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Abstract: Autophagy is an attractive process to researchers who are seeking novel potential treat-
ments for various diseases. Autophagy plays a critical role in degrading damaged cellular organelles,
supporting normal cell development, and maintaining cellular homeostasis. Because of the various
effects of autophagy, recent human genome research has focused on evaluating the relationship
between autophagy and a wide variety of diseases, such as autoimmune diseases, cancers, and
inflammatory diseases. The skin is the largest organ in the body and provides the first line of defense
against environmental hazards, including UV damage, chemical toxins, injuries, oxidative stress,
and microorganisms. Autophagy takes part in endogenous defense mechanisms by controlling skin
homeostasis. In this manner, regulating autophagy might contribute to the treatment of skin barrier
dysfunctions. Various studies are ongoing to elucidate the association between autophagy and
skin-related diseases in order to find potential therapeutic approaches. However, little evidence has
been gathered about the relationship between autophagy and the skin. In this review, we highlight
the previous findings of autophagy and skin barrier disorders and suggest potential therapeutic
strategies. The recent research regarding autophagy in acne and skin aging is also discussed.

Keywords: autophagy; skin barrier dysfunction; psoriasis; vitiligo; infectious skin diseases; skin
cancer; acne; skin aging

1. Introduction

The complex term ‘autophagy’ is derived from the Greek word ‘self-eating’, with
‘auto’ meaning ‘self’ and ‘phagy’ meaning ‘eat’ [1]. Autophagy is a major intracellular
degradation process for damaged and dysfunctional organelles to protect cells under high-
stress conditions, such as deficiency of nutrients, growth factors loss, oxidative stress, and
hypoxia [2–4]. It is also involved in providing nutrients and energy, which are essential for
normal cell development under stress [1]. In addition, it plays a crucial role in maintaining
cellular homeostasis by selectively clearing surplus or damaged organelles, proteins, and
pathogens [5].

The skin comprises the largest portion of the body and provides a first-line barrier
function against environmental dangers, including ultraviolet (UV) radiation, pathogens,
allergens, injuries, oxidative stress, and toxic chemicals [6,7]. The skin works as more
than just a physical barrier; it serves as an active immune organ [8]. It also prevents
dehydration, controls body temperature, and has self-healing abilities. In addition, the
skin is a sensory organ that provides the central nervous system with pain, thermal, and
touch information [9]. Normal skin is composed of three main layers, which are the
epidermis, dermis, and hypodermis [10]. The epidermis is the outermost part of the
skin and provides a barrier function, innate immunity, and a protective effect from UV
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radiation. Keratinocytes, melanocytes, and Langerhans cells comprise a major portion
of the epidermis [11]. Keratinocytes differentiate into three layers called the stratum
spinosum, stratum granulosum, and stratum corneum (SC). The SC provides the main
barrier function in the outer layer of the epidermis. The dermis includes fibroblasts, mast
cells, macrophages, and circulating immune cells. It is associated with skin elasticity,
thermal control, and wound healing. The hypodermis is the deepest layer of the skin and
is mainly composed of adipocytes. It insulates the body, protects against injuries, and
reserves energy supply [12].

Autophagy participates in the endogenous defense mechanism by regulating skin
homeostasis, causing it to play a pivotal role in the development and progression of skin-
related diseases [13]. Understanding the association between autophagy and skin barrier
dysfunction could provide clues for finding novel potential therapeutic approaches for
various skin diseases.

2. Mechanism of Autophagy

Autophagy is the biological process by which the constituents of a cell break down
in autolysosomes [14,15]. The clarification of the crucial genes involved in autophagy has
accelerated our understanding of the pathophysiology of human diseases. Particularly,
in terms of experimental techniques, mutations in autophagy-related genes (ATGs) are
now being used to discover new therapeutic targets in the autophagy pathway for various
human diseases [16].

