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COVID-19-driven endothelial damage: complement, HIF-1, and ABL2
are potential pathways of damage and targets for cure
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Abstract
COVID-19 pandemia is a major health emergency causing hundreds of deaths worldwide. The high reported mor-
bidity has been related to hypoxia and inflammation leading to endothelial dysfunction and aberrant coagulation in
small and large vessels. This review addresses some of the pathways leading to endothelial derangement, such as
complement, HIF-1α, and ABL tyrosine kinases. This review also highlights potential targets for prevention and
therapy of COVID-19-related organ damage and discusses the role of marketed drugs, such as eculizumab and
imatinib, as suitable candidates for clinical trials.
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Introduction

The new coronavirus (SARS-COV-2) pandemic has rap-
idly spread to many countries [1] and caused several
thousand deaths. Endothelial derangement and increased
permeability are reported to be early hallmarks of organ
damage in patients with COVID-10, such as lungs, kid-
ney, and myocardium. Moreover, thrombotic complica-
tions are a relevant cause of death in patients with
COVID-19. Finally, the interaction of SARS-CoV-2
with ACE2 possibly implies alterations of angiotensin
II plasma levels. Therefore, the vascular system is in-
creasingly being addressed as a major therapeutic target
for defeating COVID-19 [2, 3].

The present paper in particular reviews some of the
pathways leading to endothelial disruption in the course
of COVID-19 infection, namely complement activation,
hypoxia, platelets, and thyroxin kinases. Furthermore,
the paper explores potential therapeutic strategies, par-
ticularly commercially available drugs, such as imatinib.

Complement-mediated pathogenesis

Complement system and inflammation

Complement system is a 30 protein network belonging to
both the innate and the adoptive immune system: it has
opsonization properties, but it also enhances the activity
of antibodies and macrophages in eliminating pathogens
and damaged cells. C5a anaphylatoxin, a central comple-
ment protein, is involved in sepsis and acute lung injury
mediated by CC-chemokine receptor 5 [4, 5]. C5a leads
to exaggerated early proinflammatory responses and ac-
tivation of neutrophils and macrophages (by the activa-
tion of PI3K/Akt and MAPK signaling pathways), with
subsequent release of histones and reactive oxygen spe-
cies that ultimately lead to endothelial damage, inflam-
mation, and thrombosis; a functional decline of the in-
nate immune system and multiorgan dysfunction follows
[6, 7]. Moreover, C5a is involved in pyroptosis, which is
a form of programmed cell death by a lytic modality
catalyzed by caspase and aimed at eliminating immune
cells infected by pathogens. Due to cell membrane break,
pyroptosis induces an inflammatory damage and release
of caspase, which activates interleukin-1. C5a itself also
causes substantial cardiomyocyte dysfunction, which is
reversed by complement blockade [8].
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Complement and lung injury

Also, C3a complement fraction plays a relevant role in the
pathogenesis of infection-related lung injury: high serum
C3a predicts evolution to ARDS [9, 10], while both C3a and
C5a increase endothelial permeability and activate endothelial
cells, thereby increasing the expression of adhesion molecules
and cytokines [11, 12], and the distal complement activation
product C5 b-9 triggers intracellular fluxes of calcium in epi-
thelial and endothelial cells. The vicious cycle might be
sustained by hypoxia, which reduces the expression of
CD55, a complement regulator, by HIF-1alpha, IL-2, and
TNFα. This downregulation enhances C3a release and cas-
pase 3 deposition onto endothelial cells [13]. The complement
damage may also be triggered by some specific infective
agents, such as staphylococcus, that provoke shedding of
anti-complement surface proteins CD55 and CD59 from en-
dothelial cells thus favoring cell lysis [14].

