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Abstract

Naturally acquired immunity to Plasmodium falciparum malaria in malaria holoendemic areas is characterized by the
gradual, age-related development of protection against high-density parasitemia and clinical malaria. Animal studies, and
less commonly, observations of humans with malaria, suggest that T-cell responses are important in the development and
maintenance of this immunity, which is mediated primarily by antibodies that slow repeated cycles of merozoites through
erythrocytes. To advance our rather limited knowledge on human T-cell immunity to blood stage malaria infection, we
evaluated CD4 and CD8 T-cell effector memory subset responses to the 42 kDa C-terminal fragment of Merozoite Surface
Protein 1 (MSP142), a malaria vaccine candidate, by 49 healthy 0.5 to $18 year old residents of a holoendemic area in
western Kenya. The proportion of individuals with peripheral blood mononuclear cell MSP142 driven IFN-c ELISPOT
responses increased from 20% (2/20) among 0.5–1 year old children to 90% (9/10) of adults $18 years (P = 0.01); parallel
increases in the magnitude of IFN-c responses were observed across all age groups (0.5, 1, 2, 5 and $18 years, P = 0.001).
Less than 1% of total CD4 and CD8 T-cells from both children and adults produced IFN-c in response to MSP142. However,
adults had higher proportions of MSP142 driven IFN-c secreting CD4 and CD8 effector memory (CD45RA2 CD62L2) T-cells
than children (CD4: 50.9% vs. 28.8%, P = 0.036; CD8: 52.1% vs. 18.3%, respectively P = 0.009). In contrast, MSP142 driven IFN-c
secreting naı̈ve-like, transitional (CD45RA+ CD62L+) CD4 and CD8 cells were the predominant T-cell subset among children
with significantly fewer of these cells in adults (CD4: 34.9% vs. 5.1%, P = 0.002; CD8: 47.0% vs. 20.5%, respectively, P = 0.030).
These data support the concept that meaningful age-related differences exist in the quality of T-cell immunity to malaria
antigens such as MSP1.
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Introduction

Malaria is a global health problem that affects primarily infants

and children less than 5 years old [1,2], whereas older children and

adults in most endemic regions develop naturally acquired

immunity that protects against high-density parasitemia and

malaria morbidity [3,4]. It is clear that antibodies directed against

blood stage parasites are critical to this protection since passive

transfer of Ig isolated from sera of immune African adults to

children with acute malaria rapidly reduces the level of asexual

parasitemia and severity of malaria illness [5]. Unlike the clear-cut

importance of antibodies in mediating naturally acquired immunity,

the role of T-cell memory in the development and maintenance of

this immunity is poorly understood. Studies of rodent malaria

models and limited observations of malaria-naı̈ve humans who

became resistant to blood stage P. falciparum challenge after repeated

inoculation and drug cure with a small number (,300) of infected

erythrocytes suggest that T-cells and IFN-c responses, even in the

absence of antibodies, confers a degree of protective immunity [6,7];

however it is unclear whether residual anti-malarial drugs may have

contributed to the protection seen [8]. In addition, due to the

technical challenges of conducting more elaborate T-cell studies,

limited information is available on human memory T-cells

particularly in response to defined blood-stage malaria antigens.

Greater understanding of how malaria specific T-cell memory

subsets contribute to immunity in malaria endemic populations is

important to the design and testing of blood stage malaria vaccines

as well as understanding how decreasing malaria exposure due to

vector control in Africa and elsewhere may affect age-related

susceptibility to malaria infection and clinical illness.

Merozoite Surface Protein 1 (MSP1) is one of the most

abundant antigenic proteins expressed by asexual parasites of all
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malaria species. In the case of P. falciparum, MSP1 is a 200 kDa

glycoprotein expressed and sequentially processed to yield a

42 kDa (MSP142) fragment, which is essential to the initial low

affinity attachment of the merozoite to the erythrocyte surface [9].

T-cell epitopes recognized by humans with P. falciparum infection

are contained within MSP133 sub-fragment that is shed from

MSP142 before erythrocyte invasion [10,11]. Although the

mechanisms by which CD4 T-cells contribute to protective

immunity are not well understood, it is likely that this occurs

through cytokines that provide help to antigen specific B-cells, e.g.

Ig isotype and IgG subclass switching and/or by direct cellular

communication with macrophages, CD8 T-cells and B-cells

[12,13,14,15]. MSP1-driven IFN-c responses have been observed

in T cell receptor transgenic mice that resolved P. chabaudi chabaudi

by generating T-cell responses to MSP133, which augment

antibody responses to MSP119 [16] and through induction of

IL-4 [17]. Vaccination of rhesus monkeys with recombinant

MSP142 [18,19] and human vaccine trials with MSP1 [20],

MSP119 [21], and MSP142 [20,21,22] lend further support to the

role of T-cells in protective immunity. In essence, depletion of

IFN-c and CD4 T-cells abrogates protective immunity in mice

immunized with MSP1 [23].

Evaluation of effector memory T-cell subsets in malaria exposed

human populations has been constrained by the complexity of the

assays involved in the identification of low frequency antigen-

specific T-cell subsets, the limited number of peripheral blood

lymphocytes that can be obtained during field studies (particularly

from infants and children), and the inability to access primary

lymphoid organs. However with recent technologic advances,

human T-cell memory subsets can be defined by multi-parameter

flow cytometry using a panel of functional and phenotypic markers

[24]. To this end, CD4 and CD8 T-cell central memory (TCM),

effector memory (TEM), terminally differentiated RA re-expressing

effector memory (TEMRA) and naı̈ve (TN) cell subsets can

be characterized according to expression of CD45RA, CCR7,

and CD62. TCM are CD45RA2CCR7+CD62L+; TEM are

CD45RA2CCR72 CD62L2; TEMRA are CD45RA+ CCR72

CD62L2; and TN are CD45RA+ CCR7+ CD62L+ [25]. One

recent study used a similar approach to characterize T-cell

memory subsets specific to P. falciparum MSP142 from malaria-

naı̈ve adult volunteers who participated in a phase I vaccine trial.

