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ABSTRACT Images of laser scattering patterns generated by bacteria in urine are
promising resources for deep learning. However, floating bacteria in urine produce
dynamic scattering patterns and require deep learning of spatial and temporal fea-
tures. We hypothesized that bacteria with variable bacterial densities and different
Gram staining reactions would generate different speckle images. After deep learn-
ing of speckle patterns generated by various densities of bacteria in artificial urine,
we validated the model in an independent set of clinical urine samples in a tertiary
hospital. Even at a low bacterial density cutoff (1,000 CFU/mL), the model achieved a
predictive accuracy of 90.9% for positive urine culture. At a cutoff of 50,000 CFU/mL,
it showed a better accuracy of 98.5%. The model achieved satisfactory accuracy at
both cutoff levels for predicting the Gram staining reaction. Considering only 30 min
of analysis, our method appears as a new screening tool for predicting the presence
of bacteria before urine culture.

IMPORTANCE This study performed deep learning of multiple laser scattering patterns
by the bacteria in urine to predict positive urine culture. Conventional urine ana-
lyzers have limited performance in identifying bacteria in urine. This novel method
showed a satisfactory accuracy taking only 30 min of analysis without conventional
urine culture. It was also developed to predict the Gram staining reaction of the bac-
teria. It can be used as a standalone screening tool for urinary tract infection.
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Urinary tract infections (UTIs) are a common cause of sepsis in health care-associ-
ated infections and the most common infections among outpatient clinics (1).

UTIs include pathogenic infections at anatomical sites from the urethra to the kidney
(2). In a multinational study, the focus of infection was associated with the urogenital
system in 30% of sepsis patients, and 12% of nosocomial UTI patients developed uro-
sepsis (3). Inappropriate antibiotic therapy or late management is associated with a
higher mortality in the patients with urosepsis (4, 5). Therefore, immediate administra-
tion of broad-spectrum antibiotics after urine culture is crucial (1). Therefore, when
physicians are suspicious of a UTI that requires further antibiotic treatment, prompt
reporting of whether the patient is in a true infection state should be performed.
Furthermore, accurate pathogen identification is necessary to guide physicians regard-
ing narrow-spectrum antibiotic usage. Currently, the standard method for identifying
uropathogens is urine culture. The urine culture process is used to quantitatively report
the pathogen by spreading 1 mL or 10 mL of the urine sample onto the culture plates.
For complete isolation and identification of the pathogen, this process takes 24 to 48 h
(6). In clinical settings, several urine analyzers equipped with flow cytometry or
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automated microscopy are used to rapidly screen for the presence of urinary bacteria
in patients. The urine analyzer offers a screening method to determine whether urine
culture or further testing of the infection status is needed (7–10). However, the use of
urine analyzers for classifying the Gram stain characteristics of bacteria has not yet
been validated.

To overcome the disadvantage of the urine analyzer and the culture, optical sensing
and machine learning have been applied in rapid diagnostics. One research study used
machine learning to train the peptide signatures by mass spectrometry from uncul-
tured urine to rapidly identify bacterial species (11). Another research study used deep
learning of single bacterial cell spectra to identify bacterial species without culture
(12). Here, we constructed a system combining optical sensing technology and
machine learning, named as the Bacometer. The Bacometer system exploits multiple
light scattering to maximize the interaction between the light and the target bacteria
(Fig. 1A), which results in highly enhanced scattering signals from the bacteria and the
formation of time-varying speckle patterns.

In this article, we validated this novel method for the prediction of positive urine
culture and provide a Gram staining result using deep learning analysis of the laser
scattering patterns of bacteria in urine.