Categorized by the method of transporting cargo into lysosomes, three different types
of autophagy are well-known so far [17]. These are macroautophagy, microautophagy, and
chaperone-mediated autophagy (CMA). Macroautophagy is the major form of autophagy
that reacts to physiological or pathological stimuli. Microautophagy is related to the
direct engulfing of cytoplasmic constituents by lysosomes [18], while chaperone-mediated
autophagy is linked to the translocation of substrate molecules through the lysosomal
membrane [19].

During macroautophagy (hereafter referred to as autophagy), a part of the cytoplasm
is enclosed by a double-membrane organelle called an autophagosome. After fusion of the
outer autophagosomal membrane and the lysosomal membrane occurs, lysosomal enzymes
break down the inner membrane of the autophagosomes and the enclosed intracellular
materials. In fact, autophagy was initially recognized as a non-selective biological process,
but now it is known to break down specific materials, (e.g., damaged lysosomes, impaired
mitochondria, or intracellular microbes) and each of these autophagy processes now has
its own name (e.g., lysophagy, mitophagy, and xenophagy, respectively) [16,20,21].

The autophagy process in cells, which proceeds by the above molecular mechanisms,
can be broadly grouped into the following two functions. First, autophagy plays a role in
adapting to metabolic needs. During fasting or aerobic exercise, for example, autophagy
is upregulated and breaks down macromolecules into smaller ones to be used as an
energy source or a building block for other biomolecules [22]. In addition, autophagy
is known to be important for the development, growth, and differentiation of various
living tissues [23]. These autophagic functions related to energy metabolism appear mainly
through the regulation of energy sensors, AMP-activated protein kinase (AMPK), and
mTOR (mechanistic target of rapamycin). Among the skin barrier dysfunction-related
diseases considered in this review, vitiligo and skin aging-related diseases fall into this
category. The detailed mechanisms will be dealt with in each section.

The second role of autophagy is related to intracellular homeostasis. Although it is
primarily a process of removing old or waste substances from cells to prevent them from
accumulating, it has been reported that autophagy plays an important role in maintaining
homeostasis in the immune response or inflammatory process [15,24]. Autophagy is known
to allow the host to activate the immune system, thereby regulating the state of infection
and reducing uncontrolled inflammation [25]. The autophagy function in this respect
can be found in the process of skin barrier dysfunction in various infectious diseases that
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invade the skin. It is also found in psoriasis associated with various microbial and viral
infections, or acne conditions requiring the removal of sebocyte debris.

As the mechanism of autophagy has been uncovered in many contexts, it is believed
that autophagy is closely related to human disease. However, little evidence has been gath-
ered that autophagy increases or decreases under certain conditions, as human autophagy
activity cannot be accurately measured. Recent human genome research results further
increase the possibility of measuring autophagy in inflammatory diseases, cancers, and
autoimmune diseases [26–28].

3. Autophagy in Autoimmune Skin Disorders
3.1. Psoriasis

Psoriasis is a chronic autoimmune T cell-mediated skin disorder characterized by
heavily scaled red or salmon pink plaques [29]. Sustained inflammation and uncontrolled
keratinocyte proliferation are well-known pathological features of psoriasis [30,31]. Around
2–4% of the world population has psoriasis [32]; however, the prevalence varies by race, age,
and gender [33]. Lee et al. demonstrated a major role of autophagy in keratinocyte inflam-
mation regulation [34]. In the study, keratinocyte autophagy downregulated the expression
of scaffolding adaptor protein p62/SQSTM1 (p62), leading to decreased inflammatory
cytokine production and keratinocyte proliferation.

Several bacteria, fungi, and viruses have been linked to the development of psoria-
sis [35]. Among them, Streptococcus pyogenes tonsillar infection is the most prominent
factor leading to the triggering and aggravation of psoriatic symptoms [36]. As autophagy
promotes bacterial clearance, decreased autophagy in psoriasis may attenuate both clear-
ance and immune response to bacteria [37].