This study reported that memory CD4+CD45R0+CD154+ cells

were elicited after vaccination [22]. Further, multifunctional

cytokine secreting T-cell subsets specific to P. falciparum Apical

Membrane Antigen 1 (AMA1) have been defined in malaria-naı̈ve

individuals vaccinated with this antigenic protein [26]. However,

to our knowledge, there are no published data defining MSP1-

specific memory T-cell subsets in populations naturally exposed to

P. falciparum. In the present study, we characterized the frequency

and quality of naturally acquired IFN-c producing MSP142

specific CD4 and CD8 T-cell effector memory subsets in children

and adults residing in a malaria holoendemic area of western

Kenya.

Results

Malaria infection status, white blood cell counts and T
lymphocyte subsets of study participants

Table 1 describes the age-stratified median malaria parasite

density, complete blood count (i.e. white blood cells, (WBC), total

lymphocytes, monocytes, granulocytes, red blood cells (RBC), and

platelets), CD4 and CD8 cell absolute counts and frequencies of

the study participants. The upper range of asexual parasitemia

among these healthy malaria asymptomatic individuals was

highest among participants who were 1 to 5 years old compared

to infants with a median age of 0.5 years, presumably due to

protective maternally acquired antibodies during infancy and the

development of malaria-specific immunity later in life. None of the

adults were parasitemic by blood smear. Median WBC, lympho-

cyte, and monocyte counts determined by Coulter Counter were

significantly lower among the adults than 0.5 to 5 year olds

(P,0.001). However, the relative proportion of CD4 and CD8

cells was not different across the various age groups (P = 0.310).

These latter data are similar to observations of non-African

children showing that the absolute number, but not ratio of CD4

and CD8 cells, change normally between birth and approximately

5 years [27,28].

PBMC IFN-c responses to MSP142 increase after age 5
years

Due to the limited blood volume obtainable from young

children, we conducted time-course experiments comparing 24,

48, 60 and 72 hour incubation periods (data not shown). These

condition-optimization experiments demonstrated that a 60 hour

incubation period resulted in measureable IFN-c recall responses

to MSP-142 without resulting in appreciable cell death or inducing

high background in vitro, and therefore was selected as the optimal

incubation period for ELISPOT assays used in this study. The

proportion of IFN-c ELISPOT responders to MSP142 did not

significantly change from age 0.5 to 5 years, but increased from

20% for infants with median age 0.5 years to 90% for adults $18

years (P = 0.01, Table 2). However, significant increases with age

were observed for the magnitude of IFN-c responses, with a

median of 5 to 155 SFU/106 PBMCs across age groups (P = 0.001,

Fig. 1). PBMCs from all 49 individuals examined generated IFN-c
in response to SEB super antigen (data not shown), confirming that

all age groups were immune competent by this criterion.

Ex vivo resting CD4 and CD8 T cell effector memory
subsets differ by age

The proportions of various CD4 T-cell memory subsets were

determined for freshly isolated PBMCs prior to in vitro exposure to

MSP142. Representative dot plots for PBMCs from an adult and a

1 year old child are shown in Fig. 2A and 2B. Overall, adults

(n = 10) had a higher frequency of CD4 TCM (CD45RA2

CD62L+) and TEM (CD45RA2 CD62L2) compared to children

#5 years (n = 39, P,0.001; Fig. 3A and 3C). In contrast, children

had a higher frequency of TN (CD45RA+ CD62L+) than adults

(P,0.001, Fig. 3B); whereas the proportion of CD4 TEMRA

(CD45RA+ CD62L2) was ,1%, and similar across age groups

(P = 0.719, Fig. 3D).

PBMCs were stained in parallel for CD8 T-cell memory subsets

as described above. This approach was necessary because a 4-

color flow cytometer was the only instrument available to our

laboratory in Kenya at the time the studies were performed.

Figure 2C and 2D show representative histograms of the

distribution of freshly isolated CD8 T-cell subsets from an adult

and a 1-year old child. The age-related distribution of CD8 T-cell

memory subsets was similar to that of CD4 cells, with TCM

(Fig. 4A) and TEM (Fig. 4C) frequencies being higher among adults

compared to children (P = 0.019 and 0.016, respectively) and the

frequency of CD8 TN (Fig. 4B) being higher in children compared

to adults (P = 0.002). However, unlike the case for CD4 TEMRA

cells that showed no difference in frequency by age, CD8 TEMRA

cells (Fig. 4D) were readily detectable in both age groups, and were

significantly higher among adults than children (24.4% and

12.2%, respectively, P = 0.006).

