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Abstract

Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-

making. While efforts to use symptom profiles or biomarkers to develop clinically useful 

prognostic subtypes have had limited success, a recent report showed that machine learning (ML) 

models developed from self-reports about incident episode characteristics and comorbidities 

among respondents with lifetime MDD in the World Health Organization World Mental Health 

(WMH) Surveys predicted MDD persistence, chronicity, and severity with good accuracy. We 

report results of model validation in an independent prospective national household sample of 

1,056 respondents with lifetime MDD at baseline. The WMH ML models were applied to these 

baseline data to generate predicted outcome scores that were compared to observed scores 

assessed 10–12 years after baseline. ML model prediction accuracy was also compared to that of 

conventional logistic regression models. Area under the receiver operating characteristic curve 

(AUC) based on ML (.63 for high chronicity and .71–.76 for the other prospective outcomes) was 

consistently higher than for the logistic models (.62–.70) despite the latter models including more 

predictors. 34.6–38.1% of respondents with subsequent high persistence-chronicity and 40.8–

55.8% with the severity indicators were in the top 20% of the baseline ML predicted risk 

distribution, while only 0.9% of respondents with subsequent hospitalizations and 1.5% with 

suicide attempts were in the lowest 20% of the ML predicted risk distribution. These results 

confirm that clinically useful MDD risk stratification models can be generated from baseline 

patient self-reports and that ML methods improve on conventional methods in developing such 

models.

Heterogeneity in major depressive disorder (MDD illness course complicates clinical 

decision-making. Clinicians have consistently identified absence of guidance on how to deal 

with this variation as a critical gap in personalizing MDD treatment.1–4 However, efforts to 

address this problem by finding useful prognostic subtypes based on empirically-derived 

symptom profiles5, 6 or biomarkers7–9 have so far yielded disappointing results. A 

potentially promising complementary approach would be to apply machine learning (ML) 

methods to baseline data on symptoms and other easily-assessed clinical features to develop 

first-stage prediction models of subsequent depression course and treatment response10, 11 

that could be expanded to target and examine incremental prognostic effects of novel 

biomarkers among patients who could not be classified definitively with the inexpensive 

first-stage prediction models.

Although ML methods have been used successfully to develop risk prediction schemes in 

other areas of medicine,12, 13 applications to depression have so far relied on small samples 

and thin predictor sets, failing to realize the full potential of the methods.14, 15 A recent 

exception is a study carried out among 8,261 respondents with lifetime DSM-IV major 

depressive disorder (MDD) in the WHO World Mental Health (WMH) surveys.16, 17 

Retrospective reports about parental history of depression, temporally primary comorbid 
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disorders, and characteristics of incident depressive episodes were used to predict 

retrospectively-reported subsequent depression persistence (number of years with episodes), 

chronicity (number of years with episodes lasting most days), hospitalization for depression, 

and work disability due to depression. K-means cluster analysis of the 4 predicted risk 

scores found a parsimonious three-cluster solution with the high-risk cluster (32.4% of 

cases) accounting for 56.6–72.9% of high persistence, chronicity, hospitalization, and 

disability.

While useful as a proof of concept, the WMH results were based on retrospective reports. A 

prospective validation is reported here that uses the WMH models to predict subsequent 

MDD persistence, chronicity, and severity in a sample of 1,056 respondents with lifetime 

DSM-III-R MDD in the 1990–1992 US National Comorbidity Survey (Survey 1)18 who 

were re-interviewed 10–12 years later in the 2001–1003 National Comorbidity Survey 

Follow-Up (Survey 2).19 ML model results are compared to results based on more 

conventional logistic regression models to determine whether ML methods improve on 

conventional methods.

METHODS

Sample

Survey 1 was a community epidemiological survey of common DSM-III-R disorders among 

English-speaking residents of the non-institutionalized civilian US household population 

ages 15–54 (n=5,877 respondents; 82.4% response rate).18 Respondents were paid $25 for 

participation. Recruitment-consent procedures were approved by the human subjects 

committee of the University of Michigan. Interviews were conducted face-to-face in 

respondent homes after obtaining verbal informed consent. Survey 2 attempted to re-

interview all baseline respondents considered here 10–12 years later using recruitment-

consent procedures identical to Survey 1 other than a $50 incentive. These procedures were 

approved by the human subjects committees of both Harvard Medical School and the 

University of Michigan. Interviews were again conducted face-to-face in respondent homes 

after obtaining verbal informed consent. The 5,001 Survey 2 respondents (87.6% of living 

targeted Survey 1 respondents) were administered an expanded version of the baseline 

interview assessing onset-course of disorders between the two surveys. A non-response 

adjustment weight corrected for baseline differences between Survey 2 respondents and non-

respondents conditional on Survey 1 responses. Analyses reported here use the weighted 

data from the 1,056 Surveys 1–2 panel respondents who met lifetime criteria for major 

depressive disorder in Survey 1.