RESULTS
Patient characteristics. We constructed a prediction model by training the

Bacometer using the laser scattering patterns of nine American Type Culture
Collection (ATCC) strains diluted with artificial urine (see Table S1 in the supplemental
material). The trained model was clinically validated using 263 clinical urine samples
from the testing set (Table 1). The positive culture rate was 29.7% (78/263), and the
possible contamination rate of the specimens was 3.8% (10/263), both of which were
significantly higher in females (chi-square test: culture rate, P value = 0.009; contamina-
tion rate, P value = 0.006). To compare the accuracies of the two assays, 215 samples
that simultaneously underwent random urinalysis were investigated. The levels of ni-
trite, leukocyte esterase, bacteria, and white blood cells were used as surrogate
markers of positive urine cultures. The prediction rate of urinalysis for positive urine
culture was 42.8% (92/215), whereas 44.6% (including possibly contaminated speci-
mens) among them were true positives according to bacterial culture (Table 1).

Clinical performance validation of the Bacometer. Of the 263 clinical urine sam-
ples, 215 paired automated microscopic urinalysis results were analyzed to compare
performances between the two assays. Urinalysis exhibited a low sensitivity (55.4%)

FIG 1 Schematic of “The Wave Talk” sensor system. (A) Multiple reflections of light increase the chance of light-bacterium interaction, which works as an
amplification signal. (B) Schematic diagrams of urinary tract infection diagnosis and data processing for deep learning architecture. (C) Proposed two-
stream network architecture. CNN, convolutional neural network.
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and specificity (63.8%), whereas the Bacometer produced more accurate results, with a
sensitivity of 75.7% and specificity of 97.9% when the cutoff level for positive urine cul-
ture was set at 1,000 CFU/mL (Table 2, P value, 0.05).

The advantage of this novel assay is the direct prediction of the Gram staining reac-
tion in the collected urine samples without colony isolation. Therefore, the Bacometer
was evaluated for its predictive ability with respect to the Gram staining reaction
results of the predicted positive urine culture samples. The evaluation was divided into
two subsets: the first set incorporated all collected samples (n = 263) and the second
contained those with positive cultures for pathogens of the trained species (n = 195)
(Table 3; Fig. 2). Furthermore, the performance of the assay was evaluated at two differ-
ent cutoff levels for positive culture prediction (1,000 CFU/mL and 50,000 CFU/mL). At
the 1,000 CFU/mL cutoff level, the predictive accuracy was 90.9%, with a sensitivity of
76.1% and specificity of 98.3%. For the prediction of the Gram staining reaction among
the predicted positive urine culture samples, the accuracy was 79.1% (Table 3; Fig. 2A).
For the second subset (n = 195), the derived parameters improved, with an accuracy of
97.9%, sensitivity of 95.0%, and specificity of 98.3%, which produced an accuracy of
84.2% for the prediction of the Gram staining reaction (Table 3; Fig. 2B).

When the cutoff level for positive culture was set at 50,000 CFU/mL, the predictive
accuracy was 98.5%, with a sensitivity of 100.0% and specificity of 98.3%. Among the
predicted positive urine culture samples, the predictive accuracy for the Gram staining
reaction was 77.4% (Table 3; Fig. 2C). For the second subset, the predictive accuracy for
positive culture improved to 99.0%, whereas the accuracy for the Gram staining reac-
tion was 76.9% (Table 3; Fig. 2D).

Distribution of pathogens. Among the true-positive (n = 67) and false-negative
(n = 21) samples identified by the Bacometer, we determined the distribution of the

TABLE 1 Characteristics and demographics of patientsa

Characteristic Total no.

No. (%) with culture result:

Positive Negative Possible contamination
Male 147 35 (23.8) 111 (75.5) 1 (0.7)
Female 116 43 (37.1) 64 (55.2) 9 (7.7)
Age (yr) (IQR) 60.0 60.5 (46.3–70.8) 59.0 (40.5–69.0) 56.5 (50.5–71.5)
Inpatient 190 54 (28.4) 130 (68.4) 6 (3.2)
Outpatient 73 24 (32.9) 45 (61.6) 4 (5.5)
Urinalysis result
(positive/total)

92/215 37 (40.2) 51 (55.4) 4 (4.4)

Nitrite 11 9 (81.8) 2 (18.2) 0 (0)
Leukocyte esterase 62 29 (46.8) 29 (46.8) 4 (6.4)
Bacteria (.25/HPF) 14 11 (78.6) 3 (21.4) 0 (0)
WBC (.2/HPF) 79 33 (41.8) 43 (54.4) 3 (3.8)
aSamples with results that stated “quality not satisfied” in any of the four predictive parameters or samples in
which urinalysis was not performed within the same day as or the day before urine culture were excluded from
analysis. Possible contamination was defined as having three or more isolates without predominance in a
culture. IQR, interquartile range; HPF, high-power field; WBC, white blood cell.