T Cell Memory Subsets to MSP1
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MSP142 driven IFN-c production CD4 and CD8 effector
memory subsets differ by age

MSP142-specific CD4 and CD8 T-cells were detected after in

vitro stimulation followed by intracellular staining for IFN-c and

flow cytometric analysis, as described above. The median

frequency (%) of MSP142 driven CD4 and CD8 cells that stained

positive for intracellular IFN-c was less than 1% (ranging from nil

to ,3.8%), and did not differ significantly according to age (Fig. 5A

and 5B). In order to determine the phenotype of the T-cell

producing IFN-c in response to MSP142 stimulation, IFN-c
positive CD4 and CD8 T-cells were identified by flow cytometry

and then back-gated into the memory T-cell subsets defined by

CD45RA and CD62L expression. This analysis revealed that both

adults and children had MSP1-specific IFN-c producing CD4

TCM (Fig. 6A) with median frequencies of 45.0% and 24.5%,

respectively (P = 0.345). These differences were not significant due

to the wide range of responses within each age group (from nil to

,75% of all IFN-c positive CD4 cells within the gate). However,

the frequency of IFN-c+ CD4 TEM was significantly greater

among adults than children (50.9% vs. 28.8%, Fig. 6C, P = 0.036).

In contrast, the median frequency of MSP142 driven IFN-c+ CD4

TN (Fig. 6B) was higher in children compared to adults (34.9%

and 5.1%, respectively, P = 0.002). The median frequency of

MSP142-specific IFN-c+ CD4 TEMRA (Fig. 6D) was not signifi-

cantly different among children and adults, 7.2% and 0.4%,

respectively.

Even though classical endogenous MHC class I-restricted

antigen processing and presentation may be considered unlikely

for parasites that reside in erythrocytes, CD8 T-cells specific to

blood stage antigens have been described in mouse malaria models

[29,30]. Therefore, we also performed studies to detect MSP142-

specific IFN-c expressing CD8 T-cells and their effector/memory

phenotypes. Of the CD8 T-cells that produced IFN-c, the

frequencies of TCM (Fig. 7A) and TEMRA (Fig. 7D) were similar

among children and adults (P = 0.707 and 0.855, respectively). In

contrast, the median frequency of TEM cells (Fig. 7C) was

significantly higher among adults compared to children (52.1%

and 18.3%, respectively, P = 0.009) while CD8 TN (Fig. 7B) were

significantly more frequent among children than adults (47.0%

and 20.5%. respectively, P = 0.030). The median frequency of

MSP142-specific IFN-c+ CD8 T-cell responses mirrored the

overall age-dependent shift in total CD8 T-cell effector memory

subsets independent of antigen specificity (as shown in Fig. 4).

The proportion of CD4 and CD8 T-cell subsets differs by
age

In order to visualize the relative contributions of CD4 and CD8

T-cells subsets to the resting pool of T cells as well as to MSP142-

specific IFN-c responses present in children #5 years of age and

adults, proportions of each cell type were compared.

Figure 8 reveals that children have predominantly (68.7%) CD4

naı̈ve-like, transitional CD4 T-cells (TN) cells compared to adults

who have more (48.6%) CD4 TCM cells in their resting pool. Even

though children produce the same level of IFN-c in response to

stimulation with rMSP142 as shown in Figure 5, the CD4 T cell

subset responsible for this function in order of rank for children is

TN (34.9%).TEM (28.8%).TCM (24.5%).TEMRA (7.2%), in

contrast to IFN-c producing CD4 T cell subsets in adults which

rank from highest to lowest median frequency: TEM

(50.9%).TCM (45.0%).TN (5.1%).TEMRA (0.4%). Figure 9

demonstrates similar age-dependent differences in CD8 T-cell

subset proportions. Children have predominantly (62.8%) CD8

TN cells compared to adults who have significantly fewer (35.6%)

CD8 TN cells (P-value = 0.002). Again, children appeared able to

produce similar levels of IFN-c as adults in response to stimulation

with rMSP142 as shown in Figure 5, but the CD8 T-cell subset

contributing to this function differs in order of rank for children

with median frequencies for TN (47.0%).TEM (20.0%).TEMRA

(18.3%).TCM (6.9%), in contrast to IFN-c producing CD8 T-cell

subsets in adults which rank TEM (52.1%).TEMRA (22.2%).TN

(20.5%).TCM (5.8%).

Discussion

Our study demonstrated profound qualitative differences in T-

cell memory responses to an essential merozoite invasion ligand

and antigen protein, MSP142, that correlate with age-related

naturally acquired malaria immunity in residents of a holoendemic

area of western Kenya. Although our study is limited by the small

samples size, results show that the overall frequency of antigen-

specific CD4 and CD8 T-cells that produced IFN-c in response to

MSP142 were low and did not appear to differ according to

Table 2. Proportion of individuals by age group with IFN-c
responses to MSP142-3D7 as detected by ELISPOT.

Age Group (years) Number IFN-c Responders/Number Tested (%)

0.5 2/10 (20)*

1 4/9 (44)

2 5/10 (50)

5 5/10 (50)

$18 9/10 (90)*

Notes: The proportion of responders did not significantly differ when
comparing children less than 5 years old across different age groups (P.0.05).
*However by two-tailed Fisher’s exact test infants 0.5 years of age had
significantly fewer responders compared to adults older than 18 years (P = 0.01).
doi:10.1371/journal.pone.0024852.t002