The baseline assessment of DSM-III-R disorders

Survey 1 assessed DSM-III-R disorders with the World Health Organization’s Composite 

International Diagnostic Interview (CIDI) Version 1.1, a fully-structured lay-administered 

interview that assessed common mental disorders using DSM-III-R criteria.20 Syndromes 

assessed included major depressive episode, mania-hypomania, 6 anxiety disorders 

(generalized anxiety disorder, panic disorder, agoraphobia, specific phobia, social phobia, 

PTSD), and 5 externalizing disorders (conduct disorder, alcohol abuse, alcohol dependence, 
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drug abuse, drug dependence)). Blinded SCID21 clinical reappraisal interviews in a 

probability sub-sample found good concordance with DSM-III-R/CIDI diagnoses.20 

Respondents with lifetime MDD were asked whether their first lifetime episode “was 

brought on by some stressful experience” or happened “out of the blue.” DSM-III-R Criteria 

A–D MDE symptoms were then assessed for this incident episode. Family History Research 

Diagnostic Criteria questions22 were used to determine parental history of depression.

Outcome measures

Depression persistence, chronicity, and severity were assessed in Survey 2 with a 

computerized version of CIDI 3.0 using “pre-loaded” information about Survey 1 responses 

to guide follow-up questioning. Respondents with Survey 1 lifetime MDD were asked to 

review the depressive symptoms reported in Survey 1, update subsequent episodes and 

symptoms using a life history calender, and answer four summary questions about 

subsequent episodes: In how many years since baseline did the respondent have a depressive 

episode lasting 2+ weeks (referred to below as persistence) and an episode lasting most days 

throughout the year (referred to below as chronicity)? Was the respondent ever hospitalized 

for depression since baseline? Was the respondent currently disabled (at least 50% limitation 

in ability to perform paid work) because of depression? A fifth Survey 2 outcome measure 

was whether the respondent attempted suicide at any time since baseline.

Analysis methods

Predicting the outcomes in the WMH surveys—The predictors in the WMH Surveys 

included temporally primary comorbid lifetime disorders, parental depression, MDD 

incident episode symptoms, and other information about the incident episode (age-of-onset 

and if the episode was triggered or endogenous). The outcomes were MDD persistence-

severity (number of years since age-of-onset with episodes lasting 2+ weeks and lasting 

most days throughout the year, each standardized to a 0–100% range in relation to number 

of years between age-of-onset and age-at-interview), whether respondents were ever 

hospitalized for depression after their first episode, and whether respondents were disabled 

at the time of interview because of their depression. The ML methods used to develop the 

models included ensemble regression trees23 and 10-fold cross-validated penalized 

regression,24 both of which were designed to avoid over-fitting. These methods are 

described elsewhere.16, 17

Between 9 and 13 predictors available at baseline in Surveys 1–2 emerged as significant in 

each WMH model, including measures of individual symptoms and symptom clusters in the 

incident episode, whether that episode was triggered or endogenous, parental history of 

depression, and various measures of temporally primary comorbid anxiety and externalizing 

disorders (some of them depending on age-of-onset). A more detailed discussion of the final 

WMH models is available elsewhere.16, 17

In order to evaluate whether models based on ML methods improve prediction in an 

independent dataset more than models based on conventional methods, we also estimated a 

logistic regression model for each outcome in the WMH data that included 23 predictors: the 

9 DSM-III-R Criterion A symptoms of MDD, a measure of whether the episode was 
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triggered or endogenous, parental history of depression, and 11 measures of the temporally 

primary comorbid anxiety and externalizing disorders that were also available in Survey 1. 

To the extent that the ML methods stabilize estimates, we would expect predictions based on 

these methods to outperform predictions based on logistic regression despite the ML models 

contained fewer predictors (9–13) than the logistic models (23).