TABLE 2 Performance of urinalysis and the Bacometer using paired clinical urine samples
(n = 215) with 95% confidence interval for each parametera

Parameter Urinalysis Bacometerb P value
Sensitivity (%) 55.4 (44.1–66.7) 75.7 (65.9–85.5) 0.007
Specificity (%) 63.8 (55.9–71.8) 97.9 (95.5–100.0) ,0.001
PPV (%) 44.6 (34.4–54.7) 94.9 (89.3–100.0) ,0.001
NPV (%) 73.2 (65.3–81.0) 88.5 (83.4–93.5) ,0.001
Accuracy (%) 60.9 (54.1–67.5) 90.2 (85.5–93.9) NA
TP/FP/TN/FN (no.) 41/51/90/33 56/3/138/18
aPPV, positive predictive value; NPV, negative predictive value; TP, true positive; FP, false positive; TN, true
negative; FN, false negative; NA, not applicable.

bThe cutoff level for positive urine culture prediction by the Bacometer was set at$1,000 CFU/mL.
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pathogens identified from the plate culture (see Table S2). Gram-positive cocci and
Escherichia coli were the most frequent pathogens in true-positive samples, which is
consistent with previously published data (13, 14). All false-negative samples were
found to have a bacterial density of,10,000 CFU/mL.

DISCUSSION

Conventional methods for urine culture differ from those for other specimens (e.g.,
blood and sputum). Bacterial load was reported using a semiquantitative method that
provides grown CFU per milliliter of urine using calibrated loops. Although 100,000
CFU/mL is widely accepted as the decision level for UTI (15), clinical laboratories report
positive urine culture results using a cutoff level of 1,000 to 10,000 CFU/mL, consider-
ing the patient’s status or collection method. For instance, urine samples obtained by
catheterization are considered positive for 1,000 to 50,000 CFU/mL of bacteria (16).

Meanwhile, it is a great burden for laboratories to streak every urine sample onto
culture plates, while clinical blood cultures are performed only in culture bottles that
are alarmed with a positive signal. Therefore, it is important to adopt screening tools

TABLE 3 Performance parameters for the prediction of positive urine culture in two subsets
(overall and trained-species set) according to the two cutoff values for positive urine culture

Testing set (no.) Cutoff (CFU/mL) Accuracy (%) Sensitivity (%) Specificity (%)
Overall (263) 1,000 90.9 76.1 98.3

50,000 98.5 100.0 98.3

Trained species (195) 1,000 97.9 95.0 98.3
50,000 99.0 100.0 98.9

FIG 2 Confusion matrix describing the predictive performance of Gram staining reaction with
different cutoff levels for the prediction of positive urine culture. (A) Samples overall, cutoff $1,000
CFU/mL. (B) Trained-species samples, cutoff $1,000 CFU/mL. (C) Samples overall, cutoff $50,000 CFU/
mL. (D) Trained-species samples, cutoff $50,000 CFU/mL.
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or provide precise alternative methods for urine culture to control the workload in
laboratories.

In this study, we validated a novel and rapid bacterial screening method using a
convolutional neural network. The clinical validation set consisted of samples that
were chosen randomly on a routine working day. The prevalence of positive urine cul-
tures and the distribution of isolated pathogens in the validation set guaranteed the
absence of sampling bias (see Table S2 in the supplemental material).