Figure 1. Magnitude of peripheral blood mononuclear cell IFN-
c responses to 3D7 MSP142 according to age. The magnitude of
response was measured by counting the spot forming units (SFU) for
PBMCs stimulated with MSP142 after subtracting SFU for PBMCs
incubated with culture medium/PBS (background range 0–50 SFUs/
106 PBMCs). There was an age-related increase in the median
magnitude of IFN-c responses (P = 0.0065, Kruskall-Wallis test) with
adults $18 years having higher frequencies than 0.5 year olds
(P = 0.001, Dunn’s post hoc test). X-axis is median age in years and Y-
axis is IFN-c SFU per 106 PBMCs.
doi:10.1371/journal.pone.0024852.g001
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parasitemia or ages ranging from 0.5 to 5 years and $18 years but

there was a shift in hierarchy among various T-cell subsets

responsive to MSP142 such that the TEM subset was the dominant

cell type in adults in contrast to children who had more

phenotypically naı̈ve-like, TN cells. These shifts were observed

not only for IFN-c producing CD4 cells, which might be

anticipated based on the presumed importance of CD4 helper

T-cells in generating and maintaining antibody mediated

responses by B-cells, but also for CD8 T-cells, which are thought

to be important in generating immunity to pre-erythrocytic rather

than blood stage malaria antigens [31,32]. Categorizing samples

based on the presence of parasitemia or parasite density did not

appear to influence IFN-c responses T-cell subset dominance,

however most of our study participants were aparasitemic and

asymptomatic. Furthermore, the observed patterns of CD4 T-cell

responses did not correlate with antibody responses to MSP142 but

there was weak correlation between CD8 responses and IgG

responses to MSP142. The potential importance for both CD4 and

CD8 T-cells in determining resistance to blood stage parasitemia

has been suggested by experimental infection of mice with P.

chabaudi [33]. Absence of parasitemia in adults and differential

parasite density in children suggest that different levels of

immunity exist within this population and could be affected by

parasite, human and external factors such as intensity of repeated

malaria exposure. Longitudinal cohort studies looking at how age,

repeated parasite exposure and clinical episodes influence the

development of T-cell immunity to multiple antigens are

underway. In addition, malaria-specific T-cell responses may

differ in those residing in hypoendemic areas who are exposed to

malaria antigens intermittently and with less intensity.

The overall magnitude of MSP142 driven IFN-c responses

observed for CD4 and CD8 T-cells was generally weaker than that

reported for recent studies of regulatory T cell responses in

Gambian children with severe and mild malaria [34,35] and

malaria naı̈ve volunteers challenged experimentally a single time

with P. falciparum infected erythrocytes [36]. One likely explanation

for this difference is that that the current study used a single,

defined malaria antigen to stimulate T-cell recall responses,

whereas the above mentioned studies and other reports used

schizont extracts or infected erythrocytes as stimuli. Schizont

extracts and infected erythrocytes contain not only MSP1

(presumably the non-processed pre-protein as well as various

processed fragments) but also multiple other merozoite antigens

and parasite moieties that may stimulate innate as well adaptive

responses by T-cells and IFN-c secreting NK cells [34,37]. IFN-c
production by non-T cell types were not ascertained within this

study but would explain the differences in frequencies observed

between adults and children by ELISPOT (Fig. 1) that were not

reflected in the T-cell specific ICS results (Fig. 5) that did not

appear to differ by age. The frequencies reported here are

consistent with IFN-c secreting peripheral blood and cord blood

mononuclear cells in our previously published studies using

Figure 2. Representative dot plots showing the proportions of CD4 and CD8 T cells subsets defined by CD45RA and CD62L surface
expression in adults and children. Dot plot (A) Adult CD4, (B) Child CD4, (C) Adult CD8, (D) Child CD8 T cell subsets.
doi:10.1371/journal.pone.0024852.g002
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recombinant MSP133, MSP142 and peptide epitopes contained

within MSP133 to study T-cell IFN-c recall responses in adults as

well as newborns in Kenya [38,39]. These earlier studies also

established that the 3D7 strain of malaria is among the most

common alleles of the T-cell epitope containing MSP133 fragment

circulating in western Kenya [38].

To determine the ex vivo frequency of phenotypically distinct T-

cell populations, we compared freshly isolated CD4 and CD8 cell

effector-memory subsets defined by CD45RA and CD62L [25].

As expected, there was a significantly greater proportion of TCM

and TEM CD4 cell subsets among adults compared to children,

whereas most CD4 cells were TN in children relative to adults.

This is consistent with other studies that compared the proportion

of T cell subsets in older children and adults and observed a

similar maturation pattern associated with age [40,41]. There

were very few terminally differentiated (TEMRA) CD4 cells present

in these healthy individuals regardless of age. Similarly, the

proportion of CD8 TCM and TEM cells increased with age and

formed the majority of the CD8 T-cell compartment in adults as

compared to more naı̈ve-like (TN) CD8 T-cells found in young

children. In contrast to CD4 TEMRA that represented less than 1%

of the total CD4 cell pool (Fig. 3), the frequency of TEMRA within

the CD8 cell pool increased from ,15% in children 5 years and

younger to over 20% in adults (Fig. 4). The observed age-related

increase in the population of mature memory T-cell phenotype

could be explained by the fact that as individuals age, they are

exposed to a myriad of microbial antigens hence expanding the

memory pool to these pathogens. When comparing the proportion

of ex vivo T-cell subsets to the proportion of MSP1-specific IFN-c
producing T-cell subsets, in general the IFN-c producing T-cell

subsets reflect the proportion of ex vivo T-cell subsets present in

each age group. For example, children have more TN cells

compared to adults who have relatively more TCM and TEM – and

not surprisingly this distribution of T-cell subsets is reflected by the

MSP-1 specific IFN-c producing T-cell subsets. The exception to

this ‘proportional-distribution by age’ is the CD4 TEMRA cells,

which do not differ between adults and children ex vivo but are over

represented as a source of IFN-c production in response to MSP-1

in the children but not the adults. The picture is slightly different

for the CD8 T-cell subsets, where the proportion of ex vivo TCM

and TEMRA are higher for adults compared to children, but the

MSP-1 specific TCM and TEMRA making IFN-c appear the same

across age groups, with the dominant cell type making IFN-c in

the children being the TN cells in contrast to the TEM for the

adults. Future studies will reveal if this particular CD8 T-cell

subset is associated with fewer high-density infections over time

and/or fewer episodes of clinical malaria. To date, no studies have

compared the relative contributions from CD4 and CD8 T-cell

effector subsets (i.e., TEM versus TEMRA) in protection from

asexual parasitemia or clinical infections.

