of water optimization on economic load dispatch problem. *IEEE Access.***9**, 77882–77893. https://doi.org/10.1109/ACCESS.2021.3083531 (May 2021).
- Alrowais, F. et al. Modeling of combined economic and emission dispatch using improved sand Cat optimization algorithm. Computers Mater. Continua. 75 (3), 6145–6160. https://doi.org/10.32604/cmc.2023.038300 (April 2023).
- 48. Elsakaan, A., El-Sehiemy, R., Kaddah, S. & Elsaid, M. An enhanced Moth-flame optimizer for solving Non-smooth economic dispatch problems with emissions. *Energy*157, 1063–1078. https://doi.org/10.1016/j.energy.2018.06.088 (August 2018).
- Rizk-Allah, R., El-Sehiemy, R. & Wang, R. A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution. *Appl. Soft Comput.* 63, 206–222. https://doi.org/10.1016/j.asoc.2017.12.002 (February 2018).
- 50. Modiri-Delshad, M. & Rahim, N. A. Solving Non-convex economic dispatch problem via Backtracking search algorithm. Energy77, 372–381. https://doi.org/10.1016/j.energy.2014.09.009 (December 2018).
- Lin, C., Liang, H. & Pang, A. A fast Data-Driven optimization method of Multi-Area combined economic emission dispatch. Appl. Energy. 337, 1–13. https://doi.org/10.1016/j.apenergy.2023.120884 (May 2023).
- Ghasemi, M., Taghizadeh, M., Ghavidel, S. & Abbasian, A. Colonial competitive differential evolution: an experimental study for optimal economic load dispatch. *Appl. Soft Comput.*, 40, pp. 342–363, March 2016. https://doi.org/10.1016/j.asoc.2015.11.033
- 53. Parouha, R. P. & Das, K. N. A novel hybrid optimizer for solving economic load dispatch problem. *Int. J. Electr. Power Energy Syst.*, 78, pp. 108–126, June 2016. https://doi.org/10.1016/j.ijepes.2015.11.058
- 54. Parouha, R. P. & Das, K. N. DPD: an intelligent parallel hybrid algorithm for economic load dispatch problems with various practical constraints. Expert Syst. Appl.63, 295–309. https://doi.org/10.1016/j.eswa.2016.07.012 (November 2016).
- practical constraints. Expert Syst. Appr. 65, 295–305. https://doi.org/10.1016/j.eswa.2016.07.012 (November 2016).

  55. Marzbani, F. & Abdelfatah, A. Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review,
- Energies, Vol. 17, No. 3, pp. 1–31, January (2024). https://doi.org/10.3390/en17030550
   Khlaif, R. Z. & Atyia, T. H. Comparative analysis of optimization approaches for combined economic emission Dispatch- A comprehensive review. Eng. Res. Express. 6 (3), 1–18. https://doi.org/10.1088/2631-8695/ad7783 (September 2024).
- 57. Wang, H. et al. April, A Review on Economic Dispatch of Power System Considering Atmospheric Pollutant Emissions, *Eng. Res.*
- Express, Vol. 17, No. 8, pp. 1–18, 117391, (2024). https://doi.org/10.3390/en17081878

