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Abstract

Phosphorus (P) is an essential element for crop production and a key source of nonpoint
pollution in agroecosystems. In this study, we sought to analyze P levels and the factors
affecting soil P availability, via P adsorption, in a typical field system that is characterized by
the year-round cultivation of vegetables. A total of 190 sites were sampled from vegetable
fields in Guangdong Province, South China. Within the research area, average concentra-
tions of 124.49 mg P kg™ and 1.55 g P kg™' were recorded for available P (AP) and total P
(TP), respectively, which are 8.53- and 1.78-fold higher, respectively, than the correspond-
ing values recorded in 1980. The determined P adsorption maximum (Q,,) averaged at
488.38 mg kg™', which represents a reduction of 16% compared to the values obtained four
decades ago. Accumulations of both TP and AP were found to be negatively correlated with
the soil's maximum adsorption buffering capacity (MBC), although no significant correlations
with the soil binding energies (k) and Q,,, were seen. However, soil pH was found to be sig-
nificantly correlated with k and Q,,,. Furthermore, both free Mn oxides (Mny) and silt concen-
trations in the soil were found to contribute to explaining the variations in Q,,. Collectively,
the findings of this study provide evidence to indicate that there has been an excessive
accumulation of P in the perennial vegetable fields of Guangdong Province over the past
four decades, which may have had negative effects on the P supply potential of the soil by
reducing the maximum adsorption buffering capacity.

1. Introduction

Phosphorus (P) is a limiting factor in nutrient cycling and a key element controlling primary
production in agroecosystems. Accordingly, large amounts of chemical P fertilizers have been
produced and applied to ensure high crop yields [1, 2]. Given that the P fertilizer applied to
soil is strongly adsorbed by clay minerals, approximately 80% of added P accumulates within
the soil [3, 4]. In China, it has been estimated that from 1980 to 2007, an average of 242 kg P
ha! accumulated in soil accompanied by an increase in Olsen P from 7.4 to 24.7 mg kg™ [5],
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which corresponds to an annual accumulation rate of 0.64 mg P kg ™. In Guangdong Province,
South China, the application of chemical fertilizer on farmland is 1.39 times higher than that
at the national level [6]. Notably, vegetable production is often characterized by intensive crop-
ping rotations, farmers usually apply an excessive phosphorus fertilizers to sustain the yields
due to the complex P dynamics and poor P uptake capability of vegetables [7-10]. Currently,
however, there is insufficient detailed information on soil P status, particularly with respect to
the intensively managed vegetable cropping systems in Guangdong Province.

In most of the current management strategies, soil P testing for agronomic purposes is
often the only available information about soil P levels [11]. In this context, Olsen’s bicarbon-
ate extractable P (Olsen P) is routinely used to estimate soil P availability for plant uptake, as
the Olsen P test is highly dependent on P sorption capacity [12, 13]. Al oxides, Fe (hydr)
oxides, and clay minerals [14, 15] are considered to be the major P sorbents in soil and their
roles in soil P adsorption have been well-documented [16-20]. Other properties, such as soil
parent material [21], pH [22], and texture [23] have also been associated with soil P sorption
capacities, along with exchangeable Ca and Mg, and organic matter content [24, 25]. Further-
more, anthropogenic activity, notably fertilization, has proven to be an important factor influ-
encing soil P adsorption capacity, maximum buffering capacity, and P biological availability
[26-28]. To date, however, there have been very few studies that have investigated the relation-
ship between soil P status and adsorption characteristics.

The objectives of this study were (i) to investigate P status in the soil of intensively managed
vegetable fields, and (ii) to examine P adsorption characteristics and their relationships with
soil P status, as well as other soil properties, in these heavily fertilized agricultural systems. We
anticipate that the findings of this study will contribute to developing appropriate P manage-
ment strategies for vegetable production and environmental protection in P-enriched soils.