The necessity of T-cell maturation and differentiation for the

acquisition of malaria immunity is further supported by changes in

Figure 3. Proportion of resting CD4 T cell subsets across age groups. The frequency of each T cell subset was compared between adults
($18 years old) and children (#5 years old) for (A) Central memory, TCM: CD4+ CD45RA2 CD62L+; (B) naı̈ve T cells, TN: CD4+ CD45RA+ CD62L+; (C)
effector memory, TEM: CD4+ CD45RA2 CD62L2; and (D) RA-expressing effector memory, TEMRA: CD4+ CD45RA+ CD62L2. The median frequency of
CD4+ TCM and TEM was significantly lower for children compared to adults (P,0.001, Mann Whitney test). Whereas the median frequency of CD4+ TN

was significantly higher for children compared with adults (P,0.001). The median frequency of CD4+ TEMRA was similar for the two age groups
(P = 0.719).
doi:10.1371/journal.pone.0024852.g003
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the quality of IFN-c recall responses to MSP142 stimulation across

age groups as presented here. IFN-c has been associated with

resolution of Plasmodium infection in humans and animal models

[42,43], and synergizes with other cytokines and nitric oxide to

eliminate parasites [44]. An age-related increase in malaria-

specific IFN-c recall responses has been observed in several other

studies of individuals from malaria endemic areas [45]. Children

in Africa and Papua New Guinea were more efficient producers of

IFN-c to sporozoite or merozoite antigens, suggesting an

association between antigen-specific IFN-c production and

reduced pathology [42]. Further, fewer CD4 IFN-c producing

cells in Gabonese children with acute malaria were associated with

hyperparasitemia [46] and higher prevalence and magnitude of

IFN-c were observed at the end of rainy season (transmission

season) than dry season in a seasonally endemic area of Gambia

[47]. Taken together, these studies suggest that IFN-c is a

Figure 4. Proportion of resting CD8 T cell subsets across age groups. The frequency of each T cell subset was compared between adults
($18 years old) and children (#5 years old) for (A) Central memory, TCM: CD8+ CD45RA2 CD62L+; (B) naı̈ve T cells, TN: CD8+ CD45RA+ CD62L+; (C)
effector memory, TEM: CD8+ CD45RA2 CD62L2; and (D) RA-expressing effector memory, TEMRA: CD8+ CD45RA+ CD62L2. The median frequency of
CD8+ TCM, TEM and TEMRA were significantly lower for children compared to adults (P = 0.019, P = 0.016 and P = 0.006, respectively, Mann Whitney test).
In contrast, the median frequency of CD8+ TN was significantly higher for children compared with adults (P = 0.0002).
doi:10.1371/journal.pone.0024852.g004

Figure 5. MSP1-specific IFN-c responses generated from both CD+4 and CD8+ T cells. IFN-c responses to MSP142 (3D7 strain) were
determined ex vivo by intracellular staining and flow cytometric analysis of cell surface marker expression. The frequency of IFN-c positive responses
per 100 CD4+ T cells (A) and CD8+ T cells (B) after ex vivo rMSP142 stimulation were compared between children (#5 years) and adults ($18 years).
There were no significant differences in the median number of IFN-c responses generated by either CD4+ or CD8+ T cells by age group.
doi:10.1371/journal.pone.0024852.g005
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biomarker of recent exposure and/or clinical immunity to malaria.

It is known that long term cultures may skew antigen specific

responses, but our observation that children consistently secreted

IFN-c from naı̈ve T-cells while adults had mature memory T-cells

as the primary source of the cytokines argues against selective

survival of a specific subset by the culture condition. The

differential secretion of IFN-c by CD4 and CD8 T-cells in adults

and children (Figs. 6 and 7) has implications for the sustainability

of this essential cytokine response.

Lack of sterile immunity for those residing in malaria endemic

areas and waning of semi-protective immunity observed in

residents of malaria endemic regions who travel to non-malarial

zones [48] have suggested that long lasting immunologic memory

to P. falciparum is not possible under natural exposure conditions.

Cytokine recall responses could therefore be attributed to

immunologic ‘boosting’ by repeat infections that may be derived

from short-lived T-cells [49] or possibly other IFN-c producing

cells such as NK cells or monocytes. Nevertheless, adults returning

to endemic areas appear to re-acquire clinical immunity more

rapidly than children [50,51] suggesting that some form of long-

term memory to malaria was established. An alternate explanation

is that a mature immune system acquires antigen-specific effector

memory and/or central memory T-cells more efficiently than an

immature immune system. An infant’s ability to develop

immunologic memory may thus be impaired due to age-inherent

differences in antigen recognition, presentation and dendritic cell

function [52,53].

