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Abstract

Because mutations are inevitable, the genome of each cell in a multicellular organism becomes 

unique and therefore encodes a record of its ancestry. Here we couple arbitrary single primer PCR 

with “next generation” DNA sequencing in order to catalog mutations and deconvolve the 

phylogeny of cultured mouse cells. This study helps pave the way toward construction of 

retrospective cell fate maps based on mutations accumulating in genomes of somatic cells.

Cells accumulate mutations. Daughter cells inherit these mutations and acquire their own, 

such that genomes record mitotic history. If genomes from single cells could be sequenced, 

then it should be possible to infer cellular ancestry1. We and others have shown that 

mutational hotspots, consisting of repetitive DNA, can be employed to trace cellular 

lineage1–7. Related approaches track DNA methylation8 and mitochondrial DNA 

mutations9,10. To obtain sufficient DNA quantities, it has been necessary to use many 

cells1,2, clonally expand single cells ex vivo6,7, or perform whole genome amplification 

(WGA)2,3. However, scrutinizing our own2 and other datasets3 we found WGA to be 

unreliable. WGA was used recently to deep-sequence individual tumor cells and catalog 

copy number variants informative for lineage tracing11, but it remains uncertain if this will 

work for normal tissues lacking large-scale, cancer-specific genomic alterations.

The C. elegans cell fate map has yielded remarkable insight into developmental biology12. 

Fate maps for organisms containing massively greater cell numbers could similarly prove 
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useful. Here we employ arbitrary single primer PCR and next generation sequencing to 

analyze DNA from limited starting material and identify base substitution mutations at 

randomly sampled positions of the genome, in order to decode lineages of cultured mouse 

cells.

We devised test systems where we passaged cells through defined orders resembling trees 

(Fig. 1a). Noting an estimated 40 cell doublings between fertilization and birth in mice1, we 

cultured a single fibroblast for ~20 doublings on a Petri dish, and then isolated single cells 

from which we seeded a second tier of dishes, and so on, repeating this process 4 times in 

total. Starting from one cell, over 89 days, we generated 15 dishes. To increase mutations, 

the starting cell came from a cancer-prone “mutator” mouse deficient for Mlh1 mismatch 

DNA repair and DNA polymerase delta proofreading activities13. Although sterile, these 

mice develop normally.

Mutations occurring within genes could alter cell growth and prove problematic for inferring 

lineage. We therefore chose “arbitrarily-primed PCR”14 to sample random segments of the 

genome. If the genome’s composition were random, then PCR employing a single 

oligonucleotide of arbitrary-yet-defined sequence should predictably amplify a portion of 

the genome solely as functions of primer length and cycle extension time. However, the 

genome is not random, so we modeled and experimentally evaluated a range of primer 

lengths and sequences, in order to optimize next generation sequencing capacity. Our aim 

was to extract maximal sequence from all 15 sampled nodes of the tree in a single run of the 

ABI SOLiD platform. In silico, we evaluated arbitrary sequence oligonucleotides to predict 

those for which PCR would yield ~10 Mb of total sequence (with a maximum amplicon of 2 

Kb, reasoning length was controllable by cycle extension time). From several sequences 

identified through modeling and validated by pilot deep sequencing, we selected a 10-mer 

oligonucleotide (5′-GGGGGGGGAG-3′). Gel electrophoresis reveals a similarly appearing 

smear for PCR samples from all 15 nodes of the tree (Supplementary Fig. 1). PCR initially 

employed 50 ng of DNA (≈8,730 cells); however, serial dilution demonstrates equivalent 

results with template corresponding to ~100 cells (Supplementary Fig. 2).

We sequenced PCR products from each sample using 15/16th of the capacity (dual 8-

segment flow cells) of an ABI SOLiD sequencer. 23 Gb of sequence was generated, of 

which 72% mapped to the reference genome.

At depth ≥1×, a mean 1.6 Gb of mapped sequence was generated per sample, of which a 

mean 116 Mb corresponded to unique basepairs. At depth ≥1×, 9.7 Mb (0.37% of the 

genome) were sequenced commonly across all 15 samples, at mean depth of coverage of 

89×.