2. Materials and methods
2.1 Study site

This study was conducted in some areas of the Pearl River Delta (Fig 1), Guangdong province,
south China. The study area is in the suburb of the city of Guangzhou (E113°2/15"-113"
51'16.7", N 22°44’12"-23°34/54.6"), Huizhou (E113°2'15"-113°51'16.7", N22°44/12"-23"
34'54.6"), Jiangmen (E113°2/15"-113°51'16.7", N22°44'12"-23°34’54.6") and Zhaoqing (E113"
2'15"-113°51'16.7", N22°44'12"-23°34'54.6"), with a subtropical monsoon climate. Mean
annual temperature is 22.4°C and mean annual precipitation 1898.5 mm (1980-2019), with
80% of precipitation occurs between April and September. Based on the Great Groups in Chi-
nese Soil Taxonomy [29], the soils in the research area are classified as latosolic red soils,
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Fig 1. Map of study area with location of sampling sites (A, map of China; B, map of Guangdong province; C, map of sampling sites).
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paddy soils, fluvi-aquic soils and some other soil types (i.e. red soil, purpholish soils, yellow
soils, and so on). Latosolic red soils, corresponding to Ultisols [30], are the dominant soil type
across the study area, covering 42115.52 km” or approximately 97.5% of the total soil area [31].
Perennial vegetable-cultivated field is a major agricultural system in the study area, various of
vegetables such as leafy vegetables, melon vegetables, rhizome vegetables as well as solanaceous
fruit vegetables were planted with random rotation annually. Most of sampling sites in the
research area have been cultivated vegetables all year round for more than 5 years.

2.2 Soil sampling

Soil samples were collected from 81, 37, 36 and 36 vegetable fields in Guangzhou, Huizhou,
Zhaoqing and Jiangmen (Fig 1), respectively, during the February to May, 2019. There were
190 soil samples totally collected in the research area. In each sampling site, one field was
selected for soil sample collection. Nine soil cores (diameter = 3.0 cm) in each field were taken
from the surface soil layer (0-20 cm), avoiding the area of fertilizer or ridges. The moist soil
cores from each field were mixed to form a field composite samples which were sieved to a 2
mm-mesh to remove plant residues and visible rocks. Soil samples were air-dried and then
stored at room temperature before analysis.

2.3 Soil analysis

All soil samples were used for TP and AP analysis. Eleven of 190 samples were selected ran-
domly for phosphorus adsorption isotherm experiments and measurement of soil properties
(Table 1).

According to the methods described by Lu (2000) [32], soil pH was measured in a mixture
(soil:water 1:2.5) using glass electrode, organic C with potassium bichromate-sulfuric acid
method, TP was extracted by digestion with HF-HCIO, and determined with molybdenum-
blue colorimetry, AP with Olsen method, cation exchange capacity (CEC) with ammonium
acetate method and the content of sand, silt and clay was measured with hydrometer method.
Free Fe-Al-Mn oxides were extracted with the sodium dithionite-sodium citrate-bicarbonate
(DCB) method [33], while amorphous Fe-Al oxides were extracted with ammonium oxalate
(pH 3.0) [34]. Fe, Al and Mn in the extracts were determined by using inductively coupled
plasma-mass spectrometer (Agilent 7800 ICP-MS, USA).

Table 1. General characteristics of the eleven samples for P adsorption isotherm experiment and soil properties
analysis.

Soil samples Geographical coordinates Vegetable crops
S1 113°19'11.9"E | 23° 21'28"N | Leafy vegetables
S2 113°26/57.3"E | 22° 55'41.7" N | Rotation of leafy vegetables, melon vegetables and bean vegetables
S3 113°29'55"E | 23°21'00"N | Rotation of bean vegetables, melon vegetables and leafy vegetables
S4 113°28'23"E | 22°44'12"N | Melon vegetables
S5 113°31’58"E | 23°31'40"N | Rotation of leafy vegetables and melon vegetables
S6 113°06'18"E | 23°26'15"N | Rotation of melon vegetables and bean vegetables
S7 113°51'17"E | 23°10°43"N | Rotation of melon vegetables and bean vegetables
S8 112° 44'32.7"E | 23°16'46" N | Leafy vegetables
S9 112° 03'36.7"E | 24° 4'58.9"N | Leafy vegetables
S10 112°37'42.2"E | 22° 57'50"N | Melon vegetables
S11 114° 32'44.2"E | 22° 54'15.6" N | Melon vegetables

https://doi.org/10.1371/journal.pone.0264189.t001
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2.4 Phosphorus adsorption