Since conventional light-scattering techniques use only single-scattered light from a
specimen, the scattering signals from bacterial solutions with low concentrations are too
low to be detected owing to the low scattering cross sections. This is inevitable because
of the microscopic size of individual bacteria and small refractive index contrast between
the bacterial cytoplasm and surrounding medium (17). Conventionally, bacterial culture
is required to visually detect the presence of bacteria. In a sample with a high concentra-
tion of bacteria, the interactions of light and bacteria significantly increase due to multi-
ple light scattering, which is analogous to highly diffusive fog or clouds consisting of
transparent microscopic water droplets (18). The principle of the Bacometer is to gener-
ate multiple light scattering using a scattering surface without time-consuming bacterial
culture. Even at a very low concentration of bacteria, the light incident to a sample con-
taining a scattering surface undergoes multiple interactions due to multiple light scatter-
ing, resulting in strong scattering signals equivalent to samples with a high concentra-
tion of bacteria. As a result, the Bacometer system can detect the scattering signals from
individual bacteria with a significantly enhanced signal-to-noise ratio. This principle can
be understood as a significant amplification of an optical path length without physically
increasing a detection volume at a given sample concentration.

The use of multiple light scattering to enhance optical signals has been utilized to
overcome the sensitivity limitations of conventional optical devices (18), including scat-
tering super lenses (19), temperature sensors (20), pressure sensors (21), wavelength
meters (22), fiber-based spectrometers (23), absorption spectrometers (24), and nonre-
sonant lasers (25).

Previous attempts have been made to use optical sensing technology for rapid
identification of bacteria (26). Recently, extensive deep learning of bacterial Raman
spectra has been used to identify 30 common pathogens and their antibiotic suscepti-
bility, with an overall accuracy of approximately 82% (27). Other methods using optical
scattering technology have been applied for rapid identification of solid colonies of
Campylobacter spp. and common UTI pathogens (28, 29). Currently, the U.S. FDA-
approved laser scattering methodology for the qualitative detection of bacteriuria is
the BacterioScan 216Dx UTI system (30, 31). According to a recent study, this system
predicts UTI at a cutoff level of 50,000 CFU/mL, with a sensitivity of 92.1%, specificity of
82.7%, positive predictive value (PPV) of 44.8%, and negative predictive value (NPV) of
98.6% (30). The turnaround time of the system was 3 h.

Our optical method expedites the detection of Gram-positive or Gram-negative
pathogens by exploiting multiple scattered laser signals from bacteria with analysis
using deep learning. Using a convolutional neural network, deep learning of amplified
laser scattering patterns refracted by bacteria enabled the determination of the pres-
ence of the pathogen at 1,000 CFU/mL in uncultured urine and facilitated the determi-
nation of the Gram staining reaction of the pathogen. Clinical validation of the method
showed a superior accuracy compared to conventional urinalysis, and the method
showed enhanced performance with respect to the classification of samples that were
later discovered to be one of the pathogens used for training the system. Due to the
high NPV and PPV, the Bacometer would suffice as a standalone screening tool for fur-
ther specimen processing. Furthermore, among the clinical samples with nine patho-
gens used for deep learning training, the predictability was satisfactory with respect to
the Gram staining results.

A limitation of this study is that polymicrobial infections could not be filtered out
through the current system until conventional culture was performed. Deep learning
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of laser scattering patterns of polymicrobial samples may solve this issue in the future.
Second, although most of the samples with yeast in the urine were correctly predicted
for positive urine culture, the system still needs to be trained with a number of species.
Considering that the system was trained using only nine species, the deep learning of
more scattering patterns of diverse species (e.g., Candida and other Streptococcus spp.)
will improve the performance of the system. Furthermore, a prospective study of the
clinical impact of the Bacometer should be performed.

In conclusion, the Bacometer demonstrated reliable clinical performance through a
simple 30-min processing of urine specimens. Prediction of the Gram staining reaction
of the pathogen and the infection status at the lower limit of bacterial density could
provide faster and more appropriate interventions for UTI patients.

MATERIALS ANDMETHODS
Bacometer. The Bacometer system consists of a sensor unit that generates multiple scattering with

a diode-pumped solid-state coherent laser (l = 532 nm, 20 mW) as a light source and a complementary
metal-oxide semiconductor (CMOS) sensor (Fig. 1A). The sensor unit has an aluminum structure that can
generate multiple light scattering so that the incident light can be scattered and reflected several times
inside, maximizing light-matter interaction.