Historically demonstration of immunologic memory to malaria

has been supported primarily by observations from serologic studies

[54,55,56]. However, there is a growing consensus that antibody

levels may be a more accurate measurement of cumulative malaria

exposure history as opposed to the sole means by which protection is

conferred [57]. Though it is well accepted that memory T-cells are

an important component for protection against a variety of

infectious pathogens [50,51], there is limited information on human

memory T-cells specific to malaria [45,49]. The nature of memory

Figure 6. Proportion of MSP142-specific IFN-c secreting CD4+ T cell subsets across age groups. As described above, IFN-c responses to
MSP142 (3D7 strain) were determined ex vivo by intracellular staining and flow cytometric analysis of cell surface marker expression. T cell subsets
were defined by expression of CD45RA and CD62L surface markers: (A) TCM (CD4+, CD45RA2, CD62L+); (B) TN (CD4+, CD45RA+, CD62L+); (C) TEM (CD4+,
CD45RA2, CD62L2); and (D) TEMRA (CD4+, CD45RA+, CD62L2). The phenotype of IFN-c expressing CD4+ T cells in adults were predominantly TCM and
TEM compared to the children who had IFN-c expressing CD4+ T cells generated from all four subsets including those phenotypically TEMRA and TN.
Significant differences (Mann Whitney test) in median frequencies were observed for CD4+ TEM subsets, which were more prevalent (P-value = 0.036)
and CD4+ TN, which were less prevalent (P = 0.002) in adults compared to children. Differences observed in the frequencies of CD4+ TCM and TEMRA

between age groups did not reach significance due to small sample size.
doi:10.1371/journal.pone.0024852.g006
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T-cell populations elicited in malaria-naı̈ve North Americans

vaccinated with the 3D7 and FVO strains of MSP142 demonstrated

induction of antigen-specific memory CD4 T-cells [22], however

the contribution of CD8 T-cell memory subsets was not evaluated.

Studies on individuals residing in P. vivax malaria endemic areas

have shown an increased proportion of memory CD8 T-cells

subsets [52], supporting the premise that T-cell maturity is as

important as antibodies in the development of protection against

malaria. Although we cannot conclusively determine the origin of

the blood stage specific CD8 T-cells within this study, it is clear that

CD8 T-cells play a crucial function by secreting IFN-c, a cytokine

that has been shown to be important in control of malaria parasites.

It has been demonstrated in mouse models of malaria that CD8 T-

cells are able to ‘see’ malaria blood stage antigens through the

process of cross-presentation [58], thus it is possible this mechanism

is also important in human immunity to malaria.

Advances in polychromatic flow cytometry have demonstrated

the heterogeneity of T-cell immunity and characterized ‘atypical’

antigen-specific memory T-cell populations [12]. Thus, our

unexpected observation that IFN-c was generated from pheno-

typically naı̈ve-like T cells (TN) in response to MSP142 from

children, but not adults, could be an indication that malaria is

driving an effector function from a population of atypical

‘‘transitional’’ T-cells. Since these cells have not undergone full

maturation, there is high likelihood of effector TN attaining a state

of anergy and, thus leading to failure to contain infection. It is not

known whether antigen experienced TN differentiate into TEM or

TCM, become anergic or undergo apoptosis. Given that infants

born to P. falciparum infected mothers may experience malaria

attacks earlier than those whose mothers do not have malaria

during pregnancy [55], it will be important to incorporate into

longitudinal cohort studies the impact of fetal antigenic sensitiza-

tion on malaria-specific T- cell differentiation during early

childhood.

Materials and Methods

Ethics Statement
Ethical approvals were obtained from the University Hospitals

of Cleveland Institutional Review Board for Human Studies at

Figure 7. Proportion of MSP142-specific IFN-c secreting CD8+ T cell subsets across age groups. IFN-c responses to MSP142 (3D7 strain)
were determined ex vivo by intracellular staining and flow cytometric analysis of cell surface marker expression. T cell subsets were defined by
expression of CD45RA and CD62L surface markers: (A) TCM (CD8+, CD45RA2, CD62L+); (B) TN (CD8+, CD45RA+, CD62L+); (C) TEM (CD8+, CD45RA2,
CD62L2); and (D) TEMRA (CD8+, CD45RA+, CD62L2). The predominant IFN-c expressing CD8+ T cell in adults displayed a TEM phenotype and this was
significantly different than children (P = 0.009) who, similar to CD4+ T cells, had IFN-c expression in response to MSP142 from all four CD8+ T cell
subsets with a predominance of phenotypically naı̈ve secreting T cells (P = 0.030) compared to adults. IFN-c responses observed for CD8+ TCM and
TEMRA were of similarly low frequencies across age groups.
doi:10.1371/journal.pone.0024852.g007
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Case Western Reserve University and the Ethical Review

Committee at the Kenya Medical Research Institute. Informed,

written consent was obtained from each adult study participant

and from the parent or guardian of minor study participants prior

to enrollment in this study.

Study population and study area
This was an age-structured study involving 49 participants

grouped according to median age of 0.5, 1, 2, 5 and $18 years. All

participants were healthy lifelong residents of a malaria holoen-

demic region of Nyanza Province in western Kenya. The study

Figure 9. Proportion of resting and MSP1-specific IFN-c producing CD8 T cell subset in children compared to adults. Top left panel (A)
shows the proportion of resting CD8 T cell subsets for children #5 years old (from Fig. 4) with the lower left panel (C) showing the proportion of IFN-c
producing CD8 T cell subsets in response to rMSP142 stimulation (from Fig. 7). Top right panel (B) shows the proportion of resting CD8 T cell subsets
for adults $18 years old (from Fig. 4) with the lower right panel (D) showing the proportion of IFN-c producing CD8 T cell subsets in response to
rMSP142 stimulation (from Fig. 7).
doi:10.1371/journal.pone.0024852.g009

Figure 8. Proportion of resting and MSP1-specific IFN-c producing CD4 T cell subset in children compared to adults. Top left panel (A)
shows the proportion of resting CD4 T cell subsets for children #5 years old (from Fig. 3) with the lower left panel (C) showing the proportion of IFN-c
producing CD4 T cell subsets in response to rMSP142 stimulation (from Fig. 6). Top right panel (B) shows the proportion of resting CD4 T cell subsets
for adults $18 years old (from Fig. 3) with the lower right panel (D) showing the proportion of IFN-c producing CD4 T cell subsets in response to
rMSP142 stimulation (from Fig. 6).
doi:10.1371/journal.pone.0024852.g008
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was conducted in the region near the Chulaimbo Rural Health

Training Center managed by the Kenya Ministry of Health.