2.4.1 Batch experiment. Phosphorus adsorption was evaluated in triplicate 1.00-g soil
samples that were equilibrated in 100 ml centrifuge tubes with 20 ml of CaCl, solution (0.01
mol L") containing 0, 10, 20, 40, 60, 100 and 150 mg P ™. Three drops of chloroform were
added to each tube to inhibit microbial activity. And then, the tubes were shaken for 24 h on
an end-over-end shaker at 180 oscillations per min, and centrifuged at 4000 rpm for 10 min.
The contents of each tube were then passed through a 0.45 pm membrane filter, and the P con-
centration in the solution was measured colorimetrically using the molybdate blue method
[35].

2.4.2 Modeling of P adsorption. Phosphorus adsorption isotherms were determined with
the Langmuir equation (Eq (1)) [36].

c C 1

Q7o ke, W

where Q (mg kg™') is the amount of P adsorbed to the soil at the equilibrium P concentration
C (mgL™), Q. (mgkg™) equals P adsorption maximum, and k (L mg™") is a constant related
to the binding energy. The maximum adsorption buffering capacity (MBC, L kg'l) [37] was
expressed as:

MBC =k x Q, (2)

The equilibrium phosphorus concentration at zero adsorption (EPC,) indicates the ability
of the soil to hold phosphorus [38]. EPC, was calculated with the following formula:

Q
EPCy = ——

where Qy is the P concentration in solution when the exogenous P concentration is 0 mg L™".

2.5 Statistical analyses

Data were expressed as means of two or three replicates. Correlation and the multiple stepwise
linear regression were performed by IBM SPSS statistics versions 17.0. All figures were created
using OriginPro 2020 (OriginLab Corporation., Northampton, MA, USA).

3. Results
3.1 Soil P concentrations

In the fields surveyed in Guangzhou, Huizhou, Zhaoqing, and Jiangmen, the mean soil TP
concentration of 1.87, 1.23, 1.29, and 1.42 g P kg™ was recorded, respectively (Fig 2A). Overall,
soil TP concentrations in the research area ranged from 0.39 to 3.92 g P kg™, with an average
of 1.55 g P kg™ (Fig 2A). In the majority of soil samples (73.2% of total samples), TP concentra-
tion ranged from 1.01 to 2.0 g P kg™ (Fig 2B), which corresponds to a medium to very rich sta-
tus, as defined by the soil nutrient classification standards from the Second National Soil
Census in China [39]. Notably, 24.2% of the total soil samples were characterized by TP con-
centrations exceeding 2.0 g P kg' (Fig 2B). The AP concentration of soil samples from Guang-
zhou, Huizhou, Zhaoging, and Jiangmen was 147.6, 100.92, 102.04, and 119.15 mg P kg™ (Fig
3A), respectively. Within the research area, a total of 93.7% of the soil samples were found to
have an AP concentration higher than 40 mg P kg™' (Fig 3B), which is defined as the threshold
of a very rich status for AP based on the soil nutrient classification standards (S1 Table) [39].
Overall, soil AP concentration in the research area ranged from 13.8 to 314 mg P kg™', with an
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Fig 2. Concentrations (A) and frequency distribution (B) of total phosphorus in studied soils.
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average value of 124.49 mg P kg'. The ratio of soil AP to TP is defined as the phosphorus acti-
vation coefficient (PAC) [40], and in the present study, the mean PAC value of 8.33%, 8.69%,
8.27%, and 8.33% was obtained, with corresponding coefficients of variation (CV) of 44.8%,
32.5%, 40.4%, and 37.1%, for soils collected in Guangzhou, Huizhou, Zhaoging, and Jiang-
meng, respectively (Table 2). At the regional scale (the entire research area), PAC values ran-
ged from 1.58 to 19.89%, with an average of 8.39% (Table 2).