  58. Verma, D., Soni, J. & Bhattacharjee, K. A novel artificial electric field strategy for economic load dispatch problem with renewable penetration. Evol. Intell.17, 3593–3608. https://doi.org/10.1007/s12065-024-00946-3 (July 2024).
- 59. Soni, J. & Bhattacharjee, K. Equilibrium optimiser for the economic load dispatch problem with multiple fuel option and renewable sources. *Int. J. Ambient Energy.* 44 (1), 2386–2397. https://doi.org/10.1080/01430750.2023.2237018 (July 2023).
- Soni, J. & Bhattacharjee, K. A Multi-objective economic emission dispatch problem in microgrid with high penetration of renewable energy sources using equilibrium optimizer. *Electr. Eng.*107, 403–418. https://doi.org/10.1007/s00202-024-02526-1
- Soni, J. & Bhattacharjee, K. Equilibrium optimizer for Multi-objective dynamic economic emission dispatch integration with Plugin electric vehicles and renewable sources. *Multiscale Multidiscip Model. Exp. Des.*7, 2683–2699. https://doi.org/10.1007/s41939-023-00346-7 (February 2024).
- 62. Soni, J. & Bhattacharjee, K. Integrating renewable energy sources and electric vehicles in dynamic economic emission dispatch: an Oppositional-based equilibrium optimizer approach. *Eng. Optimiz.* **56** (11), 1845–1879. https://doi.org/10.1080/0305215X.2023.2 285896 (January 2024).
- 63. Soni, J. & Bhattacharjee, K. Multi-objective dynamic economic emission dispatch integration with renewable energy sources and Plug-in electrical vehicle using equilibrium optimizer. *Environ. Dev. Sustain.* 26, 8555–8586. https://doi.org/10.1007/s10668-023-0 3058-7 (March 2023).
- Faramarzi, A., Heidarinejad, M., Stephens, B. & Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Syst. 191, 105190, https://doi.org/10.1016/j.knosys.2019.105190 (March 2020).
- 65. Abdel-Basset, M., Chang, V. & Mohamed, R. A novel equilibrium optimization algorithm for Multi-thresholding image segmentation problems. *Neural Comput. Appl.* 33, 10685–10718. https://doi.org/10.1007/s00521-020-04820-y (March 2020).
- 66. Rabehia, A. et al. Optimal Estimation of Schottky diode parameters using a novel optimization algorithm: equilibrium optimizer. Superlattices Microstruct. 146, 106665. https://doi.org/10.1016/j.spmi.2020.106665 (July 2020).
   67. Abou El-Ela, A. A., El-Sehiemy, R. A., Shaheen, A. M., Wahbi, W. A. & Mouwafi, M. T. A Multi-objective equilibrium optimization
- 67. Abou El-Ela, A. A., El-Sehiemy, R. A., Shaheen, A. M., Wahbi, W. A. & Mouwah, M. T. A Multi-objective equilibrium optimization for optimal allocation of batteries in distribution systems with lifetime maximization. *J. Energy Storage*. 55, 1–20. https://doi.org/10.1016/j.est.2022.105795 (November 2022).
- Abou El-Ela, A. A., El-Sehiemy, R. A., Shaheen, A. M., Wahbi, W. A. & Mouwafi, M. T. PV and battery energy storage integration in distribution networks using equilibrium algorithm. *J. Energy Storage*. 42, 1–18. https://doi.org/10.1016/j.est.2021.103041 (October 2021)
- 69. Shaheen, A., Elsayed, A., El-Sehiemy, R. & Abdelaziz, A. Equilibrium optimization algorithm for network reconfiguration and distributed generation allocation in power systems. *Appl. Soft Comput.***98**, **106867**, https://doi.org/10.1016/j.asoc.2020.106867 (January 2021).
- Abdul-hamied, D., Shaheen, A., Salem, W., Gabr, W. & El-sehiemy, R. Equilibrium optimizer based multi dimensions operation of hybrid AC/DC grids. Alex Eng. J.59, 4787–4803. https://doi.org/10.1016/j.aej.2020.08.043 (December 2020).
- 71. Su, C. & Lin, C. New approach with a Hopfield modeling framework to economic dispatch. *IEEE Trans. Power Syst.* 15 (2), 541–545. https://doi.org/10.1109/59.867138 (May 2000).
- 72. Park, J., Jeong, Y., Shin, J. & Lee, K. An improved particle swarm optimization for nonconvex economic dispatch problems. *IEEE Trans. Power Syst.* 25 (1), 156–166. https://doi.org/10.1109/TPWRS.2009.2030293 (February 2010).
- 73. Mirjalili, S., Mirjalili, S. M. & Lewis, A. Grey Wolf optimizer. Adv. Eng. Softw.69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 (March 2014).

#### **Author contributions**

AE and MT wrote the main manuscript text, software, and AA supervisor, RA analysis. All authors reviewed the manuscript.

#### **Funding**

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

### **Declarations**

## Competing interests

The authors declare no competing interests.

# Additional information

Correspondence and requests for materials should be addressed to R.A.E.-S.

Reprints and permissions information is available at www.nature.com/reprints.

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="https://creativecommons.org/licenses/by/4.0/">https://creativecommons.org/licenses/by/4.0/</a>.

© The Author(s) 2025