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Abstract: MicroRNAs (miRNAs) are a family of short, noncoding RNAs that can regulate gene
expression levels of over half of the human genome. Previous studies on the role of miRNAs in
cancer showed overall widespread downregulation of miRNAs as a hallmark of human cancer,
though individual miRNAs can be both tumor suppressive and oncogenic, and cancer genes are
speculated to be more targeted by miRNA. However, the extents to which oncogenes and tumor
suppressor genes (TSG) are controlled by miRNA have not been compared. To achieve this goal, we
constructed lists of oncogenes and TSGs and compared them with each other, and with the whole
protein-coding gene population, in terms of miRNA binding sites distribution and expression level
changes upon genetic disruption of miRNA production. As expected, the results show that cancer
gene mRNAs anchor more miRNA binding sites, and are under a higher degree of miRNA-mediated
repression at both mRNA abundance and translation efficiency levels than the whole protein-coding
gene population. Importantly, on average, TSG mRNAs are more highly targeted and regulated by
miRNA than oncogene mRNAs. To the best of our knowledge, this is the first comparison of miRNA
regulation of oncogenes and TSGs.

Keywords: microRNA; miRNA binding sites; miRNA-regulated repression; tumor suppressor
genes; oncogenes

1. Introduction

MicroRNAs (miRNAs) are small (17–25 nucleotide (NT); on average 22 NT),
endogenously-initiated, single-stranded noncoding RNAs that exist ubiquitously in an-
imals, plants, and unicellular eukaryotes as key post-transcriptional regulators of gene
expression [1–4]. In the canonical pathway of miRNA biogenesis in animals, miRNA genes
are transcribed by RNA polymerase II (Pol II) as long primary transcripts (pri-miRNAs),
processed to hairpin-structured precursor miRNAs (pre-miRNAs) by the nuclear Micropro-
cessor complex (comprising Drosha and DGCR8), and then exported by exportin 5 from
the nucleus into the cytoplasm [4]. In the cytoplasm, pre-miRNAs are cleaved by Dicer1 to
double-stranded RNA duplexes, and subsequently loaded into Argonaute (AGO) proteins
to form the RNA-induced silencing complex (RISC). The passenger strand of the miRNA
duplex will be cleaved quickly, and the mature RISC is finally generated, comprising the
one-stranded mature miRNA and AGO proteins. The miRNA in RISC guides target mRNA
recognition through base-pairing with partially complementary sequences, mostly in the
3′-untranslated region (3′-UTR) of target mRNAs. The AGO proteins regulate translational
repression and/or mRNA degradation by recruiting other effector proteins [5,6].
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Partial complementarity between a miRNA and its target mRNAs’ UTR is sufficient
for the miRNA to regulate the target mRNAs. Many mRNAs’ UTRs can have multiple
conserved complementary sequence segments for different miRNA seeds; thus, one mRNA
can have target sites for tens of miRNAs, and one miRNA can potentially regulate sev-
eral hundreds of target mRNAs based on the computational prediction of miRNA target
sites [7–11]. Over 60% of human protein-coding genes are predicted to have conserved
miRNA target sites in their 3′-UTR [12]. These miRNA-target mRNA interactions form
complex regulatory networks in cellular development, differentiation and homeostasis [13].
Therefore, it is not surprising that miRNAs regulation is involved in many key biological
processes, such as animal development [14], immune response [15], neuronal function [16]
and metabolic homoeostasis [17].

Dysregulation of miRNA biogenesis and/or function has been associated with the
development and progression of numerous human diseases in the past decades. Specif-
ically, studies on miRNA and cancers are growing explosively [18,19]. Many miRNAs
were found to be expressed in human tumors differentially from normal tissues, and
these tumor-associated miRNAs preferentially regulate protein-coding tumor suppres-
sors and oncogenes [20,21]. This indicated that deregulation of miRNA interactions with
cancer genes’ mRNAs might be one critical pathway leading to tumorigenesis. One specu-
lated mechanism for miRNA association with cancer is that overexpression of oncogenic
miRNAs, and/or deletion or silencing of tumor suppressive miRNAs promotes cancer
pathogenesis by negatively regulating target tumor suppressor genes (TSG) and oncogenes,
respectively [22,23], and this mechanism has been validated in many individual miRNA’s
animal or in vitro experiments [24].