Based on data provided by the Second National Soil Census in China in 1980, soil TP and
AP levels in the farmlands of Guangdong Province were 0.087% + 0.010% (equivalent to 0.87 g
Pkg') and 14.6+3.4 mg P kg ™' [31], respectively. Our findings in the present study revealed
that there have been significant increases in both soil TP and AP concentrations in the period
from 1980 to 2019, which were estimated to have increased by 78% and 753%, respectively,
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Fig 3. Concentrations (A) and frequency distribution (B) of available phosphorus in studied soils.

https://doi.org/10.1371/journal.pone.0264189.9003
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Table 2. Phosphorus activation coefficient in soil from different sampling sites (n = 190).

Parameters Guangzhou Huizhou Zhaoqing Jiangmen Research area
Average (%) 8.33 8.69 8.27 8.33 8.39
Range (%) 1.58-19.89 4.13-15.47 3.74-18.8 2.54-15.58 1.58-19.89
C.V. (%) 44.8 32.5 40.4 37.1 40.0

C.V., Coefficient of variation; Research area, includes Guangzhou, Huizhou, Zhaoqing and Jiangmen.

https://doi.org/10.1371/journal.pone.0264189.t002

over the past four decades. Moreover, within this region, soil TP and AP accumulation rates of
17.4 mg P kg™ year™' and 2.82 mg P kg ™' year! was observed, respectively.

3.2 Soil properties

The major properties of the 11 soils selected for isotherm sorption measurements are displayed
in Table 3. Most of the soils were slightly acidic, with pH values ranging from 5.04 to 6.46; the
exception being soil S8 with a pH of 7.23. The soils are generally sandy loams to silty clay
loams, with silt contents ranging from 28.8% to 52.4% (mean: 44.69%) and a clay content rang-
ing from 13.8% to 29.4% (average: 21.78%) (Table 3). The mean concentration of organic mat-
ter (OM), TP and AP was 21.19 gkg', 1.58 g kg™, and 126.59 mg kg™, respectively (Table 3).
Cation exchange capacity (CEC) averaged 9.16 cmol kg™, ranging from 4.71 to 17.0 cmol kg,
with values for a majority of the soils being lower than 10 cmol kg ™. The concentrations of ele-
ments extracted using DCB ranged from 2.33 to 5.00 g kg™ for Aly, 11.16 to 30.72 g kg™ for
Fegy, and 47.24 to 591.47 mg kg'1 for Mng; whereas, the concentrations of amorphous Al, Mn,
and Fe oxides (Al, Mn, and Fe,), extracted with ammonium oxalate, ranged between 1.73
and 3.23 gkg', 41.12 and 586.53 mg kg !, and 2.27 and 9.68 g kg™, respectively.

Table 3. Physico-chemical properties of the eleven soils from different vegetables fields (n = 11).