Assigning WMH predicted risk scores to Survey 1 respondents—Risk scores 

based on the logistic models were generated in Survey 1 using the WMH coefficients and 

the Survey 1 predictors. This direct estimation method could not be used for the ML models, 

though, as Survey 1 did not assess a number of significant predictors in the ML models 

(symptoms of anxious-depression and mixed episodes in incident episodes, comorbid 

obsessive-compulsive disorder, intermittent explosive disorder, and oppositional-defiant 

disorder). We addressed this problem by imputing ML risk scores to Survey 1 respondents 

from a consolidated dataset that combined WMH respondents and Surveys 1–2 respondents. 

The dataset included all predictors in common across the surveys along with the 4 ML 

predicted risk scores. The latter 4 scores had valid values for WMH cases and missing values 

for Survey 1 cases. Multiple imputation was applied to this dataset to generate 10 predicted 

scores on each missing variable to each Survey 1 respondent using SAS 9.2 proc mi.25 

Modal imputed values were assigned to each Survey 1 respondent for purposes of analysis. 

As these scores were strongly correlated across outcomes, a single composite ML predicted 

risk score was then constructed for each respondent by averaging across the four scores after 

transforming to percentiles.

Validating the prediction models—Survey 2 outcomes were predicted from risk scores 

based on the ML and logistic models applied to the Survey 1 data. The Survey 2 outcomes 

included high (top 10%) MDD persistence and chronicity in the 10–12 years between the 

two surveys, hospitalization for depression and attempted suicide during those years, and 

disability due to depression at the time of Survey 2. Area under the receiver operating 

characteristic curve (AUC) was calculated for each Survey 2 outcome separately for the ML 

and logistic models. Sensitivity (SN; the percent of respondents with the outcome classified 

by the predicted risk scores as having high risk), positive predictive value (PPV; the percent 

of respondents predicted to have high risk who experienced the outcome), and likelihood-

ratio positive (LR+; the relative proportions of respondents who experienced the outcome 

among those classified as having or not having high risk) were also calculated for the 20% 

and 33% of Survey 1 respondents with highest and lowest ML imputed composite risk 

scores. Standard errors of SN, PPV, and LR+ were estimated using the Taylor series method 

with SUDAAN26 to adjust for design effects in the Surveys 1–2 panel.

RESULTS

Outcome distributions

One-third (37.9%) of the 1,056 Survey 1–2 respondents had at least one depressive episode 

in the 10–12 years between surveys (Table 1). Mean (se) number of years in episode was 2.0 

(0.2) and the 90th percentile was 9 years. Roughly half the respondents with episodes (16.7% 

[1.5] of all respondents) reported episodes lasting most days throughout one or more years, 
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with a mean (se) of 0.8 (0.1) and a 90th percentile of 4 such years. A strong correlation 

(polychoric) was found between number of years in episode and number of years with 

episodes lasting most days throughout the year (rp=.61).

Hospitalization for depression in the years between Surveys 1 and 2 was reported by 5.8% 

(1.1) of Survey 2 respondents and attempted suicide by 4.5% (0.6). Current disability due to 

depression was reported by 3.2% (0.6) of Survey 2 respondents. Correlations (tetrachoric) 

among these three severity indicators were rt=.51–.84. Correlations (polychoric) between 

number of years in episode and the severity indicators were rp=.38–.49. Correlations 

(polychoric) between number of years in episodes lasting most days throughout the year and 

the severity indicators were rp=.30–.53.

Associations of the Survey 1 risk scores with Survey 2 outcomes

AUCs of the Survey 1 ML and logistic risk scores with Survey 2 outcomes were .71 and .68, 

respectively, predicting high persistence, .63 and .62, respectively, predicting high 

chronicity, .73 and .65, respectively, predicting hospitalization, .74 and .69, respectively, 

predicting disability, and .76 and .70, respectively, predicting attempted suicide. (Table 2) 

The AUCs of the ML scores were somewhat higher than those of the logistic regression 

scores for all five outcomes despite the ML scores being based on models that used only 9–

13 predictors compared to 23 predictors in the logistic models and the fact that the ML 

predicted values were based on multiple imputation rather than direct estimation.

Operating characteristics of the composite imputed risk score

The 20% of Survey 1 respondents with highest ML composite imputed predicted risk scores 

accounted for 38.1% of high persistence in the years between the two surveys, 34.6% of 

high chronicity, 40.8% of hospitalizations for depression, 55.8% of disability due to 

depression, and 55.8% of attempted suicides. (Table 3) Sensitivities were substantially 

higher (49.7–70.7%) in the 33% of Survey 1 respondents with highest predicted risk scores. 