Nevertheless, the role of a specific miRNA in tumor initiation and development is
often ambiguous due to the complexity of the miRNA–mRNA target relationship and
the involvement of individual miRNA generally in multiple cellular pathways. Different
families of miRNAs can show either oncogenic activity through repression of TSGs, or
tumor suppressive activity by inhibiting the expression of oncogenes that control cell
proliferation, differentiation or apoptosis. That is, one specific miRNA can be considered
oncogenic in one scenario and tumor suppressive in another [25]. It is not feasible to
experimentally study the whole set of miRNA interaction with target cancer gene mRNAs
in any given single cancer type, as it is prohibitedly time-consuming and expensive.

However, one overall observed trend is the widespread downregulation of miRNAs,
generally considered a hallmark of human cancer [26]. Moreover, the development of
next-generation sequencing (NGS) has accumulated massive amounts of sequencing data,
which made it possible to analyze the interaction between cancer genes and miRNAs on a
genome-wide scale. Thus, in this study, instead of focusing on individual miRNA–mRNA
relationships, we performed an overall comparison of protein-coding genes, oncogenes,
and TSGs. We utilized available miRNA target prediction resources and global gene
expression data upon genetic disruption of miRNA production. We also assembled a
group of well-constructed human cancer genes. Subsequently, we were able to investigate
whether oncogenes or TSGs are more miRNA targeted—a major question complementing
the overall downregulation of miRNA in cancer. Thus, the analysis fills a gap in the roles of
miRNA in cancer.

2. Materials and Methods
2.1. Evolutionarily Conserved miRNA Binding Sites

The set of evolutionarily conserved human miRNA binding sites was developed by
Agarwal et al. using context++ model prediction and downloaded from the TargetScan
database 7.1 (June 2016 release) [10]. HGNChelper R package (version 0.8.1) and updated
reference map via function getCurrentHumanMap were used to update obsolete gene
symbols and historical aliases to current gene symbols maintained by The HUGO Gene
Nomenclature Committee (HGNC) database [27]. The dataset contains 116,371 predicted
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miRNA binding sites in the 3′-UTRs of 12,436 human genes. Overlapping sites were
counted as one site in the current analysis.

2.2. Comparative RNA-seq Analysis of Wildtype and Dicer1 Knockout (KO) Cells

As discussed in the Introduction, Dicer1 is a key RNase that generates mature miR-
NAs. Dicer1 KO cells should be miRNA production deficient and a good tool for studying
miRNA-mediated mRNA regulation. Fortunately, Zheng et al. had studied the transcrip-
tome differences between wild type and Dicer1 deficient mouse embryonic stem cells
(mESCs) using the RNA-seq analysis [28]. Their data were deposited in the Gene Ex-
pression Omnibus (GEO) under accession number GSE55338. In their experiment, total
polyadenylated RNA was isolated from WT (two biological replicates) and Dicer1-KO
(three biological replicates) mESCs, and sequenced on the Hi-Seq 2000 Illumina platforms.
DESeq29 was used to normalize reads between samples. We downloaded the dataset,
selected those mRNAs that have at least two replicates with >1 normalized reads, and
calculated the log2 fold change between WT and Dicer1-KO cells. Gene identifiers (ID)
were converted to gene symbols and annotated with biotype by accessing the Ensembl
database (release 104) via the R package BiomaRt (version 2.46.3) [29]. Only protein-coding
genes were selected for expression analysis in the current study.

2.3. Comparative Polysome Profiling Analysis of Wildtype and Dicer1 KO HCT116 Cells

Polysome profiling analysis measures mRNA polysome association, i.e., translation ac-
tivity. Fortunately, we have previously performed polysome profiling analysis of wild type
and Dicer 1 KO HCT116 human cells. Detailed experimental information was described
previously [30]. Briefly, cells were lysed. The nucleus was removed by microcentrifuga-
tion. The cytoplasmic extract was loaded on top of a 10–60% sucrose gradient, and then
centrifuged in a Beckman SW41 rotor at 390,000× g at 4 ◦C for 2 h. The gradient was
fractionated into 25 fractions. Light polysomes fractions (2- to 9-mer) and heavy polysomes
fractions (10-mer or more) were collected, respectively, and associated RNA was extracted.
One sample per condition was sequenced by RNA-seq on the BGISEQ-500 high-throughput
sequencing platform. The sequencing data were deposited into GEO with the accession
number GSE134818. The counts were converted to reads per kilobase of transcript, per
million mapped reads (RPKM). To decrease the sequencing noise of low expression genes,
only those genes whose RPKM > 0 for all samples and at least one sample’s RPKM > 1
were retained for the analysis in the current study. Protein-coding genes were identified
and screened via the R package BiomaRt (version 2.46.3, Ensembl release 104), and their
expression data were applied in the current study.