Soil samples* pH Sand Silt Clay oM TP AP CEC Alq Mngy Feq Al, Mn, Fe,
% % % g/kg g/kg mg/kg cmol/kg g/kg mg/kg g/kg g/kg mg/kg g/kg
S1 5.92 20.6 52.4 27.0 26.38 1.64 109.80 13.12 3.61 295.75 12.58 3.06 197.86 3.73
S2 5.05 32.6 48.4 19.0 37.84 2.59 228.71 17.00 4.64 505.71 30.72 3.23 328.01 9.68
S3 5.83 46.2 28.8 25.0 20.57 0.87 13.80 4.71 3.52 84.43 22.33 1.73 67.94 2.27
S4 5.61 26.6 48.4 25.0 20.53 1.42 101.27 13.86 2.72 587.90 15.90 2.11 586.53 7.83
S5 5.04 19.2 51.4 29.4 17.36 1.75 179.35 7.80 5.00 64.92 21.45 2.31 60.21 4.87
S6 6.46 36.6 41.2 22.2 14.26 1.35 119.67 7.64 3.44 52.85 13.93 1.91 44.29 2.58
S7 6.14 39.0 41.6 19.4 11.83 0.96 74.35 6.92 2.33 591.47 11.16 1.89 523.74 4.04
S8 7.23 40.2 46.0 13.8 27.38 2.07 167.04 7.60 2.68 143.20 20.88 1.79 103.57 5.04
S9 5.87 37.6 46.6 15.8 18.55 1.33 106.98 6.12 3.76 132.71 20.53 2.05 100.86 4.09
S10 5.12 42.0 38.2 19.8 25.22 1.86 179.74 8.15 2.63 47.24 14.77 2.03 41.12 5.57
S11 6.04 28.2 48.6 23.2 13.21 1.57 111.75 7.89 4.28 243.15 28.85 2.42 176.93 4.08
Minimum 5.04 19.20 28.80 13.80 11.83 0.87 13.80 4.71 2.33 47.24 11.16 1.73 41.12 2.27
Maximum 7.23 46.20 52.40 29.40 37.84 2.59 228.71 17.00 5.00 591.47 30.72 3.23 586.53 9.68
Average 5.85 33.53 44.69 21.78 21.19 1.58 126.59 9.16 3.51 249.94 19.37 2.23 202.82 4.89
C.V. (%) 11.20 26.38 15.32 21.78 35.95 30.96 46.53 41.20 24.90 86.29 33.12 22.32 95.69 44.64

* Information of eleven soils see Table 1. TP, total phosphorus; AP, available phosphorus; OC, organic carbon, obtained from organic matter content (OM) divided by

1.724. CEC, cation exchange capacity; Aly, free aluminium oxides; Mny, free manganese oxide; Fey, free iron oxide; Alo, amorphous aluminum oxides; Al,, free

aluminum oxide; Fe,, amorphous iron oxide. C.V., Coefficient of variation.

https://doi.org/10.1371/journal.pone.0264189.t003
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According to the soil nutrient classification standards from the Second National Soil census
in China (S1 Table) [39], soil OM levels are in the deficient to rich range and TP levels are in
the medium to very rich range. However, most of soil AP concentrations are in the very rich
status with an exception in sample S3, for which AP value is in medium level.

3.3 P adsorption

In all assessed soils, P sorption increased non-linearly with increasing P concentrations (Fig
4). However, the percentage of adsorbed P (the ratio of adsorbed P to added P) decreased as
the concentration of P increased. For soils with P application rates of 10 and 150 mg L', the
adsorbed fraction of 20.89%-57.67% and 4.35%-20.51% was recorded, respectively. It was also
found that for all soils, the Langmuir model provided a satisfactory description of P sorption
(R* = 0.92-0.99) (Table 4). For the current soils, the Q,, values ranged from 142.86 to 909.09
mg kg™, with a mean value of 488.38 mg kg™ (Table 4). Compared to the values obtained for
the P adsorption capacity in this area in 1980, which was a mean value of 581.73 mg kg™ with a
range of 75 to 738 mg P kg ™' [41], the values for current soils were slightly lower. Furthermore,
for soils in the research area, we obtained a mean k value of 0.048 L mg™', ranging from 0.017
t0 0.123 L mg''; a mean MBC value of 18.82 L kg, ranging from 9.15 to 37.33 Lkg'; and a
mean EPC, value of 0.030 mg L, with a wide variation of 0.001 to 0.085 mg L (Table 4).