Positive predictive values of the outcomes in the 20% of respondents with highest predicted 

risk scores were in the range 8.8–18.3% (i.e., 1.8–3.0 times the positive predictive values in 

the remaining 80% of the sample), while positive predictive values were 6.3–17.5% in the 

33% of respondents with highest predicted risk (i.e., 1.5–2.2 times the positive predictive 

values in the remaining 67% of the sample).

The ML predicted risk scores were also useful at the low end of the distribution, as seen 

most vividly in the fact that the 20% of Survey 1 respondents with lowest predicted risk 

accounted for only 0.9% of all hospitalizations and 1.5% of all attempted suicides in the 10–

12 years between surveys. This means that low ML predicted risk scores can be used as rule-

outs for these outcomes (LR+=0.0–0.1). Sensitivities for other outcomes in this 20% of 

respondents with lowest predicted risk were 5.6–15.9%, while those of the 33% of 

respondents with lowest predicted risk were 9.7–16.7%. Positive predictive values of the 

outcomes in the 20% of respondents with lowest predicted risk were 0.3–6.7% (i.e., 0.0–0.8 

times the positive predictive values in the remaining 80% of the sample), while positive 

predictive values were 0.9–4.2% in the 33% of respondents with lowest predicted risk (i.e., 

0.3–0.5 times the positive predictive values in the remaining 67% of the sample).
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DISCUSSION

Four important limitations of the WMH models should be noted before discussing results. 

First, MDD was assessed with a fully-structured diagnostic interview rather than a semi-

structured clinical interview. Second, the models were developed in a cross-sectional sample 

using retrospective reports that could have been biased. Third, because the data were 

retrospective, predictors were limited in two important ways: the predictors for comorbid 

disorder did not include those with first onsets subsequent to first onset of MDD; no 

predictors were included for MDD course subsequent to first onset. Both these types of 

predictors would normally be available to clinicians interested in evaluating differential 

patient risk for MDD persistence-severity. Because of these limitations, we would expect the 

performance of the WMH models to be lower bounds on the performance of models with a 

more complete set of predictors. Fourth, only a limited set of machine learning methods was 

used to develop the WMH models. Because of these limitations, it would be useful to 

replicate and expand the model development and validation process illustrated here in 

prospective clinical samples using consistently-administered semi-structured clinical 

interviews with a more complete set of predictors using additional machine learning 

algorithms (e.g., naïve Bayesian, random forests, support vector machines)27 using an 

optimal combined suite of algorithms to maximize cross-validated prediction accuracy.28

Within the context of these limitations, the validation exercise reported here confirmed the 

predictive value of the kinds of self-report variables included in the WMH ML models over 

a 10–12 year follow-up period in an independent sample of the US household population. 

We also showed that prediction accuracy (AUC) of the ML models was consistently higher 

across all study outcomes (.63–.76) than a more conventional logistic model (.62–.70) 

despite the logistic model including 23 predictors and the ML models 9–13 predictors. This 

finding illustrates the value of ML methods in stabilizing predictions to avoid over-fitting in 

a training dataset (i.e., the WMH sample) so as to improve prediction in independent 

samples.

A question can be raised how well the WMH ML composite risk score prediction accuracy 

compares to previous attempts to predict long-term depression persistence-severity. Only a 

handful of relevant comparison studies exist over a follow-up period of 10+ years in samples 

of initially depressed patients29, 30 or community residents.31, 32 These studies were all quite 

small (n=87–424) and none reported AUC. However, AUC can be computed post hoc from 

two of these studies. The first was a 50-year follow-up of 293 community respondents 

classified post hoc as having had baseline DSM-IV MDD, 20 of whom subsequently died by 

suicide.32 A composite measure of baseline depression severity predicted subsequent suicide 

with .69 AUC compared to .76 for the validated AUC of the most comparable Survey 2 

outcome (attempted suicide). The second comparison study followed 313 outpatients with 

initial diagnoses of MDD 1, 4, and 10 years after baseline and predicted persistent 

depression over that time period from 10 baseline depressive symptoms plus 10 baseline 

measures of self-concept, social function, and coping. The AUC of .70 is quite similar to 

the .71 AUC for the most comparable Survey 2 outcome of high persistence.