To determine sample-to-sample consistency, we plotted unique nucleotides sequenced 

common to all samples as numbers of samples increased, from 1–15 (Fig. 2). Curves vary 

only over a small range and level off as samples are added. We uploaded all sequence data 

to the UCSC Genome Browser. Read-depth histograms reveal consistent amplification from 

one sample to the next (representative sample, Fig. 3), as confirmed by Pearson correlation 

coefficients for pairwise comparisons (Supplementary Table 1). Arbitrary PCR across whole 
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chromosomes also shows sample-to-sample consistency (Supplementary Fig. 3). We 

observe that arbitrary PCR reproducibly amplifies sequences common to all samples, but 

each sample has variable representation at low depths of coverage of unique sequences 

arising from non-specific priming. Consequently, the majority (78%) of mapped reads is 

present in all 15 samples, given high depths of coverage at commonly sequenced positions.

When sequence variation is detected between samples, it may correspond to PCR or 

sequencing errors or to mutations not transmitted to progeny because they occurred in a 

subpopulation of cells during clonal expansion, rather than being present when the cell was 

used to seed the dish. In consideration of these complications we devised a Bayesian method 

for mutation detection, based on generalizing a standard approach to the case of multiple 

DNA sequence samples from a common population15, in which mutation analysis is 

performed collectively on all related samples.

We identified 592 mutations, of which 315 (53%) demonstrate segregation consistent with 

the known tree (Supplementary Table 2). Variants whose segregation was inconsistent with 

the known tree could represent PCR and/or sequencing artifacts or could be mutations for 

which sequencing depth was insufficient to permit detection.

We then attempted to reconstruct the experimental phylogeny from all 592 mutations 

(including the inconsistent ones). With all 15 samples, using either Bayesian (Fig. 1b) or 

neighbor-joining approaches (Supplementary Fig. 4a), inferred phylogenies are 79% and 

75.7% identical, respectively, to the known tree (quantified per method of Nye16). The 

Bayesian reconstruction contains 3 errors. Samples 4, 5, and 7 should each be one branch 

closer to the root. The number of mutations supporting each bifurcation is stochastically 

distributed (Supplementary Fig. 5); no informative mutations appear to distinguish dishes 5 

and 2, which probably contributes to the error.

In adapting this approach toward constructing fate maps from cells extracted from an 

individual organism, only terminal nodes will actually be available (Fig. 1c). Intermediate 

nodes, corresponding to progenitor cells for which only daughter cells persist in mature 

tissues, no longer exist. As a test, we determined if information from just the 8 terminal cells 

was sufficient to reconstruct phylogeny. We identified 667 mutations, of which 520 (78%) 

demonstrate segregation consistent with the known tree (Supplementary Table 2). From 

these mutations, we perfectly reconstructed the tree’s known lineage using either Bayesian 

(Fig. 1d) or neighbor-joining methods (Supplementary Fig. 4b), p = 7.4×10−6, noting 

135,135 possible 8-cell histories. Even though this represents a more challenging problem, 

we achieve greater accuracy using only terminal nodes because there is more common 

sequence and greater mitotic distance, with a greater likelihood of mutation, separating 

sampled nodes.

By counting mutations whose segregation is consistent with the known lineage, we 

calculated a rate of 10−6 mutations/nucleotide/division, compared with a mutation rate of 

1.4×10−6 measured through Luria–Delbrück fluctuation analysis (Supplementary Table 3). 

In contrast, the reported rate for the DNA polymerase used for PCR is lower, at 4×10−7 

errors/nucleotide (http://www.genomics.agilent.com/files/Manual/600385.pdf). Even still, 
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particular mutations introduced by the polymerase (or during sequencing) are expected to 

occur randomly and not be present in more than one sample, and thus should not influence 

reconstruction of the lineage.

We performed modeling studies where we sought the minimal number of segregating 

mutations capable of accurately reconstructing lineage. Simulations imply that trees can be 

recovered from as few as 40 mutations. To evaluate for error tolerance, we introduced 300 

mutations at random positions. Injection of errors did not alter tree topology, because of the 

unlikely occurrence of random mutations at the same position in multiple samples. We 

evaluated how mutation rate and number of nucleotides targeted for sequencing influence 

ability to resolve cells separated by given numbers of cell divisions (Supplementary Table 

4). We found the only critical parameter is total number of mutations. This number, N, is 

given by (r-1)μdt, where r = nodes of the tree, μ = mutation rate, d = number of doublings, 

and t = number of nucleotides sequenced. For the actual mutation rate (10−6) and target size 

(~10 Mb at ≥1× coverage common to all samples), we infer capacity to resolve cells 

separated by as few as 4 divisions. Ability to resolve cell lineage scales linearly with both 

mutation rate and target size. Therefore, to dissect lineage in organisms with lower mutation 

rates, one can simply increase DNA sequence target size (by adding additional primers, 

shortening primer length, or increasing cycle extension time).