3.4 Correlations between soil P contents, P adsorption, and soil properties

Pearson’s correlation analysis revealed that TP was significantly correlated with the contents of
organic carbon (OC, obtained from the organic matter content divided by 1.724), amorphous
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Fig 4. Phosphorus (P) adsorption isotherms in soil from different fields (n = 11)*. * Information of eleven soils see
Table 1.

https://doi.org/10.1371/journal.pone.0264189.9004
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Table 4. Isotherm parameters of the Langmuir equation for soil P adsorption (n=11).

Soil samples
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
Minimum
Maximum
Average
C.V. (%)

k (L mg™")

0.030
0.017
0.056
0.033
0.023
0.064
0.039
0.123
0.079
0.018
0.041
0.017
0.123
0.048
66.74

Qu (mgkg™) R? MBC (Lkg") EPC, (mgL™)
434.78 0.99 13.04 0.001
909.09 0.96 15.45 0.046
666.67 0.92 37.33 0.004
666.67 0.94 22.00 0.015
526.32 0.97 12.11 0.028

3125 0.98 20.00 0.022
588.24 0.94 22.94 0.015
142.86 0.99 17.57 0.065
312.5 0.97 24.69 0.008

500 0.97 9.15 0.085

312.5 0.95 12.75 0.039
142.86 0.92 9.15 0.001
909.09 0.99 37.33 0.085
488.38 0.96 18.82 0.030
44.26 2.32 42.08 89.40

*Information of eleven soils see Table 1. Q,,,, phosphorus sorption maximum; EPCO, the equilibrium phosphorus concentration at zero adsorption; MBC, the maximum

adsorption buffering capacity; k, a constant related to the binding energy. C.V., Coefficient of variation.

https://doi.org/10.1371/journal.pone.0264189.t004

Al (Al,), Fe (Fe,), and CEC (Fig 5). A significant correlation between AP and Fe, was also
observed. No significant correlations were detected between soil P concentrations and soil tex-
ture (sand, silt, and clay contents) (Fig 5).

EPC, was found to be positively correlated with soil P concentration (TP and AP)
(p < 0.05), but we detected a negative correlation between MBC and P concentration
(p <0.05, p< 0.01) (Fig 5). Moreover, it was observed that the soil silt content was significantly
correlated with MBC (Table 4), and a positive correlation between soil pH and the k value (p<
0.01), as well as a negative correlation between soil clay content and k value (p< 0.05) were
observed (Fig 5). However, Q,, was only significantly correlated with soil pH (p<0.05) (Fig 5).
In addition, on the basis of stepwise multiple regression analysis, a two-term model based on
pH, Mng, and silt that explained 87% of the variation in Q,,,, whereas pH and Mn, together
accounted for 74% of the variation (Table 5).

4. Discussion

In the area surveyed in this study, excessive accumulation of soil P and a concomitant reduc-
tion in P adsorption capacity have been recorded over the past four decades. Soil physico-
chemical properties have been found to have significant effects on the soil P pool, as well as the
availability of P via soil P adsorption. Accordingly, factors such as anthropic activities and soil-
associated intrinsic qualities influence the soil properties, as discussed below.

The soil in the research area is a latosolic red soil developed primarily from the underlying
parent material of granite and sandy shale. It is characterized by a low pH (~5.0) and low base
cations (0.3-4.91 mEq/100 g soil), as well as a low SiO; to AL, O3 ratio (1.7-2.3), and high con-
centrations of Fe,03 (5.06-17.49%) and Al,O3 (28.17-37.76%) [31], indicating a strong phos-
phate-fixing capacity. In this study, the significant correlations between soil TP and
amorphous Fe/Al, as well as between AP and amorphous Fe (Fig 5) were observed. It was sug-
gested that Fe/Al oxides contribute to the accumulation of the soil P pool, on account of their
high specific surface areas and reactivity [42]. This can be considered an intrinsic factor
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Fig 5. Correlation matrix between soil properties (n = 11)*. * Information of eleven soils see Table 1. Qy,,
phosphorus sorption maximum; k, a constant related to the binding energy; EPCO, the equilibrium phosphorus
concentration at zero adsorption; MBC, the maximum adsorption buffering capacity; TP, total phosphorus; AP,
available phosphorus; OC, organic carbon, obtained from organic matter content (OM) divided by 1.724. CEC, cation
exchange capacity; Aly, free aluminium oxides; Mny, free manganese oxide; Fey, free iron oxide; Alo, amorphous
aluminum oxides; Al,, free aluminum oxide; Fe,, amorphous iron oxide.