Douroudis et al. reported a possible impact of polymorphisms in the ATG16L1 gene
(rs10210302, rs12994971, rs2241880, rs2241879, and rs13005285) on psoriasis susceptibil-
ity [38]. ATG16L1 is essential for autophagy [39]. Therefore, decreased ATG16L1 affects the
autophagy machinery, resulting in cell death, tissue damage, and chronic inflammation [40].

Many researchers demonstrated that both T helper 17 (Th17) cells and regulatory T
(Treg) cells play pivotal roles in the pathogenesis of psoriasis [41–43]. Th17 cells produce
interleukin-17A (IL-17A), leading to the stimulation of keratinocyte proliferation and
exacerbating skin inflammation [44,45]. A high level of Th17 was reported in patients with
psoriasis and was correlated with the clinical severity and activity of the disease [46,47].
Treg cells are the key players in maintaining skin immune homeostasis and preventing
autoimmune disease by suppressing the immune response [48]. However, the suppressive
function of Tregs is impeded in patients with psoriasis, causing an imbalance of Th17 and
Treg cells and exacerbating the disease [49–51]. Autophagy was improved when Th17 was
decreased and Treg was increased by metformin treatment [52]. Since the ratio of Th17 to
Treg was increased in the setting of psoriasis, the upregulation of autophagy may have
potential as a novel treatment for psoriasis.

3.2. Vitiligo

Vitiligo is the most common pigmentation disorder, with a worldwide prevalence of
around 1% of the population [53,54]. It is an acquired autoimmune disease characterized
by patchy white skin caused by the loss of CD8+ T cell-mediated melanocytes from the epi-
dermis [55–57]. Vitiligo is classified into two groups: segmental vitiligo and non-segmental
vitiligo (NSV) [58]. Segmental vitiligo shows localized partial loss of melanin, while NSV
corresponds to generalized melanocyte loss caused by the autoimmune response [59].

According to previous reports, cellular stress may induce autophagy, promote proin-
flammatory heat shock proteins 70 (HSP70) and antigen-carrying exosome release, and
induce X-box binding protein 1 (XBP1)-dependent IL-6 and IL-8 secretion [60,61]. In the
setting of vitiligo, patients show higher stress levels compared with healthy controls [60].

In addition, autophagy is known to regulate melanosome degradation [62,63], pro-
moting the survival and proliferation of melanocytes [13]. Jeong et al. suggested a possible
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association between the UV radiation resistance-associated gene (UVRAG) polymorphisms
(rs1458836 and rs7933235) and NSV susceptibility in a Korean sample [64], and another
group led by Jeong reported a relationship between Granzyme B (GZMB) polymorphisms
(rs2236338, rs11539752, rs10909625, and rs8192917) and NSV development in a Korean
population [59], supporting the theory that autophagy is essential for cellular homeostasis.

Taken together, inducing autophagy may provide a potential therapeutic option for
vitiligo. In a recent study, Bastonini et al. demonstrated that induction of autophagy plays
a protective role against intrinsic metabolic stress and enhances survival in vitiligo [54].