2.4. Compilation of Cancer Genes and miRNA Binding Sites, and Analysis of mRNA Polysome
Association (Translation Activity) in miRNA-Production-Deficient Cells

To construct the cancer gene list, we adopted the approach by Sack et al. [31]. Briefly,
as Sack et al. did, we integrated three previously published gene lists. First, Davoli et al.
(2013) developed the Tumor Suppressor and Oncogenes (TUSON) Explorer bioinformat-
ics method, and analyzed >8200 tumors of all types (such as Gliobloastoma, Low Grade
Glioma, Breast Adenocarcinoma, Colorectal Adenocarcinoma, etc. For details of all ana-
lyzed tumor types, see their Table S1). They predicted both tissue specific cancer genes and
pan-cancer genes (For detailed genes list, tumor types and TUSON Prediction scores, see
their Table S4A,B) [32]. Second, Volgelstein et al. (2013) evaluated ~140 genes whose genetic
alternations can “drive” tumorigenesis based on the genome-wide sequencing studies of
3284 tumors in representative human cancers (For detailed lists, see their Table S2A,B) [33].
Third, Futreal et al. (2004) compiled a list of cancer genes from published literature of
genes that were mutated and causally implicated in cancer development (For detailed
gene list and tumor types, see their Supplementary information S1) [34]. Our compiled
oncogene list consists of the following: top 205 TUSON Explorer predicted pan-cancer onco-
genes with q-value < 0.18 [32], 54 Mut-driver and 10 amplified driver oncogenes [33], and
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227 dominantly acting genes [34]. Our compiled TSG list consists of the following: top
301 TUSON Explorer predicted pan-cancer TSGs with q-value < 0.18 [32], 71 Mut-driver
and 3 homozygously deleted TSGs [33], and 64 recessively acting genes [34]. Gene symbols
were checked by the HGNChelper R package. Upon removal of redundancy among the
three sources, the list contains 409 oncogenes and 324 TSGs (Table S1A,B).

The data of predicted miRNA binding sites among 733 cancer genes were obtained
from TargetScan database 7.1, and the distribution pattern was compared with total
protein-coding genes. The mRNA expression data of the whole genome were obtained
from GSE55338, and the expression changes of cancer genes between wildtype and Dicer
knockout mESCs were compared with the expression changes of total non-cancer protein-
coding genes.

For the comparative polysome profiling analysis [30], the HCT116 used in the analysis
is a widely used human colorectal carcinoma cell line. Thus, we incorporated the colorectal-
specific oncogenes and TSGs predicted by TUSON into this analysis [32]. This cancer
gene list contains 413 oncogenes and 415 TSGs (Table S1C,D). Polysome association was
compared in a pairwise manner among the cancer genes, the oncogenes, the TSGs and
the total non-cancer protein-coding genes. The comparison of gene groups, as opposed to
individual genes under different conditions, offset the lack of biological replicates in the
polysome profiling analysis.

2.5. Computer Software

The open source software package R (version 4.0.2) was used for data analysis and
plotting. The Mann-Whitney-Wilcoxon tests were performed with the wilcox.test method
since the expression data were non-normal.

2.6. Overall Study Design

The overall design or workflow of this analysis is illustrated in Figure 1. The blue
textboxes and arrows denote comparative analysis of miRNA binding site distribution in
the whole protein-coding gene population, the cancer genes, the oncogenes and TSGs. The
orange textboxes and arrows denote the analysis of wild-type versus Dicer1 knockout mice
RNA-seq dataset, and the green textboxes and arrows denote the analysis of wild-type
versus Dicer1knockout polysome profiling dataset. Cancer genes are excluded from the
general protein-coding gene population in our analysis.
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Figure 1. Schematic representation of the experimental design for the comparison of miRNA-
mediated gene expression repression of oncogenes and TSGs.
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3. Results
3.1. Distribution of miRNA Binding Sites among Cancer Genes

Our previous study has shown that conserved miRNA binding sites distribute un-
evenly among human transcriptome, following the so-called scale-free distribution that is
applicable to many molecular and cellular phenomena [35–37]. Only a small number of
mRNAs contain extraordinarily large numbers of miRNA binding sites, and a small number
of miRNAs can target a large number of mRNAs [38]. The uneven distribution pattern of
predicted miRNA target sites is also found in the mouse genome [39], and orthologous
human and mouse mRNA have highly similar miRNA target sites counts [30].