Insecticide treated bed nets were not widely distributed in the area

at the time the study was conducted (February and March 2007).

Historically, the entomological inoculation rate in this area has

been estimated at 0.65 to 0.79 infectious bites per person per day

[54]. None of the study participants had a history of clinical

malaria or taken anti-malarial drugs within the previous 4 weeks.

Signed informed consent was obtained from adults, defined as

residents who were $18 years old, and from the parent or

guardian of participants who were 0.5 to 5 years old.

Blood collection and PBMC isolation
Approximately 2–5 ml and 8–10 ml venous blood samples were

collected into heparin anti-coagulated tubes from 0.5–5 and $18

year olds, respectively. Total white blood cell counts (WBC) and

differentials describing proportions of lymphocytes, monocytes and

polymorphonuclear leukocytes were assessed using a Coulter

Counter (Coulter AcT Diff 2, Beckman Coulter, Miami, FL). The

absolute number of CD4 and CD8 cells per ml of whole blood was

determined according to WBC and flow cytometry using anti-CD4

and anti-CD8 antibodies. Absolute numbers of lymphocytes per ml

blood were obtained from the Coulter Counter and the

percentages of CD3, CD4, and CD8 cells within the lymphocyte

population were acquired from flow cytometry data. The

percentages of CD3, CD4, and CD8 cells were matched to the

absolute number of lymphocytes to calculate the absolute numbers

of these T-cell subsets. PBMC’s were separated from fresh whole

blood by Ficoll-hypaque density gradient centrifugation and

suspended in culture medium (RPMI 1640 (GIBCO, Invitrogen,

Paisley, Scotland UK) supplemented with 10% heat inactivated

human AB serum, 50 mg/ml gentamicin, 10 mM HEPES and

2 mM L-glutamine). PBMCs were used at a concentration of

56105/well for IFN-c ELISPOT and T cell memory subset

phenotyping.

Light microscopy to detect P. falciparum infection
Thick and thin smears were prepared from venous blood

samples at the same time PBMCs were obtained. The slides were

air dried, fixed in 100% methanol and stained with 5% Giemsa for

enumeration of P. falciparum infected erythrocytes. A smear was

deemed negative when microscopic inspection showed no

parasites after counting fields that included at least 200 leukocytes.

Density of parasitemia was expressed as the number of asexual P.

falciparum/ml blood assuming a leukocyte count of 8,000/ml of

whole blood.

Superantigens and malaria antigens
PBMCs were incubated with culture medium and PBS (blank

control), Staphylococcal Enterotoxin B (SEB) at 2 mg/ml and

recombinant MSP-142 (3D7 allele) at 5 mg/mL [56]. SEB served

as the positive control. Recombinant MSP-142 was provided by

Carole Long and Sanjay Singh (NIAID, NIH, Rockville MD). The

construct contains T cell and B cell epitopes in the MSP133 and

MSP119 fragments, respectively [57].

Cell surface staining for ex vivo T-cell memory
phenotypes

Five hundred thousand PBMCs were suspended in 100 ml 0.5%

BSA-PBS (wash buffer) and stained with the following panel of

antibodies to characterize the memory T cell phenotype: CD3-

APC, CD4-PerCP or CD8- PerCP, Cy7, CD45RA -FITC and

CD62L-PE. All antibodies were purchased from BD Biosciences

and used according to the manufacturer’s instructions. Stained

cells were incubated in the dark at room temperature for

30 minutes. Labeled cells were washed with 2 ml wash buffer

and fixed with 500 ml 4% paraformaldehyde for 15 min at 4uC in

the dark. At least 10,000 gated events were acquired using a

FACSCaliburTM flow cytometer (Becton-Dickinson).

IFN-c enzyme linked immunospot (ELISPOT)
MultiScreen 96-well plates (Millipore, Bellirica MA) were

coated overnight at 4uC with capture anti-human IFN-c antibody

(Endogen M-700A, Worcester MA) at a final concentration of

5 mg/ml. The next day, the plates were washed 3 times with PBS

and blocked with 100 ml 10% fetal calf serum for 2 hours at room

temperature. Plates were then washed 3 times with PBS, and

56105 cells seeded per well. SEB and MSP142 were added in

respective wells and cultured for 60 hours in a humidified

incubator with 5% CO2 at 37uC. The plates were subsequently

washed with PBS and secondary anti-human IFN-c antibody

(Endogen M-700B) added at a final concentration of 0.75 mg/ml

culture medium followed by incubation for 90 minutes at 37uC.

Plates were washed 3 times with PBS-Tween, horseradish

peroxidase (HRP) conjugated streptavidin (DAKO P0397, Car-

pinteria CA) added at a 1:2000 dilution, and incubated for 2 hours

at room temperature. Finally, the plates were washed 3 times with

PBS and 1% 3-amino-9-ethyl-carbazole in 0.1 M acetate buffer

(HRP substrate) was added to visualize spots. Plates were scanned

and spot forming units (SFU) counted by Immunospot satellite

analyzer (Cellular Technology, Cleveland OH). An individual was

defined as an IFN-c responder to MSP142 if the frequency of SFUs

per 106 PBMCs in the stimulated well was significantly greater

than the well containing culture medium alone using Fisher’s exact

test. The range of IFN-c secreting cells in the unstimulated wells

was 0–7 SFU/million PBMC.