4. Autophagy in Infectious Skin Diseases
4.1. Group A Streptococcus

One of the most studied skin pathogens associated with autophagy is Group A
Streptococcus (GAS, Streptococcus pyogenes). GAS is a Gram-positive species and a beta-
hemolytic coccus [65]. It is associated with a wide range of acute and chronic diseases,
including pharyngitis, streptococcal toxic shock syndrome, and acute post-streptococcal
glomerulonephritis (APSGN) [66]. In addition, GAS induces a wide range of skin diseases,
which include impetigo, psoriasis, and the immune-mediated diseases of acute rheumatic
fever (ARF) [67,68]. Autophagy may be a critical mechanism to eliminate GAS in the skin,
as evidenced by various studies. Nakagawa et al. first demonstrated that GAS is effectively
eliminated via the autophagy-mediated pathway [69]. They revealed that the amount of
microtubule-associated protein light chain 3 (LC3)-II, which is a marker for the formation of
autophagosomes, increased following GAS infection, suggesting that GAS infection induces
autophagy. This study also supported this claim by showing that LC3-II formation and
LC3-positive autophagosome were not observed in ATG5-deficient cells. Adaptors such as
p62 [70], nuclear dot protein 52 (NDP52) [71,72], and neighbor of BRCA1 gene 1 (NBR1) [73]
are essential in recognizing GAS after it is flagged with polyubiquitinated protein and can
recruit LC3. Furthermore, it was reported that insufficient acidification of autophagosomes
permits GAS to replicate, leading to the growth of GAS in endothelial cells [74], which
implies a significant role of low pH in GAS removal by autophagy. Moreover, recent
studies have suggested crucial mechanisms of autophagy-mediated removal of GAS within
cells [75–77], indicating that the regulation of autophagy can lead to therapeutic benefits in
infectious diseases caused by GAS.

Interestingly, multiple evasion mechanisms of GAS have been reported to avoid
degradation via autophagy. For example, expression of streptococcal pyrogenic exotoxin B
(SpeB1), a streptococcal cysteine protease, is observed in the globally disseminated M1T1
clone of GAS and is known to induce the degradation of p62, NDP52, and NBR1, resulting
in the escape of GAS from host autophagy [78].

4.2. Herpes Simplex Virus

Autophagy also plays an important role in skin infections caused by viruses. Herpes
simplex virus (HSV) is commonly observed worldwide and highly contagious [79]. It
shows a distinctive structure, consisting of a DNA-filled capsid, an envelope with lipids,
and a proteinaceous tegument layer [80], and is categorized into two groups: HSV-1, which
induces herpes labialis, pharyngitis, and keratitis, and HSV-2, which induces common
genital herpes [81]. The regulation of autophagy by HSV-1 may be cell type-dependent,
as reported in previous studies; however, most studies have concluded that autophagy is
involved in reducing HSV-1 replication and reproduction [82]. It was reported that HSV-1
induces the formation of four-layered membrane structures from the nuclear envelope,
which have autophagosome-like structures, and evidence suggests that the structures were
fused with lytic organelles [83,84]. In addition, autophagy induced during HSV-1 infection
triggers a vacuolar response, which increases the processing and presentation of the peptide
HSV-1 glycoprotein B on major histocompatibility complex (MHC) class I molecules [83].
In contrast to HSV-1, little is known about the roles of autophagy in HSV-2 infection. It was
reported that the removal of ATG5 function by gene knockdown decreased the processing
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and presentation of HSV-2 antigen on MHC class II molecules [85], but further study is
necessary to elucidate the specific roles of autophagy in HSV-2 within the cells.

Like other pathogens, HSV can express various proteins that counter autophagy. The
first anti-autophagic protein discovered was infected cell protein 34.5 (ICP34.5), encoded
by HSV-1 [86]. ICP34.5 binds to and inhibits beclin 1, which is an essential protein for
the autophagy process, and the absence of ICP34.5 facilitates autophagy by activating the
eukaryotic translation initiation factor 2-α kinase 2 (EIF2AK2/PKR) pathway. In addition,
Us11 encoded by HSV-1 was determined to be an anti-autophagy protein that directly
binds to PKR [87].

4.3. Candida Albicans

Candida albicans (C. albicans) is a commensal fungus commonly causing opportunistic
infections of the skin, mucosa, and reproductive tract. It normally causes no harm; how-
ever, it sometimes causes life-threatening diseases in immunocompromised patients. The
involvement of the autophagy process in the removal of C. albicans within the cells was
suggested in a study by Nicola et al. [88]. They confirmed the existence of LC3 in most
macrophage vacuoles containing C. albicans and observed that removing ATG5 function by
RNA interference decreased the phagocytosis of C. albicans. Thus, the findings regarding
the mechanisms of autophagy in C. albicans may facilitate the identification of promising
therapeutic targets. In this context, Zhang et al. reported that the V-ATPase subunit VMA5
is associated with autophagy completion for C. albicans and hyphal development. In addi-
tion, inositol polyphosphate kinase Vip1 has been reported as an important factor in the
autophagy of C. albicans [89], enriching our knowledge and understanding of autophagy
and its role in C. albicans infections.