The TSGs and oncogenes investigated in the current study function in many known
cellular pathways and are enriched for hubs within the human gene network [32]. Hub
genes are much more highly connected than average, and their mRNAs tend to possess
longer 3′ UTR and higher density of miRNA target sites [40]. Therefore, we speculated that
cancer genes have more enriched miRNA binding sites than average protein-coding genes,
and the results confirmed our speculation.

About 60% of all the whole protein-coding gene population have at least one miRNA
target site. This percentage increases to over 80% (598 of 733) among cancer genes. The
distribution pattern of predicted miRNA target sites among these cancer genes is similarly
uneven as that of the whole protein-coding gene population. However, cancer genes have
higher portions of highly targeted genes than general protein-coding genes (Figure 2A,B).
Furthermore, we compared the distribution of predicted miRNA target sites in oncogenes
and TSGs. Figure 3A,B show that TSGs are more enriched for miRNA sites, having higher
portions of genes that harbor more than 20 miRNA targeted sites than oncogenes.
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Figure 2. Distribution of miRNA binding sites among general protein-coding genes and the cancer
genes. The number of miRNA target sites among 733 cancer genes (409 oncogenes and 324 TSGs, see
Materials and Methods), and 733 general protein-coding genes randomly selected from the human
genome were obtained from TargetScan 7.1 database as described before. The histograms of miRNA
binding sites number are shown in (A) log-log plot and (B) linear plot.
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Figure 3. Distribution of miRNA binding sites among general protein-coding genes, the onco-
genes and the TSGs. The number of miRNA target sites among 409 oncogenes, 324 TSGs and
409 protein-coding genes randomly selected from the human genome were obtained from TargetScan
7.1 database as described before. The histograms of miRNA binding sites number are shown in (A)
log-log plot and (B) linear plot.

There are 225 miRNA families in the TargetScan 7.1 conserved target sites prediction,
and 212 of them have target genes in the list of 733 cancer genes. As shown in Figure 4A,
different miRNA families have different numbers of target genes, and those miRNAs that
have high ratios of target genes among the whole human protein-coding gene population
also have high ratios of target genes among 733 cancer genes. Almost all miRNAs have
higher ratios among the cancer genes than the general protein-coding genes (Figure 4A),
and higher ratios among the TSGs than the oncogenes (Figure 4B).

3.2. The TSG mRNA Abundances Are Depressed More than Oncogene mRNA Abundances in
DICER1 KO mESCs

Generally, genes harboring higher numbers of target sites for the same or differ-
ent miRNAs are under stronger regulated repression of miRNAs [41,42]. Our previous
study supported this notion by showing that the global expression changes due to the
loss of miRNA expression were correlated with miRNA binding sites counts [30,38]. As
discussed above, cancer genes tend to have more miRNA target sites than general protein-
coding genes, especially the TSGs (Figures 2–4). Therefore, we hypothesized that miRNAs
have a higher repression capacity on cancer genes than general protein-coding genes,
and the mRNA expression level of cancer genes would be relieved to higher degrees
upon miRNA loss.

To confirm this hypothesis, we searched available RNA-seq data that compared the
difference of transcriptome between wildtype and Dicer1 KO cells on NCBI GEO database,
and found that the study of Zheng et al. provided such information as discussed on
Materials and Methods [28]. We explored their data (GEO accession number GSE55338) and
compared expression changes of cancer genes with total protein-coding genes. It showed
that the log2 fold change of 733 cancer genes between Dicer1 KO and WT was higher
than zero, and significantly higher than total protein-coding genes (p-value < 2.2 × 10−16,
Figure 5A). It means that the mRNA expression levels of cancer genes are increased in
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Dicer1 KO mESCs, and the elevation degree is significantly higher than total protein-
coding genes, whose log2 fold change of KO/WT was about zero. We next compared the
expression changes between oncogenes and TSGs and found that the derepression of TSGs
was significantly higher than that of oncogenes (p-value = 0.0094, Figure 5B), although their
expressions were both increased in Dicer KO mESCs. These results suggest that the mRNA
levels of cancer genes are under stronger control by miRNA than the general protein-coding
genes, and among all cancer genes, miRNA down-regulates TSGs more than oncogenes.
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Figure 4. Ratio/Proportion of cancer genes (A), and TSGs/oncogenes (B) targeted by individual
miRNAs as predicted in TargetScan 7.1 database.