https://doi.org/10.1371/journal.pone.0264189.9005

promoting soil P accumulation. Moreover, a large number of studies have investigated the role
of chemical fertilizers on soil P accumulation, based on a range of different field experiments
[5, 43-48]. Notably, in the present study, it was found that since 1980, there have been signifi-
cant increases of 78% and 753% in soil TP and AP, respectively, which can largely be attributed
to a massive increase (479%) in the input of chemical phosphate fertilizer over the past four
decades [6]. In this regard, the soils assessed in the present study were collected from perennial
vegetable-cultivated fields, in which annual chemical nutrient (N+P,05+K,0) inputs have
reached to the level of 1639.5 kg hm™, which is 65% higher than the average input in provin-
cial-scale farmland systems [49]. In addition, the annual rate of AP accumulation in soil (i.e.,
2.64 mg P kg'') in the research area was higher than that at the national scale (i.e., 0.64 mg P
kg'l) that was reported by Li et al. (2011) [5]. The difference between these two figures reflects
differences in the properties of soils receiving chemical fertilizer input [6]. Therefore, we can
identify anthropic activities, primarily chemical phosphate fertilizer application, as vital

Table 5. Multiple regression formulae describing the relationship between soil properties and P sorption maxima for 11 vegetable-cultivated soils*.

Response Independent variables Equation Statistics
Qum pH, Mny, silt y = 2207.482-227.87pH+0.586Mn4-11.936Silt R? = 0.87 p<0.01
Qum pH, Mng y = 1658.69-220.41pH~+0.473Mny4 R? = 0.74 p<0.01

*Information of eleven soils see Table 1. Mny, free manganese oxide.

https://doi.org/10.1371/journal.pone.0264189.t005
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exogenous factors that contribute to the current soil P surplus observed in the research area.
PAC is an important indicator of soil fertility, representing variations in (and degrees of diffi-
culty of) the transformations between TP and AP [40]. According to Wang et al. (2014) [50],
TP is not readily converted to AP when PAC is less than 2.0%. On average, soil PAC in the
research area was found to be higher than 2.0%, indicating that soil TP represents a potential
AP pool for providing P nutrients for vegetable growth.

The adsorption of P by clay minerals in soil is a physicochemical process that influences
both the availability and accumulation of P. In this study, a greater proportion of added P was
adsorbed at low P concentrations, indicating that chemical adsorption dominates the adsorp-
tion processes when percentage P contents are relatively low where ion exchange and ligand
exchange are considered to be the main mechanisms contributing to the high adsorption rate
[51, 52]. Similar results have been reported in previous studies [53-55]. To describe the P
adsorption process, the Langmuir equation was used to calculate the parameters of EPCy, k,
MBC, and Q,, to determine the P availability and adsorption capacity of soil [56]. Specifically,
EPC, was used to evaluate the P interactions between soils and soil solutions [57]. Our findings
indicated that the assessed soils have a strong ability to retain P, as the values obtained for
EPC, (0.001 to 0.085 mg L™'; Table 4) were lower than those reported in previous studies [17,
57, 58]. In the case of P-binding strength, the k value describes the affinity of soil for P [59].
According to Castro and Torrent (1998) [60], a k value lower than 0.4 L mg’1 indicates that
adsorption, rather than precipitation, is the primary process whereby P is removed from soil
solutions. Thus, it was indicated that the removal of P from the soil solutions examined in the
present study occurred via adsorption. MBC can be used to assess the supply and immobiliza-
tion of soil P. The soil MBC values obtained in this study were found to be similar to those pre-
viously described for a red soil [58], although they are lower than those of a black soil [51]. To
a large extent, this disparity among soil types simply reflected the fact that the properties of the
soil examined in the present study are more similar to those of the red soil than to those of the
black soil. In particular, the negative correlations between soil P (TP and AP) concentration
and MBC, and the positive correlation between soil P concentration and EPC, (Fig 5) indi-
cated that soils with high levels of available P tend to have low MBC values, as most of their
reactive sites are saturated with phosphates and orthophosphate ions. This is consistent with
the findings reported by Sun et al. (2020) [55].