As DNA sequencing technology evolves, it will become economically feasible to sequence 

progressively larger portions of the genome from greater numbers of single cells. Until then, 

we show here that from just a few cells (or single cells briefly clonally expanded ex vivo—

which can be facilitated with a conditional immortalizing oncogene7), mutations found at 

arbitrarily sampled genomic positions yield information sufficient for inferring cell lineage. 

Complementary approaches are based on in vivo image and retrospective clonal analysis17. 

We propose that such studies could provide a better understanding of how cells divide 

during development and differentiation and in the formation of cancer.

METHODS

Methods and any associated references are available in the online version of the paper.

METHODS

Cell Culture

A spontaneously immortalized embryonic fibroblast cell line was derived from a female 

Mlh1Δ/ Δ/Pold1e/+ mouse. The mouse was obtained from a cross of heterozygotes for Mlh1Δ 

(gift of M. Liskay18)and Polde (maintained in the C57BL/6J strain). Cells were grown in 

DMEM plus 10% FBS with penicillin G (100 U/ml) plus streptomycin (100 μg/ml) at 37°C 

with 5% CO2 in a humidified incubator. Single cells were isolated by limiting dilution and 

clonally expanded on a 6 cm dish until confluent (an average of 19 divisions (range 18.1–

20.1), calculated as log2 of total cells, as counted with a hemocytometer). ¾ of the cells from 

each plate were harvested for DNA extraction using the 5prime ArchivePure DNA Cell/

Tissue kit. Of the remaining ¼, a small aliquot was again plated at limiting dilution to obtain 
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single cells for clonally isolated subculture. The remainder was preserved in liquid nitrogen. 

This process was repeated until 4 passages were obtained.

Fluctuation Analysis

Rates of spontaneous mutation to ouabain resistance were measured by fluctuation 

experiments as described previously19. Mutation rates (mutants per cell division) were 

calculated from the number of ouabain-resistant colonies in each replica by the maximum 

likelihood method20 using the newtonLDPlating function in Salvador 2.3 software to 

estimate m21. 95% Confidence intervals (indicated in parentheses, Supplementary Table 3) 

were calculated in Salvador 2.3 using the CILDPlating function. Two independent 

fluctuation experiments were conducted and analyzed individually. These experiments had 

similar Nt values. Therefore, the raw fluctuation data were combined and analyzed as one 

large data set (right column, Supplementary Table 3) to obtain the best estimate of mutation 

rate (bottom right in bold, Supplementary Table 3). Per-base-pair mutation rates were 

calculated from the phenotypic ouabain-resistance rates assuming an effective target size (τ) 

of 30 base pairs. This τ value was estimated as follows. Base substitution mutations in any 

one of sixteen codons in the Na,K-ATPase α1 gene (Atp1a1) are known to confer 

genetically dominant resistance to μM concentrations of ouabain in human cells22. Mouse 

cells, however, are naturally resistant to μM concentrations of ouabain due to differences at 

2 of these 16 codons (Q111R and N122D)23,24. Our fluctuation assays were conducted with 

2 mM ouabain, conditions expected to only detect mutations that confer exceptionally high 

ouabain resistance. We estimate the target size to be ~5 base pairs per allele, corresponding 

to 2 Atp1a1 codons (D121 and T797) known to effect >50-fold ouabain resistance when 

mutated22,25. The mouse fibroblast cell line used in our experiments exhibited a near-

hexaploid karyotype (data not shown). Therefore, τ = 5 base pairs per allele × 6 alleles = 30 

base pairs. The combined fluctuation data yielded a mutation rate of 4.2×10−5 ouabain-

resistant mutants per cell division. This phenotypic rate corresponds to a per-base-pair rate 

of 4.2 x 10−5/30 base pairs = 1.4×10−6.