Complement and vascular damage

Complement also proved to be relevant for survival in patients
with heart failure and sepsis-related miocardiopathy [15, 16].
Moreover, tocilizumab proved to reduce C5A receptor in
myocardial infarction patients; therefore, its anti-cytokine ef-
ficacy in COVID-19 may be partly mediated by attenuation of
complement hyperactivation [17]. In fact, SARS-CoV can
directly activate complement system by lectin way and partic-
ularly acts onto T-lymphocytes in hypertensive patients, since
an increased expression of C5a receptor has been reported in
Treg Foxp3+ lymphocytes from these individuals [18]. Tissue
damage by complement activation seems to be a commonway
to many pathogen viruses, including H1N1 influenza, SARS,
CoV-2, and MERS-CoV [19–24]. Preliminary data show that
C5a mediates MERS-CoV and SARS-CoV-2-induced
pyroptosis in infected macrophage, dendritic cells, and
CD4+ lymphocytes [24, 25]. C3 knockout mice proved to
be resistant to organ damage induced by SARS-CoV, while
the high serum and pulmonary concentrations of C5a and
C5b-9 reported in mice infected with MERS-CoV and
SARS-CoV could not cause lung damage if a C5a receptor
inhibitor was administered [23, 25]. Inhibition of C5a or C3a
receptor reduced lung damage and prolonged survival also in
mice infected with H1N1 influenza virus [26]. Moreover, a
reduced MERS-CoV viral replication was observed after in-
hibition of C5a receptor [23].

Anti-complement drugs

Specific inhibition of C5a biological activity could gain ther-
apeutic benefit without affecting the protective immune re-
sponse. In the last few years, several peptide and non-

peptide antagonists of C5a have been discovered and tested
in relevant pharmacological models.

Treatment with eculizumab, the first-in-class terminal com-
plement inhibitor, reported a rate of meningococcal infection
of 0.25/100 patient years and no deaths in patients temporarily
treated with the drugs, i.e., patients with atypical hemolytic
uremic syndrome, while the risk of meningococcus-related
death was 3/10,000 patient years in chronically treated indi-
viduals [27]. Eculizumab was successfully used to treat virus-
related hemolytic uremic syndrome (cytomegalovirus, human
immunodeficiency virus, herpes zoster virus, influenza B vi-
rus) with no reported immunosuppressive effects [28–30].
The SOLID-C19 (NCT04288713) expanded access study is
currently testing 900 mg administration of eculizumabweekly
in patients with COVID-19 ARDS, and the PANAMO phase
II study in The Netherlands (NCT04333420) is currently test-
ing IFX-1, an anti-complement (C5a) monoclonal antibody.

Endothelial damage

Endothelial cells represent one-third of overall lung cells.
Baseline endothelial damage may be chronically caused by
increased adiponectins in diabetic and obese patients: this ef-
fect is related to the activation of inflammosome NLRP3 and
autocrine production of IL-1β [31]. Additional damage to
pulmonary endothelial dysfunctional cells is acutely provoked
by infections and in turn causes excess thrombin generation
and reduced fibrinolysis [32–34]. In fact, most dangerous in-
fective agents, such as Dengue 2, adopt an adiponectin-like
mechanism of endothelial damage [35].

Thrombin causes further endothelial damage, which can be
prevented in vitro by CXCR4 agonists, such as ubiquitin [36].
Moreover, hypoxia may lead to increased hypoxia inducible
factor-1α (HIF-1α) expression and hypercoagulability [37].
Therefore, a higher rate of thrombotic episodes is reported in
patients with COVID-19 pneumonia, while increased vascular
permeability seems to be strongly related to increased throm-
bosis. In particular, in patients with lymphopenic pneumonia
and organ failure increased vascular permeability was strongly
correlated with severe lymphopenia [30].

Lung computed tomography of patients infected with
SARS-CoV-2 shows an earlier interstitial edema followed
by a subsequent alveolar edema, which questioned the simi-
larity of COVID-19 lung damage and ARDS. In pathology
samples from COVID-19 patients, diffuse microcirculatory
and macrovascular thrombosis have been detected in lung
tissue, which is not typical for ARDS, and when a few endo-
thelial cells were directly infected by SARS, several macro-
phages were instead [38]. However, no evidence of vasculitis
has been reported by pathologists and no laboratory signs of
diffuse intravascular coagulopathy were found in most of the
patients, since antithrombin-III, fibrinogen, and platelet count
rarely decline in the first phases of the disease, while D-dimer
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usually shows a progressive increase during hospital stay and
predicts a higher mortality [39]. Angiopoietin 2,
thrombomodulin, ICAM 1, endothelin, and E-selectin are usu-
ally increased in cases of endothelial damage; however, quan-
titative data from COVID-19 patients are still awaited. Rather,
severe early hypoalbuminemia and subsequent increased
CPK, myoglobin, creatinine, and uric acid are observed in
the majority of patients with COVID-19, resembling systemic
capillary leak syndrome and explaining some cases of renal
failure. Hypoalbuminemia is also a relevant prognostic factor
of the lung injury prediction score in sepsis [40].