Overall, these results demonstrate that cancer genes have more miRNA target sites
than general protein-coding genes, and TSGs harbor more miRNA target sites than onco-
genes. Consistently, we observed higher percentages of cancer genes than general protein-
coding genes targeted by individual miRNAs, and higher ratios of targeted TSGs
than oncogenes.

In addition, we observed that cancer genes exhibit a more condensed distribution
than the whole protein-coding gene population (Figure 5A), and that TSGs exhibit a more
condensed distribution than the oncogenes (Figure 5B). The results suggest that the whole
protein-coding gene population, the oncogenes and the TSGs are under sequentially tighter
mRNA expression control. There must be other non-miRNA regulatory mechanisms for
oncogene and TSG expression.
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Figure 5. (A) Average expression changes of total protein-coding genes and 733 cancer genes in
Dicer knockout mESCs (p-value < 2.2 × 10−16 by two-sided Wilcoxon rank-sum test). (B) Average
expression changes of 409 oncogenes and 324 TSGs in Dicer knockout mESCs (p-value = 0.0094 by
two-sided Wilcoxon rank-sum test). (“**” indicates p < 0.01, “***” indicates p < 0.001).

3.3. Translating TSG mRNA Abundances Are Depressed More than Those of Oncogene mRNAs in
Dicer Knockout Human HCT116 Cells

As discussed in the Introduction, miRNA can regulate gene expression at the transla-
tional level as well. Polysome profiling has been the most common technique for studying
translating mRNAs specifically [43]. During polysome profiling, actively translating mR-
NAs associated with polysomes (multiple ribosomes) are separated from untranslating
mRNAs (“free mRNAs” or monosomes) through sucrose density gradient centrifugation.
This fractionation can also separate more efficiently translated mRNAs associated with
heavy polysomes from those associated with light polysomes [44]. After isolation of RNA
from the fractions, the distribution of specific mRNAs can be analyzed with RNA-seq [45].

Fortunately, relevant polysome profiling was previously conducted by us as described
in Materials and Methods [30]. We analyzed the data to assess the effects of miRNA
loss on actively translating mRNAs abundance. The results showed a similar pattern
among cancer genes, oncogenes, TSGs and the whole protein-coding gene population in
Dicer1 KO human HCT116 cells, even though the statistical power of our analysis was
likely reduced by the lack of biological replications in the NGS analysis. The log2 fold
change of KO/WT of either light polysomes associated mRNA or heavy polysomes as-
sociated mRNA was significantly higher for cancer genes than for corresponding total
protein-coding genes, respectively, (p-value = 0.015 by one-side Wilcoxon test, Figure 6A;
p-value = 0.00086 by one-sided Wilcoxon test, Figure 6C). Among light polysomes asso-
ciated mRNAs, TSGs had a significantly higher degree of increase than oncogenes, and
the distribution of their expression changes was more condensed than that of oncogenes
(Figure 6B). The same pattern was observed for heavy polysome associated mRNA abun-
dance (Figure 6D). Therefore, these results support the notions that actively translating
mRNAs of cancer genes are upregulated more than the general protein-coding genes upon
miRNA loss, and that TSGs are derepressed at a higher capacity than oncogenes.
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Figure 6. (A) Average light polysomes associated mRNA expression changes of total protein-coding
genes and 828 cancer genes in Dicer1 knockout human HCT116 cells (p-value = 0.015 by one-sided
Wilcoxon rank-sum test). (B) Average light polysomes associated mRNA expression changes of
413 oncogenes and 415 TSGs in Dicer1 knockout human HCT116 cells (p-value = 0.032 by one-sided
Wilcoxon rank-sum test). (C) Average heavy polysomes associated mRNA expression changes
of total protein-coding genes and 828 cancer genes in Dicer1 knockout human HCT116 cells
(p-value = 0.00086 by one-sided Wilcoxon rank-sum test). (D) Average heavy polysomes associ-
ated mRNA expression changes of 413 oncogenes and 415 TSGs in Dicer1 knockout human HCT116
cells (p-value = 0.12 by one-sided Wilcoxon rank-sum test). (“*” indicates p < 0.05, “***” indicates p < 0.001).