The light emitted from the sensor unit forms a specific speckle image generated by the interference
of the different light paths produced via multiple scattering and the use of a temporally coherent light
source. A camera is located at the output port of the scattering surface, which has an offset to the input
port of the scattering surface to minimize unscattered light signals at the camera plane. The speckle pat-
tern is measured using a CMOS sensor. The sensor is located so it captures each speckle grain size, corre-
sponding to approximately 2 by 2 pixels (32–36).

Training of the Bacometer using ATCC strains. Nine strains were obtained from the ATCC. The bac-
teria used in all experiments were grown in nutrient broth (NB) and Luria-Bertani (LB) broth. The bacte-
rial suspension was centrifuged at 6,000 rpm (3,663 � g, 4°C) for 10 min to obtain a pellet. Bacterial cell
pellets were washed with phosphate-buffered saline (1� PBS) in the same tube. UTI-causing strains
were cultured using MacConkey (BD Biosciences, Franklin Lakes, NJ, USA) medium and Columbia CNA
(BD Biosciences, Franklin Lakes, NJ, USA) medium with 5% sheep blood and incubated at 37°C for 20 h.
Escherichia coli (ATCC 25922) concentration was adjusted to an optical density at 600 nm (OD600) of 1.0
to 1.2 (108 CFU/mL). Other strains were adjusted using the same method (see Table S1 in the supple-
mental material). This study used eight concentration intervals (control [artificial urine], 1 � 103, 5 � 103,
1 � 104, 5 � 104, 1 � 105, 5 � 105, and 1 � 106) of bacteria initially diluted with artificial urine at a 1:100
ratio. This process was repeated eight times for each strain. The artificial urine used in this experiment
(artificial urine medium, 1700-0018; Pickering; lot.010058) was manufactured with a composition similar
to human urine and suitable for clinical research and product testing. Artificial urine can also grow a
wide range of urinary pathogens and form crystals found in actual urinary tract infections.

Deep learning. We used new neural network architectures inspired by classification techniques for
human action recognition, which can process both the spatial and temporal information contained in
videos (multiframe image data). Dynamic speckle patterns were analyzed using a DenseNet-based neu-
ral network to distinguish the presence of pathogens at a concentration of 1,000 CFU/mL in uncultured
urine and the Gram staining characteristics of the pathogen. A “two-stream network” incorporates two
streams of data (Fig. 1C), the spatial and temporal streams. The spatial stream processes sequential
speckle image frames and comprises a time-aligned DenseNet network (37) that feeds 300 frames from
each sample. The temporal network was also trained to receive optical flow data comprising grayscale
heatmaps, highlighting the movement of bacteria between two sequential frames in a speckle image. A
single data sample fed into the temporal network consisted of data describing the interframe optical
flow from a series of two frames, with a separate frame for movements in the vertical and horizontal
planes, resulting in a 2-channel input image of 256 by 256 pixels in a chunk. The temporal network was
encapsulated in a time-distributed layer, followed by a one-dimensional global average pooling layer,
allowing 100 sets of 3-frame chinks within the speckle images to be processed. Finally, the spatial and
temporal global average pooling layers were concatenated before the final output layer. This design is
inspired by the two-stream networks pioneered by Feichtenhofer et al. (38) but differs in several key
aspects. Most notably, our temporal stream comprised an untrained DenseNet model. Unlike
Feichtenhofer’s implementation, this network contained no fully connected layers and used the global
average pooling of feature maps, which resulted in significantly fewer trainable parameters, leading to
fast convergence with improved accuracy. Each network was trained until the validation loss had pla-
teaued. The models were saved after each epoch, and the model with the highest validation accuracy
was used for the final assessment of the test set. The final output layer of each network comprised three
densely connected neurons. The loss was calculated using the categorical focal loss function, and the
weights were updated using the Adam optimizer. The batch sizes for all the networks were 10.
Programming was performed with the Python programming language using TensorFlow (39) and Keras
(40) machine learning frameworks and the Keras-vis package (41).