Long term culture and intracellular cytokine and surface
staining for T cell memory subsets

At the same time that IFN-c ELISPOT assays were started,

parallel aliquots of PBMCs from all 49 donors were seeded at a

concentration of 2.56105 cells/200 ml culture medium in

duplicate wells of 96-well round bottom culture plates, washed

60 hours later and re-suspended in fresh culture medium

supplemented with 20 U recombinant human IL-2. All 25 PBMC

samples that had positive IFN-c ELISPOT responses (determined

after 60 hours ex vivo incubation as described above) and those that

had enough cells but lacked detectable IFN-c responses were

further evaluated for T cell memory subsets in the long-term

cultures supplemented with IL-2. On day 6, from the initial

seeding, cells from duplicate wells were pooled, washed and

incubated for 18 hours with fresh culture medium alone, SEB or

MSP142. During the last 6 hours of culture, brefeldin A was added

to allow for intracellular accumulation of IFN-c. Cells were

washed with 20 mM EDTA-PBS and transferred into 5 ml

polystyrene tubes, washed with 0.5% BSA-PBS and labeled for

detection of cell surface CD3, CD4, CD8, CD45RA, and CD62L

at room temperature for 30 minutes. Fixing was done with 4%

paraformaldehyde for 15 min at 4uC in the dark. Cells were then

washed twice with HEPES plus 0.1% saponin (permeabilization

buffer) and cell membranes permeabilized for 30 min at 4uC in the

dark. 50 mL permeabilization buffer and anti-human IFN-c APC

antibody were then added and incubation continued for

30 minutes. Finally, cells were washed twice with 500 ml

permeabilization buffer, resuspended in 0.5 ml BSA-PBS and

56104 gated events per tube acquired for flow cytometric analysis.

For IFN-c ICS, 50,000 gated lymphocyte events were acquired
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and any IFN-c spots from the unstimulated cells were subtracted

from the MSP1 stimulated cells for each study participant to

determine frequency of MSP1-specific IFN-c producing cells per

age group as shown in Figure 5. The range of IFN-c positive cells

found in the unstimulated CD4 and CD8 stained samples were

0.03–1.56% and 0.05–0.74%, respectively. For Figures 6 and 7 the

proportion of MSP1-speicific IFN-c producing cells in each of the

four T cell subsets (CD45 RA v CD62L) was then determined.

Enzyme linked immunosorbent assay (ELISA) for
detection of total IgG antibodies

IgG antibodies were measured by ELISA. Recombinant

MSP142 protein was dissolved in 0.01 M phosphate-buffered

saline (PBS) to a concentration of 0.1 ug/ml and added to

immulon-4 plates (Dynex Technologies, Chantily, VA). After

overnight incubation at 40C, washing and blocking in 5% non-fat

powdered milk in PBS, duplicate 50 ml samples of serum diluted

1/100 in 5% powdered milk were added to wells, and incubation

was continued for 2 hours at room temperature. After washing,

50 ml of alkaline phosphatase-conjugated goat anti-human IgG

(Jackson ImmunoResearch, West Grove, PA), diluted 1/1000 in

5% powdered milk was added and removed after 1 hour. The

plate was washed three times and substrate p-nitrophenyl

phosphate was added in accordance with the manufacturer’s

instructions (Sigma-Aldrich, St. Louis, MO). The reaction was

stopped with 3N NaoH and optical density (OD) was measured at

405 nm. An antibody response was considered positive if it was

three standard deviations above the mean of the malaria-naı̈ve

negative controls [59].

Data analysis
Flow cytometric data were processed and analyzed using FlowJo

software version 7.2 (Tree Star, San Carlos CA). Figure S1 is a

representative histogram depicting the gating strategy used to

capture MSP142-specific IFN-c expressing CD4+ and CD8+ T

cells. Figure S2 shows the gating strategy to determine the

proportions of effector-memory CD4 and CD8 T cell subsets

expressing CD45RA and CD62L. There was no minimum event

number required for a positive response since the proportion of

each T-cell subset back-gated from IFN-c producing cells (either

CD4 or CD8, respectively) was reported for each individual (Figs. 6

and 7). The median frequency of each subset was used to

demonstrate the phenotypic differences for the MSP1 IFN-c

producing T populations in children compared to adults (Figs. 8

and 9). Fisher’s exact test was used to compare the proportion of

IFN-c responders across age groups and the difference between

stimulated and unstimulated cells. Kruskal-Wallis test was used to

compare the magnitude of IFN-c secretion by ELISPOT and

frequencies of T cell subsets across the five age categories. All

analyses were done using the Graphpad program (Graphpad

PrismTM, La Jolla CA).

Supporting Information

Figure S1 Representative forward versus side scatter
gating strategy for peripheral blood mononuclear cells
from adult Kenyan study participant (panel A) examined
for IFN-c expression by CD4+ T cells incubated ex vivo
for 7 days with culture medium with PBS (panel B) or
recombinant MSP142-3D7 (panel C) by FlowJo Software.
Similar analyses were done in parallel for CD8+ T cells.

(TIFF)

Figure S2 Schematic representation from one individu-
al showing the proportion of each T-cell subset based on
the expression of the cell surface markers CD45RA and
CD62L determined after gating for MSP1-specific IFN-c
expression by CD4+ T cells. Similar studies were done in
parallel for CD8+ T cells.

(TIFF)
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