Qu is considered an indicator of the capacity of soil to interact with phosphate, which to a
certain extent governs soil P availability [18]. In this regard, previous studies have reported
that long-term fertilization can modify the P adsorption capacity of soil [61-63]. In the present
study, it was found that the fertilization of soil over the past four decades has had the effect of
reducing the P adsorption capacity of soils in the research area, and we accordingly speculate
that continuous application of fertilizers has contributed to a reduction in available exchange
sites on the soil surface layer. Our findings are consistent with those reported previously by
Guo et al. (2008) [37], Sharma et al. (1995) [64], and Abboud et al. (2018) [65]. According to
the previous reports, it is considered that an increase of total P, organic C or pH in soil is prob-
ably to induce a decrease in P adsorption [28, 66, 67]. In this study, the significantly negative
correlation between Q,,, and soil pH emphasizes the importance of pH in P adsorption and
implied that P adsorption decreases as the negative charge density in soil colloids increases
with the increase of soil pH [68, 69]. This can be attributed to the competition between
hydroxyl ions (OH") and phosphate ions for specific sorption sites [62, 70]. However, Zhang
etal. (2005) [71] found soil pH to be uncorrelated with the maximum P sorption, whereas
Agbenin (1996) [72] observed an increasing trend in P sorption with increasing pH in some
savannah soils. These conflicting findings can probably be attributed to differences in soil
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properties, such as soil pH, soil type, and clay mineral constituents, which can potentially affect
the adsorption capacity of soil.

Compared to the elements of Fe and Al, Mn tends to receive relatively less attention with
respect to its interaction with P in soil. In this study, however, it was observed that Mng, rather
than Fe or Al oxides, contributed significantly to explaining the variations in soil Q,,. Simi-
larly, Jugsujinda et al. (1995) [73] found that P adsorption in acid sulfate soils was significantly
affected by exchangeable Mn, which are mainly present in this type of soil [74]. Consistently,
Liao and Lu (1996) [75] observed a stronger PO,> sorption capacity of manganese hydroxide
than that of either iron hydroxide or aluminum hydroxide, within the first 20 days under incu-
bation conditions. At present, however, it is difficult to explain these anomalous findings,
owing to the comparatively limited information relating to the interaction between Mn and P
sorption. In addition to pH and Mny, soil texture is also believed to contribute to the observed
variations in Q,,, albeit to a lesser extent. In particular, it was found that silt was more closely
associated with Q, than the clay content of soil, which was consistent with the findings
reported by Nwoke et al. (2003) [70] and Zhang et al. (2019) [76].

5. Conclusions

The results obtained in this study have revealed that over the past four decades, a large accu-
mulation of phosphorus, accompanied by reductions in soil P sorption capacity, have occurred
in the intensively managed agricultural soils (perennially cultivated vegetable field soils) of
southern China. Both soil properties and anthropic activities contributed to this augmentation
of the soil P pool, with long-term fertilization being considered the main factor driving P accu-
mulation. This accumulation was observed to be negatively correlated with the soil’s maximum
adsorption buffering capacity and positively affected the P-retention capacity of soil (i.e.,
EPCy). Soil properties, i.e. pH, manganese oxide concentrations, and percentage of silt content
all contributed to the variation of soil P sorption maximum. Collectively, the findings of this
study provide a basis for designing suitable P management strategies for the sustainable utiliza-
tion of agricultural soils in Guangdong Province, South China.
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