Apoptosis of human pulmonary microvascular endothelial
cell may be chronically triggered by inflammation, such as in
COPD, or acutely induced by ARDS; the latter is mediated by
Bruton kinase (BTK), IL-17, and macrophage stimulating-1,
while IL-35 seems protective [41–44]. LDH is typically re-
leased into the serum by apoptotic endothelial cells [42]. A
different kind of damage to lung microvascular endothelial
cells, namely autophagy, may be induced by NADPH oxidase
2 during viral infections, but prevented by NADPH oxidase 4
as a protecting way against oxidative stress [45, 46].
Furthermore, endothelial cells of lymph vessels in the lungs
are particularly sensible to oxidative stress and might be the
most damaged cell population in SARS-CoV-2 infection [47].

Drugs and endothelium

Several drugs can damage the endothelium. Endothelial dam-
age secondary to ponatinib is mediated by NOTCH1 hyperac-
tivation, but also propranolol and sirolimus inhibit endothelial
proliferation and carteolol induces apoptosis in corneal endo-
thelial cells by caspase- andmitochondria-dependent pathways
[48–50]. Also, ACE2, a SARS-Cov-2 target, inhibits prolifer-
ation of endothelial cells; however, it also reduces endothelial
inflammation [51]. Finally, steroids induce apoptosis in bone
endothelial cells causing osteonecrosis, but such an effect has
not been proven in pulmonary capillary cells.

A shorter list of drugs prevent endothelial apoptosis, name-
ly recombinant adenosine deaminase, registered for SCID
ADA deficient patients, casin, and plerixafor, which markedly
expand endothelial proliferation in vitro, inducing also tubing
and sprouting [51, 52]. However, cyclin-dependent kinases
are upregulated by plerixafor, and endothelial permeability is
therefore reduced [36].

Adrecizumab is a first-in-class monoclonal antibody
targeting ad stabilizing plasma bioactive adrenomedullin
(bio-ADM ®), a key hormone secreted by endothelial cells
showing vasoprotective activity, preserving endothelial barrier
function (i.e., keeping tight junctions) and preventing vascular
leakage (ref shock 2018)[53]. Conversely, in the interstitium
ADM has dangerous vasodilatory properties at high concen-
trations. The ongoing AdrenOSS-2 trial (NTC03085758) has
enrolled 301 patients with early septic shock and high serum

levels of bio-ADM: patients were randomized to receive
adrecizumab or placebo in addition to standard care.
Preliminary data confirmed the treatment safety (BJCP phase
I) and showed a trend to a reduced 28-day mortality as com-
pared with 28% in the placebo group (www.adrenomed.com).

Platelets

The role of platelets in inducing or amplifying the endothelial
damage in COVID-19 patients is unknown. A low platelet
count, possibly due to consumption, bone marrow infection,
or autoimmune phenomena, was reported to increase COVID-
19 mortality rate by five-fold, even though the rates were very
heterogeneous among the analyzed studies [54–56].
Moreover, the opposite is more common in COVID-19 pa-
tients, being its platelet counts quite high or higher than in
patients with sepsis or ARDS; increased serum levels of
thrombopoietin caused by pulmonary inflammation have been
supposed to explain this phenomenon [57].