4. Discussion

We compared the levels of miRNA control of oncogenes and TSGs in a global man-
ner. This analysis complements the observed overall trend of miRNA downregulation
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in cancer. Our results showed that, in general, the TSGs were under higher degree
of regulation by miRNA than the oncogenes (Figures 3B, 4B and 5B and Figure 6B,D).
This new insight into the relationship between miRNA and cancer was enabled by the
global manner of this analysis. Otherwise, this global pattern would be submerged, as
described below, by the noises caused by the complexity of individual miRNA-cancer and
miRNA-target relationship.

High level of complexity is intrinsic to the miRNA-cancer and miRNA-target relation-
ships. Each miRNA typically targets many genes, and individual genes can be targeted
by multiple miRNAs. MiRNA-targeting activities can induce intensive feedback effects,
either directly or through the interaction with transcription factors [46]. This is especially
applicable to cancer genes due to the enrichment of miRNA binding sites among their
mRNAs. An individual miRNA might target both oncogene and TSG mRNAs. The ob-
served global pattern would be lost if one focused on individual miRNAs. For example, in
the current study, miR-21 targeted 2% total protein-coding genes, whereas 6.6% TSGs and
3% oncogenes, respectively, though miR-21 indeed has the ability of targeting key tumor-
suppressive pathways in tumor tissues [47]. We also observed that several well-known
tumor suppressive miRNAs, such as miR-34 [48], miR-200 [49] and miR-326 [50], targeted
more oncogenes than TSGs although total miRNAs targeted more TSGs than oncogenes
on average. In other words, this is a typical case of the whole forest versus individual
trees argument. There is a clear need for global analysis in analyzing miRNA-cancer and
miRNA-target relationships.

Our results are consistent with the notion that the number and arrangement of miRNA
binding sites correlates with the capacity of miRNA-mediated gene repression, which
is derived from multiple experimental and computational analysis [30,41,51]. Cancer
gene mRNAs are more enriched for miRNA binding sites [38,41]. TSG mRNAs contain
more sites than oncogene mRNAs. Consistently, cancer genes exhibited higher levels of
mRNA expression derepression than the general protein-coding gene population, and TSGs
exhibited higher levels than oncogenes.

However, questions remain regarding the functional advantages of miRNA regulatory
actions, i.e., why the cells maintain such a regulatory mechanism. For instance, whether
miRNAs regulate gene repression primarily through promoting mRNA degradation or
impacting translation activity remains controversial. Some studies argue that mRNA
degradation can explain a larger fraction of miRNA-regulated repression than changes
in translational efficiency [52,53]. However, there are other studies demonstrating that
miRNAs induced translational repression precedes mRNA destabilization [54–56] and that
the impact of miRNA on translation alone can recapitulate a large portion of the down-
stream molecular and phenotypic effects associated with miRNA loss [57]. Additionally,
it is unclear why the cells produce mRNAs that are quickly degraded and not used for
protein production, which seems very wasteful of the building blocks and other metabolic
resources. Finally, but not the least, why is the repression at both mRNA abundance and
translation activity levels so moderate? A complete repression seems more logical.

Our results add to the confusion. The overall miRNA downregulation in cancer seems
contradictory to the higher levels of miRNA regulation of the TSGs than the oncogenes. If
the functional consequence of miRNA regulatory actions is truly suppression of the targeted
genes, miRNA expression should exhibit the opposite pattern to the target. MiRNA should
be up-regulated, instead of being down-regulated as the TSGs, in cancer. We believe the
answer to this contradiction awaits a better understanding of the cellular advantages of
miRNA regulatory actions.

To conclude, our study confirms the notion that cancer genes are more tightly regulated
by miRNA than the general protein-coding gene population. More importantly, we report,
for the first time, that TSGs are miRNA-controlled to a higher degree than oncogenes
in terms of both miRNA binding site distribution and expression level changes upon
genetic disruption of miRNA production. Further investigations are needed to reconcile
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this observation and the overall miRNA down-regulation in cancer and advance our
understanding of the regulatory roles of miRNA.
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MiRNA Binding Sites and GSE55338 mESCs Gene Expression Analysis; (C) List of Oncogenes Used
for GSE134868 HCT116 Cells Gene Expression Analysis; and (D) List of TSGs Used for GSE134868
HCT116 Cells Gene Expression Analysis. Table S2 as an Excel file with 4 spreadsheets, each containing
top 100 ranked genes according to the specified ranking criteria.
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