Procedures for data acquisition and algorithm training. The data acquisition and algorithm train-
ing procedures are summarized in Fig. 1B. From the experimental data acquired with the Bacometer, the
data for the training set were split into 86% training (57,600 images) and 14% validation (9,600 images)
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groups. A total of 9,600 images of the validation data were obtained through additional experiments to
enhance the robustness of the deep learning model in practical UTI diagnosis. Samples for the validation
data were manufactured using the same procedure as that used for obtaining the training data, except
that a healthy person’s random urine was used. The training data set contained 7,200 images of the con-
trol (artificial urine) sample and 50,400 images of seven concentration spike samples. The data from the
validation set were then used to train the model. We trained the models for 500 epochs using the Adam
optimizer in the nonprivate setting and the stochastic gradient descent (SGD) optimizer in the private
setting. We preevaluated our framework using an eight-concentration class classification task. The test
set was predicted, and the results were tagged using pseudolabels. The whole data (training and valida-
tion) were split to ensure validation and to use to train the model using the focal loss function. Finally,
by using the pseudolabels, the original test set was predicted for model evaluation, which was formu-
lated as a three-class classification (negative, positive [Gram positive], and positive [Gram negative]).

Sample collection and conventional (reference) method. Routine clinical urine samples were ana-
lyzed in the clinical microbiology laboratory of a tertiary hospital (Severance Hospital, Seoul, South
Korea). Gram staining and urine culture were performed and interpreted by trained medical technicians
and confirmed by medical laboratory staff. For urine culture, 1 mL of urine was inoculated on 5% blood
agar and MacConkey agar plates (Asan Pharmaceutical, Seoul, South Korea). The plates were then incu-
bated for 24 h in a 5% CO2 incubator at 37°C. The interpretation of the culture depends on CFU per mL.
A plate showing ,1,000 CFU/mL (no visible colonies) was considered a negative culture result.
Otherwise, plates were considered positive results and processed for bacterial identification using con-
ventional methods, including the Vitek system (bioMérieux, Marcy l’Etoile, France) and/or matrix-assisted
laser desorption ionization–time of flight mass spectrometry (Vitek MS; bioMérieux Inc., Durham, NC).
Possible contamination of urine samples was defined as follows, which was modified from the clinical
procedure guideline: (i) $3 bacterial isolates and (ii) without predominant isolates (,105 CFU/mL) (42).
This study was approved by the Institutional Review Board of Yonsei University (IRB no. 4-2020-0021).

Preparation of the clinical urine samples. After collecting .4 mL of urine using a needleless sy-
ringe, the urine was passed through a filter (pore size, 5 mm; diameter, 25 mm; Tisch Scientific, North
Bend, OH). The pore size was chosen to shift host-derived cells and particulates, considering the size of
the bacterial cells (,5 mm). Filtered urine (2.27 mL) was then injected into the Bacometer.

Urinalysis. Urinalysis was performed using an Atellica 1500 automated urinalysis system (Siemens
Healthineers, Eschborn, Germany). The prediction of positive urine culture in the urine samples was con-
sidered positive if one of the following criteria was met: (i) bacteria of .25/high-power field (HPF), (ii) ni-
trite positive, (iii) white blood cell count of .2/HPF, and (iv) leukocyte esterase equal to or more than a
trace. The diagnostic performance of routine urinalysis was compared with the results of the conven-
tional culture method.

Data analysis. To validate the Bacometer with clinical samples, urinalysis and culture results were
retrospectively reviewed. The reference label for positive urine culture was defined as the growth of any
organism in the urine culture, including possible contaminated samples. If multiple species were isolated
in the urine culture, the reference label for the Gram staining reaction was defined as the most abundant
isolate in the culture. To compare the sensitivity and specificity values for predicting positive urine cul-
ture, McNemar’s test was performed between the urinalysis and the Bacometer. For PPV and NPV com-
parison, the generalized score statistic method was used (43). Confidence intervals were derived using
the Wald formula.

Data availability. Patient data were stored on a server at the Severance Hospital, South Korea. The
model training data and the clinical feature extracted data are available from the corresponding author
upon request and subject to ethical review.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
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