5. Autophagy in Skin Cancer Diseases

The role of autophagy in cancer is complicated; it may lead to tumor survival or tumor
death, which are opposing consequences. In the early stages of cancer, autophagy may act
as a tumor suppressor by preventing chronic tissue damage and cancer initiation [90–92].
On the other hand, autophagy works as a tumor promotor in established cancers by
supporting metabolism, tumorigenesis, and survival [90–92]. Many researchers have
investigated the relationship between autophagy and various cancers in an attempt to
discover a potential therapeutic approach for these diseases.

5.1. Skin Squamous Cell Carcinoma

Skin squamous cell carcinoma (SSCC) is the second most common skin cancer, and
its incidence has continued to increase worldwide over the past decades [93,94]. SSCC
development is known to be mainly related to chronic, cumulative UV exposure and
immunosuppression [93,95].

Verschooten et al. reported that blocking autophagy using chloroquine-enhanced
luteolin induced apoptosis in metastatic squamous cell carcinoma cells [96]. Ou et al.
also demonstrated that the inhibition of protective autophagy by chloroquine could pro-
mote apoptosis induced by gefitinib, a selective epidermal growth factor receptor (EGFR)
tyrosine kinase inhibitor, in SSCC [97]. Chloroquine effectively suppressed the prolifer-
ation, migration, and invasiveness of SSCC while enhancing apoptosis. The blockade
of autophagy by chloroquine was demonstrated by the increased cleavage of caspase-3
and the accumulation of LC3-II and SQSTM1 (p62). A similar study was performed by
Wang’s group and concluded that chloroquine exhibits a synergetic apoptotic effect me-
diated by gefitinib in SSCC cells [98]. The suppression of autophagy by chloroquine was
demonstrated by the alteration of LC3-II.

Zhang et al. demonstrated that when SSCC cells were treated with 3-methyladenine
(3-MA), an autophagy inhibitor, followed by 5-fluorouracil (5-FU), the inhibition of prolif-
eration, migration, and invasion of SSCC cells was enhanced; furthermore, the apoptosis
of the cells also increased [99]. In this study, autophagy in SSCC was confirmed, as the
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expression of the autophagy-related gene LC3 showed a negative correlation with Bcl2
and/or survival.

Overall, the above research suggests the potential of autophagy as a target for SSCC
treatment. In addition, a combination strategy of autophagy inhibitors and anti-cancer
agents may be an effective novel treatment option for SSCC using autophagy regulation.

5.2. Melanoma

Melanoma arises from the transformation of melanocytes, which produce pigments [100].
It is one of the most lethal tumors, and the overall mortality rate has been increasing [101].
Melanoma is characterized by a high capability of invasion and rapid metastatic potential,
which leads to a poor prognosis of metastatic melanoma [102]. Around 50% of melanoma
patients show BRAF mutations, which lead to dysregulated downstream activation of the
MEK and ERK pathways [103]. Mutated BRAF genes are associated with the upregulation
of proliferation, differentiation, survival, invasion, and angiogenesis of melanoma [104].
The currently approved therapies for metastatic melanoma include not only BRAF and
MEK inhibitors but also immune checkpoint inhibitors such as anti-CTLA-4 and anti-PD-
1 [101]. However, novel strategies are needed to overcome the existing drug resistance and
tumor recurrence of the current treatments [105,106].