Anti-thrombotic drugs

Organ damage to skin, CNS, heart, and kidney appears to be
related to transient thrombotic or ischemic phases (hypoper-
fusion, hypoxemia). Heparin proved to protect tight junctions
in alveolar endothel ia l cel ls f rom IL-6 induced
hyperpermeability and thus may possibly improve the out-
come of COVID-19 patients [39, 58]. It also antagonizes his-
tones released from damaged cells by histone methylation and
interaction with MAPK and NF-kB pathways [59, 60].
Furthermore, heparin has well-documented anti-inflammatory
properties that include binding to inflammatory cytokines,
inhibiting neutrophil chemotaxis and migration, neutralizing
the positively charged C5a, and sequestering acute phase pro-
teins [61]. Heparin polyanionic nature also seems to interact
with SARS-CoV-2 spike S1 protein receptor binding domain
(https://www.biorxiv.org/content/10.1101/2020.02.29.
971093v1.full). Several COVID-19 cases reported atypical
thromboses (renal veins, uterine veins, mesenteric vessels)
and myocardial micro-thrombotic vessels; however, a large
portion of thromboembolic events occurred in patients receiv-
ing prophylactic heparin doses. Furthermore, some centers
reported the need for high heparin doses to achieve a target
aPTT ratio in these patients and no standard level of
anticoagulation has yet been established. Early, i.e., domicil-
iary, antithrombotic prophylaxis, and subsequent dose titra-
tion according to ARDS severity still need to be validated,
especially in selected patients, such as older patients, those
receiving antiplatelet therapies, and those with renal failure.

Defibrotide and rTPA have also been proposed to rescue
patients with severe thrombotic events. Full (UFH 15,000 U/
day or enoxaparin 60 mg/day) or intermediate (UFH 10,000/
day or enoxaparin 40 mg/day) heparin dose was reported to
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benefit COVID-19 patients with higher platelet counts and
higher D-dimer levels [57]. An English trial is currently
assigning patients to either aspirin 75 mg, clopidogrel
75 mg, rivaroxaban 2.5 mg, or omeprazole versus standard
of care, in order to prevent cardiac complications of
COVID-19 8 (NCT04333407). Other antiplatelet agents, such
as prasugrel, a P2Y12 inhibitor, proved to reduce prost-
myocardial infarction inflammation and might be a potential
drug to be tested in the context of COVID-19-induced endo-
thelial inflammation [62].

Hypoxia-mediated endothelial damage

Also, hypoxia is expected to play a central role in leading
inflammation and endothelial activation: cells adapt to hypox-
ia by activating hypoxia-inducible factors HIF-1 and HIF-2
which in turn induce the expression of a number of genes
promoting energy metabolism and cell survival and specifi-
cally endothelial cell adaptation (migration, growth, differen-
tiation) (Whyte–hypoxia). A transition from HIF-1 to HIF-2
governs adaptation from acute to prolonged hypoxia, despite
most genes may be regulated by both [63]. HIF-2α upon ac-
tivation increases the expression of vascular-endothelial pro-
tein thyrosine phosphatase, which in turn decreases VE-
caderin phosphorylation, supporting the integrity of adherens
junctions and preventing loss of endothelial barrier
function [64]. Contrarily, expression of HIF-1α in alveolar
epithelial cells enhances lung inflammation in a NF-kB medi-
ated way [65] and favors a cell-mediated inflammation (CD4+
CD8+) and proinflammatory cytokines (IL-2 and TNFα),
which proportionately downregulate CD55 and augment
complement-mediated endothelial damage [8]. Moreover,
myeloid cell HIF-1α is a key driver of myeloid cell response
in hypoxic and inflammatory microenvironments by modulat-
ing cellular energetics, upregulating glycolytic enzymes and
glucose transporters to permit ATP generation under condi-
tions of hypoxia, and preventing apoptosis of innate immunity
cells. In chronic infections, however, HIF-1α was reported to
prevent excessive lymphocyte recruitment into lung intersti-
tium and avert immunopathological consequences to the host
[66]. Despite there are no currently marketed drugs achieving
a selective control of HIF-1α, imatinib proved to reduce HIF-
1α levels and pulmonary hypertension caused by chronic hyp-
oxia [67, 68].