Primer Design

Arbitrary sequences of length 8, 9, or 10 were generated randomly, with the exception that 

the 3′ base was always either G or C (with equal probability). 23,000 sequences were 

screened against the mouse NCBI37/mm9 build (http://www.ncbi.nlm.nih.gov/mapview/

stats/BuildStats.cgi?taxid=10090&build=37&ver=1) derived from the C57BL/6J strain, 

using 2 Perl programs (Supplementary Information). The software calculated the frequency 

of primer binding, the distribution of lengths for predicted amplicons, and the expected 

number of amplified nucleotides contained within a specified range of amplified product 

lengths. Potential primer candidates were picked based on a goal of amplifying 5×10−5 to 

3×10−4 fraction of the mouse genome in amplicons ≤2 Kb in length. Next, the potential 

candidates were screened based on stability, G·C basepair content, predicted melting 

temperature, and the possibility of dimer, hairpin, and repetitive sequence run formation 

using Clone Manager Professional Suite 6.0 (Sci-Ed Software). Based on those data, a total 

105 sequences were selected for experimental testing by PCR using C57BL/6J mouse 

genomic DNA as the template and visualization on a 1.5% TBE agarose gel with ethidium 

bromide for evaluation. Of the 105 sequences tested, 7 were 8-mers, 65 were 9-mers, and 33 
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were 10-mers. Amplicons were seen in 14% of 8-mers, 48% of 9-mers, and 73% of 10-mers. 

The 5 most promising candidates (3 9-mers and 2 10-mers) plus a combination of 2 

promising candidates were tested by sequencing the resulting amplicons on the Roche 454 

genomic sequencing platform in duplicate using 12 multiplex identifier adapters. Our 

amplification goal was ~500,000 nucleotides at ≥30× coverage. The best primer sequence 

was the 10-mer: 5′-GGGGGGGGAG-3′ which mapped 501 Kb in common between the 

duplicates at ≥1× coverage but only 23.8 Kb in common at ≥30× coverage. We switched 

sequencing platforms to the ABI SOLiD platform given higher throughput and improved 

accuracy which allowed us to reduce our fold-coverage goal to ≥15×. The 4 most promising 

primer candidates were then tested on the SOLiD system version 2.0 in duplicates on one 

flow cell divided into 8 segments. The best primer sequence again was the same 10-mer: 5′-

GGGGGGGGAG-3′ which mapped 7.11 Gb in common between the duplicates at ≥1× 

coverage and 621 Kb in common at ≥15× coverage, achieving the design specification.

PCR

50 ng of DNA from each sample was mixed with 2 μM of primer, 250 μM of each dNTP, 

and 5 units of Agilent PfuUltra High-Fidelity DNA Polymerase AD in a final volume of 50 

μl of manufacturer-supplied buffer. Following initial denaturation at 95° C for 2 min., 

samples underwent 50 cycles of denaturation at 95 °C for 30 sec., annealing at 25° C for 30 

sec., extension at 72° C for 3 min., and final extension at 72° C for 15 min., followed by 

purification using QIAGEN QIAquick Nucleotide Removal Kit. In order to diminish 

contributions from PCR-related errors, 8 independent PCR reactions were performed per 

sample and then combined (~10 μg DNA total) for sequencing.

DNA Sequencing

Massively parallel sequencing was performed using the Applied Biosystems SOLiD 

(version 3+, read length = 50 nucleotides) platform utilizing the manufacturer-supplied 

reagents and protocols for fragment analysis, with 5 μg DNA starting material per sample. 

Outputted. csfasta and .QV.qual files were mapped to mouse reference genome build 

NCBI37/mm9 using manufacturer’s supplied Bioscope 1.0.1 software, with default 

parameters. SAMtools software26 was used to prepare .pileup files. Data files are available 

at http://horwitz.genetics.washington.edu/trees/. Mapped sequences for all 15 samples can 

be viewed as custom tracks in the UCSC Genome Browser. Chromosomes 1–10 are 

viewable at http://genome.ucsc.edu/cgi-bin/hgTracks?

hgS_doOtherUser=submit&hgS_otherUserName=Horwitz

%20Lab&hgS_otherUserSessionName=CH1-10 Chromosomes 11–19 and the X 

chromosome are viewable at http://genome.ucsc.edu/cgi-bin/hgTracks?

hgS_doOtherUser=submit&hgS_otherUserName=Horwitz

%20Lab&hgS_otherUserSessionName=CH11-19X. Custom tracks can also be accessed at 

http://horwitz.genetics.washington.edu/trees/tracks/.