High levels of autophagy in melanoma assessed by LC3B were revealed to be associ-
ated with tumor cell proliferation, metastasis, and poor outcomes [107]. From this point
of view, many researchers have examined autophagy inhibition strategies as potential
treatments for melanoma. Xie et al. discovered that treatment with dabrafenib, a BRAF
inhibitor, increased the anti-tumor effect in a melanoma mouse model [108].

Chloroquine is also known to mediate autophagy inhibition in melanoma [109,110].
Since hypoxia-inducible factor-1α (HIF-1α) allows cell growth under metabolic stress and
hypoxia, Egger’s team hypothesized that a combination of an HIF-1α inhibitor and chloro-
quine would have an anti-tumor effect on melanoma cells [111]. As expected, combining
the HIF-1α inhibitor echinomycin with chloroquine improved melanoma cytotoxicity under
hypoxic conditions.

All these findings support the hypothesis that targeting autophagy is a promising
clinical approach in melanoma therapy. In recent years, clinical trials that involve blocking
chloroquine-mediated autophagy have been initiated in various types of cancers, including
melanoma [112,113].

6. Autophagy in Other Skin Diseases

In addition to the above-mentioned skin diseases, the possibility of its association
with autophagy in several diseases has been suggested. Acne and skin aging, which are
discussed in this section, contain pathological mechanisms associated with damage to the
skin barrier. Using the latest research papers on each disease, the possibility of treatment
and prevention of skin diseases through the control of autophagy will be discussed.

6.1. Acne

As mentioned earlier, autophagy is a catabolic process that discards impaired or-
ganelles to preserve cellular homeostasis. From this point of view, it can be assumed that
autophagy is also involved in sebaceous gland homeostasis. Here, two scientific views on
the relationship between acne and autophagy will be reviewed in terms of damage and
repair of the skin barrier.

As an exocrine organ present in the skin, the sebaceous glands are involved in the
progression of a skin disease known as acne vulgaris. Acne occurs when the outlet from
the gland to the surface of the skin is plugged, allowing sebum to accumulate in the follicle
and sebaceous duct [114]. The sebaceous glands are made up of sebocytes in proliferating,
maturating, or matured states. The excessively generated sebum stimulates the hair follicle
to eliminate these sebocytes, and the removed cells clump to block the sebaceous duct,
forming comedones and thereby inducing the acne inflammatory response. Through the
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subsequent inflammatory reaction, the breakdown of triglycerides in the sebum occurs and
creates the typical lesions of acne by releasing free fatty acids. Considering this background,
the formation of microcomedones and open/closed comedones is induced by the leakage
and accumulation of cell debris from incompletely removed sebocytes into the sebaceous
duct. Interestingly, it has been reported that the process of eliminating sebocytes in the
sebaceous glands is followed by autophagy [115]. This process seems to be aimed at
providing a substrate for energy generation and biosynthesis of cellular proteins for normal
sebaceous gland function. According to the results of the study, when autophagy was
suppressed in animal sebocytes, a 40% reduction in the proportion of free fatty acids and
cholesterol, a five-fold increase in the proportion of FA methyl esters, and a change in
sebum composition were demonstrated. Moreover, these changes were consistent with
those observed in acne patients [116].

Other studies have examined the relationship between autophagy and acne from a
different perspective. It was reported that sebocyte lipogenesis was downregulated when
autophagy was induced with the mTOR1 agonist rapamycin, a well-known autophagy
inducer. This suggests that autophagy activation could potentially have a positive function
in regulating sebocyte lipogenesis and acne development [117]. In addition, according to
the results of clinical studies, after the application of the autophagy-activating peptides,
decreases in the amount of skin surface lipids (SSL), closed comedones, and trans-epidermal
water loss (TEWL) were detected in acne-prone skin [118].