The activation and damage of pulmonary endothelium is a
hallmark of ARDS, and ACE+ circulating endothelial micro-
particles are markers of pulmonary endothelial injury
predicting development of ARDS in septic patients [69].
Endothelial damage has been shown to induce the recruitment
of circulating endothelial cells: circulating mature endothelial
cells increased in patients with moderate or severe ARDS as
compared with mild ARDS or non-ARDS septic patients [70].
Increased circulating endothelial progenitor cells (EPC)

proved to positively correlate with survival [71]. However,
also overall CD34+ CD45+ circulating cell count is associated
with improved survival in sepsis-related ARDS. Inhaled nitric
oxide was reported to induce mobilization of endothelial cell
progenitors from bonemarrow into circulation, contributing to
repair lung vascular injury in vivo, while autotransplanted
endothelial progenitor cells protected mice from LPS-
induced lung injury [72, 73]. No data are yet available regard-
ing phase-related mobilization of mature or progenitor endo-
thelial cells during COVID-19 infection. Beta-blockers favor
migration of endothelial progenitor cells mediated by SDF-1
thanks to the inhibition of beta2adrenergic receptors onto cir-
culating mononuclear cells and bone marrow stem cells [74].

Finally, an increased synthesis of hyaluronic acid seems to
explain the huge shift of liquids into the interstitium of patients
with SARS-CoV-2-related endothelial damage and respiratory
failure. This phenomenon, however, might be counteracted by
marketed hymecromone or intranasal hyaluronidase [75–77].

Imatinib

The permeabilizing action of VEGF on the endothelium of the
pulmonary capillaries, typical of ARDS, can be counteracted
by inhibiting ABL2 (Arg). Imatinib is an ABL1 and ABL2
tyrosine kinase inhibitor with EMA designation of orphan
drug for the treatment of ARDS (January 12, 2015) by virtue
of its demonstrated in vitro and in vivo ability to attenuate the
expression of VCAM-1 in endothelial cells, restoring VE
junctions-caderine and thus reducing the ARDS secondary
to sepsis, mechanical ventilation, and ischemia and mediated
by VEGF, thrombin, and histamine [78–81]. Also, the anti-
cytokine action of imatinib, mediated by the inhibition of the
NF-kB pathway in myeloid-derived cells, has been widely
demonstrated with efficacy in asthma, rheumatoid arthritis,
systemic sclerosis, and pulmonary hypertension [82, 83].
Several cases of acute lung inflammation induced by toxic
agents (bleomycin, gemcitabine) or sepsis got rapid clinical
improvement after treatment with low doses of imatinb [84,
85]. Furthermore, the immunomodulatory action of imatinib is
proven: the inhibition exerted on c-Kit in bone marrow stem
cells favors the mobilization of myeloid cells already at low
doses [86]. In primates with concomitant HIV infection and
Mycobacterium tuberculosis, imatinib has demonstrated an
effective action directly to the host [87]. A phase II clinical
trial (IMPACT-TB, NCT03891901) is enrolling patients with
mycobacteriosis TB (± HIV) to concomitant imatinib therapy.

Finally, a direct anti-viral action of imatinib has also been
documented: it appears to inhibit the fusion of SARS-CoV2with
the late endosome membrane at micromolar doses (EC 50
9.8 μM/L), a phase necessary for subsequent viral replication
[88–90]. Based on the above rational, the COUNTER-COVID-
randomized, placebo-controlled, clinical trial is currently enroll-
ing in Amsterdam (EudraCT number, 2020-001236-10).
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Discussion

Several pathways have been identified as possible drivers in
the pathogenesis of SARS-CoV-2: some pathways, such as
the complement, may be targeted by available drugs, while
some others are orphan of specific therapies, such as HIF-1α
and HIF-2α. Several drugs currently marketed for blood dis-
eases, such as imatinib, ruxolitinib, heparins, tocilizumab, and
eculizumab, are currently being tested for patients with
COVID-19 symptoms. Hematologists, who are expert on such
drugs, are therefore called into multidisciplinary teams for
managing patient selection and therapy monitoring. While
awaiting vaccines and effective antiviral therapies, their ex-
pertise needs to be combinedwith the updated evidence on the
pathogenesis of COVID-19, as they have the chance to con-
tribute to amelioration of patient outcomes. Appropriate trial
designs still need to be developed in order to address some
fundamental issues, such as COVID-19 patient stratification
and testing of multiple drugs. Furthermore, trials are chal-
lenged by heterogeneous support therapies for COVID-19
and partial non-comparability of patients belonging to differ-
ent clinical centers. Nevertheless, most of the above cited
candidate drugs have a favorable safety profile, especially in
the short term, and are promising tools for defeating COVID-
19.
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