Mutation Detection

We wrote a Perl program (Supplementary Information) to compute the most likely 

genotypes at each locus covered by all of the samples, given a collection of sequencing 
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reads from multiple samples of a common population. The inputs to the program are the 

reads, read quality values at each locus, and the mapping quality values for each sample. 

The program assumes that at each locus, some of the samples are homozygous and others 

are heterozygous, but that all samples have at least one allele in common. Then the program 

computes the probability that each subset is the set of heterozygotes. The subset which has 

the largest probability P, is chosen as the heterozygote, and the Phred score Q=10log(1-P) is 

the quality value of this consensus call. Following Bayes’ formula, the a posteriori 

probabilities are proportional to the products of the a priori probabilities and the probability 

of the data, given the subset of heterozygotes. The a priori probability is based on the 

(unknown) coalescent tree of the samples. All trees are assumed to be equally likely, and the 

a priori probability depends only on the cardinality of the heterozygote set. We calculate the 

fraction C(n,k) of clades of size k among all clades of all trees on n nodes. This can be 

calculated recursively, based on a well-known recursive construction of all tree shapes27. 

The a priori probability for the empty set (all samples are homozygous) is: 1-het-mut, where 

het is the heterozygosity of the mouse (assumed 10−3) and mut is an approximation to the 

combined mutation rate over all branches of the coalescent tree. The a priori probability for 

the full set (all samples are heterozygous) is het. For any other set, S, the a priori probability 

is: mut×C(n,k)/nchoosek, where k=#(S). The calculation of the probability of the data, given 

the set S, is calculated in a manner similar to that of the genotype calling algorithm of Maq 

software15. Briefly, we form the product of the probabilities for each sample. For samples 

not in S, this is the product of the error probabilities of all variant reads, while for samples in 

S, we use the probability nchoosek/2n, where n is the total number of reads and k is the 

number of variant reads. We additionally performed receiver operating characteristic 

analysis (Supplementary Fig. 6), employing a read depth cutoff ≥15×, in order to evaluate 

optimal Phred quality scores.

Phylogenetic Analysis

Bayesian phylogenetic trees were inferred using MrBayes 3.2.128. As previously described 

in detail6,7, a generalized time reversible DNA substitution model was selected with gamma-

distributed rate variation across sites. For both reconstructions, 106 generations were 

produced and consensus trees were calculated using a burn-in of 2,500 trees (about twice the 

number required for convergence of the runs). Phylogenies were edited for clarity using 

FigTree v1.3.1 (A. Rambaut, University of Edinburgh, http://tree.bio.ed.ac.uk/software/

figtree/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cell lineages. (a) A single mouse fibroblast was seeded onto a Petri dish. After 

approximately 20 doublings, a single cell was used to seed each of the next tier of dishes, 

and so on. (b) Lineage reconstructed from 592 mutations identified from sequencing of 

single primer arbitrary PCR products from DNA extracted from all 15 dishes. (c) Simplified 

lineage tree, similar to Fig. 1a, but showing only the terminal nodes. (d) Lineage 

reconstructed from the 667 mutations present in only the terminal nodes. Numbers in 

deduced trees are Bayesian posterior probabilities.
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Figure 2. 
Sample-to-sample reproducibility. Total quantity of unique genomic sequence shared among 

all samples, at various minimum depths of coverage, as number of samples increases from 1 

to 15 (for example, at ≥1× depth of coverage, there are ~10,000,000 unique genomic 

positions that are sequenced in common to all 15 samples).
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Figure 3. 
Genome browser snapshot. Shown are histogram plots of an ~3 Kb amplicon on 

chromosome 1 corresponding to mapped reads from arbitrary PCR for the first 6 samples 

(bottom six graphs). Other tracks include (from top to bottom): known genes (coverage 

overlaps with exons and introns of Il19), position of identified mutations (vertical red line at 

right end of plots) that are found in at least one sample, minimum fold-coverage common to 

all 15 samples, and mean fold-coverage for all 15 samples. Note that PCR is highly 

consistent from one sample to the next. Also note low depth-of-coverage reads unique to 

each sample (flanking the amplicon).
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