6.2. Skin Aging

Cellular senescence is generally induced by DNA damage that involves intracellular
(e.g., UVA or UVB irradiation) or extracellular (e.g., reactive oxygen species, ROS) stimula-
tion, and aged cells are distinguished by the senescence-associated secretion of molecules
such as proteases, growth factors, and inflammatory cytokines [119,120]. The relationship
between aging and autophagy has been studied in various human organs and tissues. Here,
we specifically discuss the role of autophagy involved in regulating the function of the skin
barrier during aging.

The conditions most often observed in the skin of elderly patients are decreased
functional capacity and increased susceptibility of the skin due to exacerbation of skin
problems, such as large and small wrinkles, dry skin, itching, dyspigmentation, and tumors.
As with other cells, autophagy helps eliminate aged subcellular organelles in aged skin
cells. Generally, when autophagy is suppressed, the aging process is intensified through
the activation of inflammatory reactions in the skin [121]. In addition, autophagy has been
shown to control the functions of dermal fibroblasts, keratinocytes, and melanocytes under
UV irradiation or stress conditions known to induce skin aging [122,123].

The effects of autophagy on keratinocytes that form the aged skin barrier have been
reported. It was reported that the inhibition of mTORC1 stimulated calcium-induced
keratinocyte differentiation [124]. In another study, it was shown that cell death-induced
autophagy (CDA) could contribute to the terminal differentiation of skin and skin ap-
pendages, including the sebaceous glands [125]. These results suggest that autophagy
is closely involved in the process of promoting keratinocyte differentiation in aged skin.
Considering that the normal differentiation process of keratinocytes is essential for the
formation of the stratum corneum of the skin and the removal of organelles, including
the nucleus, is necessary, the regulation of keratinocyte differentiation by autophagy pro-
cesses is thought to play an important role in maintaining epidermal barrier formation and
homeostasis during aging.

Interestingly, one study demonstrated that the UVB-induced autophagy process inhib-
ited epidermal cell death caused by UVB-induced apoptosis through the glycogen synthase
kinase signaling pathway [126]. In this study, UVB radiation activated AMPK, a positive
regulator of autophagy, through GSK3β inhibition.
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7. Conclusions and Perspectives

Autophagy seems to be a fascinating target for novel treatment strategies for various
diseases; however, its mechanism is complicated, and the autophagy-related changes vary
depending on the disease type. In this review, we focused on the role of autophagy in
skin barrier dysfunctions, including autoimmune skin disorders (psoriasis and vitiligo),
infectious skin diseases (GAS, candida albicans, and HSV), cancers (SSCC and melanoma),
acne, and skin aging. In Figure 1, the role of autophagy in skin barrier-related skin diseases
was described. In Table 1, we summarize the autophagy-related changes, consequent
physiological changes, and therapeutic effects on each disease. In addition, autophagy-
related changes were classified into autophagy-induced changes or autophagy-inducing
changes. In most cases, the therapeutic effects of autophagy on skin-related diseases are
positive. In psoriasis, p62/SQSTM1 downregulation and increased bacterial clearance
lead to positive therapeutic effects. In vitiligo, decreased melanosome degradation and
mTORC1 inhibition may influence the positive results. Increased S. pyogenes clearance and
enhanced presentation of HSV-1 viral antigen on MHC class I have positive therapeutic
effects on infectious diseases. In acne, elimination of sebocytes debris and downregulation
of sebocyte lipogenesis can lead to positive outcomes. In skin aging, mTORC1 inhibition
and UVB-induced AMPK activation induce positive therapeutic effects. However, when
treating tumors, the modulating autophagy strategy should be approached carefully. In
the early stages of cancer, autophagy acts as a tumor suppressor; however, in established
cancers, autophagy becomes a tumor promotor. In SSCC, autophagy promotes intracellular
vacuolization, and this leads to decreased SSCC apoptosis, which has a negative therapeutic
effect. In melanoma, autophagy-induced punctate LC3B expression promotes melanoma
proliferation and metastasis, leading to a negative therapeutic outcome. The therapeutic
materials that mediate autophagy in skin barrier-related skin diseases are summarized
in Table 2. Further investigation is needed to clarify the role of autophagy in skin barrier
dysfunctions. This will help identify novel potential therapeutic approaches for various
skin disorders.
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Table 1. Involvement of autophagy processes in skin barrier-related skin diseases.