Kessler et al. Page 7

Mol Psychiatry. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In making these comparisons, it is important to remember that the AUCs in these other 

studies were not validated in independent samples. As noted above, AUC estimates in the 

Surveys 1–2 panel were about 10% lower than in the WMH sample. Shrinkage would be 

expected to be even greater in the earlier studies because of their much smaller samples than 

in the broadly-representative WMH sample of 8,261 respondents. Prediction models in the 

two comparison studies might consequently yield validated AUCs below .60 in independent 

samples. AUCs in that range are considered small based on conventional guidelines, while 

WMH ML AUCs would typically be considered moderate.33–35

It is noteworthy that AUC of the ML models in Surveys 1–2 was similar to widely-used risk 

models in other areas of medicine.36, 37 For example, the .73 mean AUC of the ML models 

over the four Survey 2 outcomes other than high chronicity is similar to the .74 average 

AUC of the Framingham Risk Score of coronary heart disease, one of the most widely-used 

prediction scores in medicine, across 79 different validation studies,38 and higher than the 

AUCs (typically below .70) of models to predict the course of breast cancer.39 Nonetheless, 

these AUCs are only moderate, which means that predictions based on such models could 

not be used to make definite rule-ins and could be used to make definite rule-outs only for 

risks of hospitalization and suicide attempts in the lowest 20% of the composite risk 

distribution. But this level of precision could be useful in defining bands of differential risk 

warranting variation in clinical attention. Tiered risk assessments of this sort are becoming 

increasingly important in other areas of medicine.40–42

Given that predictions based on models of the sort evaluated here would most realistically be 

used to help clinicians identify patients who might more profit from more intensive 

treatment (e.g., long-term maintenance therapy), the vast majority of whom present for 

treatment of recurrent rather than incident episodes, an obvious future direction should be to 

go beyond the WMH model focus on incident episodes to develop expanded models in the 

Surveys 1–2 panel focused on recurrent episodes. Such an expansion could evaluate the 

incremental value of including new predictors for course of MDD between onset and time of 

Survey 1, secondary comorbid disorders, and other variables found to be important in 

previous studies of the course of depression (e.g., childhood family adversities, history of 

traumatic stress exposure, comorbid physical disorders, social networks-support, 

personality). We plan to implement this kind of expansion in future work with the Surveys 

1–2 panel.

Beyond our own work with these data, though, it would be useful to develop an interview 

schedule to assess the full set of self-report predictors found in the WMH data and in the 

earlier studies reviewed above to use in future depression treatment trials. Such an 

instrument, if administered at trial baseline, could be used as part of a principled approach to 

study heterogeneity of treatment effects.43, 44 An even more promising extension given the 

small size of most depression treatment trials might be to administer this same instrument to 

a large observational sample of patients beginning depression treatment, follow these 

patients to assess treatment response, and analyze these data to develop a robust model 

predicting heterogeneity of treatment effects. In addition to providing an a priori 

representation of predicted treatment response for use in subsequent controlled trials, such a 

model could be useful in targeting depressed patients with high risk of treatment-resistance 
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at the beginning of treatment who might warrant the substantial investment currently being 

made in large pragmatic trials to determine the value of expensive baseline biomarker 

assessments in guiding depression treatment targeting.8, 9 It would also be valuable in this 

context to evaluate the incremental value of promising biomarkers to prediction over and 

above the level of prediction accuracy achieved in a model based only on baseline self-

reports.45

Risk stratification data from a large observational study of this sort could also be analyzed 

using an extension of the innovative statistical approaches recently developed to study 

comparative effectiveness in observational studies.46 The potential value of such an 

approach is supported both by evidence that treatment effect size estimates in appropriately-

analyzed observational studies are comparable to those in controlled trials47 and by the 

existence of numerous replicated predictors of heterogeneity of depression treatment effects 

in existing trials.14, 15, 48, 49 The use of an expansion of our model in this way would address 

two important problems in previous research on heterogeneity of depression treatment 

effects: the small sample sizes of depression treatment trials;50, 51 and the fact that most such 

trials assess only a small number of potential treatment effect modifiers, thus providing no 

principled basis for using pooling across trials to develop the kind of fine-grained 

multivariate models of heterogeneity of treatment effects that will eventually be needed to 

guide personalized depression treatment planning.44 The results presented in the current 

report, while only taking a first step in this direction, provide strong support for the potential 

value of this possible extension.
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Table 2

Area under the receiver operating characteristic curve (AUC) of Survey 1 risk scores based on machine 

learning (ML) models and logistic regression models predicting Survey 2 outcomes (N =1,056)

AUC of risk scores based on

ML models Logistic models

High persistence .71 .68

High chronicity .63 .62

Hospitalization .73 .65

Disability .74 .69

Suicide attempt .76 .70
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