Skin Diseases Autophagy-Related Changes Consequent Changes Therapeutic Effects on Diseases Refs.

Psoriasis

p62/SQSTM1 downregulation a
Inflammation ↓

Keratinocyte
proliferation ↓

Positive [34]

Increased bacterial clearance a Immune response ↓ Positive [35–
37]

ATG16L1 polymorphism
Autophagy flux ↓

Chronic inflammation
↑Cell death ↑

Negative [38]

Vitiligo

Decreased melanosome
degradation a

Melanocyte
proliferation ↑ Positive [62]

mTORC1 inhibition b

Protection against the
metabolic stress on

non-lesional
melanocytes

Positive [54]

Infectious disease

Increased S. pyogenes clearance a Defending against
pathogens ↑ Positive [75–

77]

Enhanced presentation of HSV-1
viral antigen on MHC class I a

Degradation of
endogenous viral

proteins ↑
Positive [83,

84]

Skin cancer

Increased intracellular
vacuolization in SSCC a SSCC apoptosis ↓ Negative [96]

Punctate LC3B expression in
melanoma a

Melanoma proliferation
and metastasis ↑ Negative [107]

Acne

Sebocytes debris elimination b
Maintaining normal

sebaceous gland
function

Positive [115]

Sebocyte lipogenesis
downregulation a

Skin surface lipid,
closed comedones,

TEWL ↓
Positive [117,

118]

Skin aging
mTORC1 inhibition b Keratinocyte

differentiation ↑ Positive [124]

UVB-induced AMPK activation b Epidermal cell death ↓ Positive [125]
a: Autophagy-induced changes, b: Autophagy-inducing changes. ↓: Inhibition, ↑: Induction.

Table 2. Therapeutic materials that mediate autophagy in skin barrier-related skin diseases.

Skin Diseases Therapeutic
Materials

Effects on
Autophagy Consequent Changes Refs.

Skin squamous
cell carcinoma Chloroquine ↓ Apoptosis ↑ [96–98]

Melanoma
Dabrafenib ↓ Antitumor activity ↑ [108]

Chloroquine ↓ Antitumor activity ↑ [109–113]

Acne Rapamycin ↑ Lipogenesis ↓, Fatty
acid synthesis genes ↓ [117]

↓: Autophagy inhibition, ↑: Autophagy induction.
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Abbreviations

UV ultraviolet
SC stratum corneum
ATG autophagy-related gene
CMA chaperone-mediated autophagy
Th17 T helper 17
Treg T regulatory
IL-17A interleukin-17A
NSV non-segmental vitiligo
HSP70 heat shock proteins 70
XBP1 X-box binding protein 1
UVRAG ultraviolet radiation resistance-associated gene
GZMB granzyme B
GAS group A Streptococcus
APSGN acute post-streptococcal glomerulonephritis
ARF acute rheumatic fever
LC3 microtubule-associated protein light chain 3
NDP52 nuclear dot protein 52
NBR1 neighbor of BRCA1 gene 1
SpeB1 streptococcal pyrogenic exotoxin B
HSV herpes simplex virus
MHC major histocompatibility complex (MHC)
ICP34.5 infected cell protein 34.5
EIF2AK2/PKR eukaryotic translation initiation factor 2-α kinase 2
SSCC skin squamous cell carcinoma
EGFR epidermal growth factor receptor
3-MA 3-methyladenine
5-FU 5-fluorouracil
HIF-1α hypoxia-inducible factor-1α
SSL skin surface lipids
TEWL trans-epidermal water loss
ROS reactive oxygen species
CDA cell death-induced autophagy
AMPK AMP-activated protein kinase
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