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Abstract: Functional magnetic resonance imaging (fMRI) techniques and electroencephalography (EEG)
were used to investigate sleep with a focus on impaired arousal mechanisms in disorders of arousal
(DOAs). With a prevalence of 2–4% in adults, DOAs are significant disorders that are currently
gaining attention among physicians. The paper describes a simultaneous EEG and fMRI experiment
conducted in adult individuals with DOAs (n = 10). Both EEG and fMRI data were validated
by reproducing well established EEG and fMRI associations. A method for identification of both
brain functional areas and EEG rhythms associated with DOAs in shallow sleep was designed.
Significant differences between patients and controls were found in delta, theta, and alpha bands
during awakening epochs. General linear models of the blood-oxygen-level-dependent signal have
shown the secondary visual cortex and dorsal posterior cingulate cortex to be associated with alpha
spectral power fluctuations, and the precuneus with delta spectral power fluctuations, specifically in
patients and not in controls. Future EEG–fMRI sleep studies should also consider subject comfort as
an important aspect in the experimental design.

Keywords: fMRI; EEG; simultaneous measurement; disorders of arousal; NREM parasomnia

1. Introduction

Sleep and its disorders are at the forefront of many researchers’ and physicians’ interests.
Generally, sleep disturbances have been reported by 30% of the population. Sleep disorders may cause
or exacerbate preexisting medical and psychiatric conditions and are associated with high rates of
depression, anxiety, and impaired daytime functioning [1]. Sleep is the relaxation phase. Muscles relax,
respiratory and cardiac activity change, brain activity changes, and so does the state of consciousness.
Sleep contains cycles alternating in several phases with different characteristics. The main two types
of sleep are called the rapid eye movement (REM) and non-rapid eye movement (NREM) phases.
By default, we can further divide the NREM phase into three parts according to the depth of sleep,
with the third being the deepest [2]. Sleep, like all physiological processes, can be disturbed. Some of
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the most prevalent sleep disorders are disorders of arousal (DOAs; sleepwalking, confusional arousal,
and night terrors). DOAs are the NREM parasomnias characterised by abnormal behavioural (motor
or verbal) events during NREM sleep. People with DOAs can have reduced quality of sleep that affects
their health [3,4].

Sleepiness in adults can have a major impact on a daily routine. Studies show that the primary
cause of DOA episodes is the instability of the NREM phase of sleep [5,6]. During a parasomnic attack,
the activity of the slow waves in the EEG decreases during the first sleep cycle, and those waves are
more evenly distributed across the time in the signal [7,8].

Advances in understanding physiological and pathological processes in the brain are directly
dependent on the methodological approach used. Electroencephalography (EEG) and functional
magnetic resonance imaging (fMRI) are very effective tools for characterising human brain function.
DOAs have been studied by EEG, where they are associated with activation in the frontal lobe
and with synchronised slow wave activity before the onset of the parasomnic episode [4,5,9,10].
Manifestations of DOAs were also examined by fMRI [11] and the positron emission tomography [12].
Simultaneous sleep recordings using EEG and fMRI have been described in studies [13–17], but without
specifically focusing on parasomnia. Sleep is usually studied by well established EEG components
which are, however, originated in deep brain sources. The fMRI modality is suitable for precise
localisation of activity in the whole brain, so the EEG and fMRI data integration is a promising tool
for studying the spatio-temporal dynamics of brain activity. To the best of our knowledge, the most
promising potential of combined EEG and fMRI recording has so far not been utilised in parasomnia
research. Our research exploited recent EEG–fMRI data analysis techniques and resulted in sleep
research with the aim of better characterising DOAs.

Simultaneous EEG and fMRI recording, however, brings a number of limitations. At first, the recording
in an MRI is inappropriate for subjects with claustrophobia. Larger discomfort in simultaneous
recording (EEG electrodes located on head, noise, and the constant position of the body in
an MRI scanner during recordings) requires special design of sleep experiments. Furthermore,
sleep deprivation has to be applied to allow the subject to fall asleep, despite the subject’s discomfort.
However, long sleep deprivation can lead to non-physiological sleep during the recording session,
which can lead to invalid results. The time of sleep deprivation before the start of a recording varies
across studies. For example, in the study [18], the sleep deprivation was 17 h; in studies [13,19],
it was 36 h.

Recording time limitations due to the EEG and fRMI equipment is another significant issue
of sleep experiments utilising simultaneous and continuous recording of EEG and fMRI. There are
two main parameters that influence the maximal continuous recording time. The first one is the
maximum number of MRI scans, defined for a specific MRI sequence, which is by default set by the
Siemens Magneton Prisma system. The next limiting parameter is the EEG amplifier’s battery capacity.
Generally, these two parameters do not allow continuous overnight recording. Hong et al. recorded
simultaneous EEG and fMRI throughout the entire night, but the recordings were discontinuous [20].
Moehlman et al. continuously recorded EEG and fMRI sleep data throughout the entire night [16];
however, how the continuous recording was achieved was not specified in detail.

Beside the above-mentioned technical limitations, a variety of technical and physiological artefacts
are propagated in both modalities EEG and fMRI throughout the simultaneous recording approach.
The artefact occurrence can be partially reduced by an appropriate setup of the EEG and fMRI.
Chowdhury et al. examined the EEG lead’s influence on the genesis EEG artefacts [21]. It has been
proved that the gradient artefact (GA) generated by the ribbon cable is greater than the GA generated
by a twisted cable. Chowdhury et al. mentioned that there are higher GA changes using a ribbon cable
if the lead position changes. The results of this study showed that twisted cables placed in a constant
magnetic field direction are preferable [21].

The MRI environment itself causes a number of substantial artefacts in the EEG data. If those
artefacts are not sufficiently suppressed, the analysis can lead to false positive statistical significance.



Diagnostics 2020, 10, 1087 3 of 24

Among those, the two most prominent are GA and pulse (PA) artefacts. Another essential part of
artefact suppression is the use of appropriate preprocessing methods. The suppression of those
artefacts is typically based on the fact that they are relatively stable over time. Thus, the average
artefact subtraction method (AAS) combined with principal component analysis (PCA) or independent
component analysis (ICA) decomposition, called the optimal basis set (OBS), is typically utilised for
both GA [22–24] and PA [25] artefact suppression. Those methods are conveniently implemented in
EEGLab plug-in fMRIB [26]. The PA artefact is the most challenging phenomenon contaminating the
lower bands of an EEG, and these bands are of interest in sleep research [27]. Here, we utilised the
aOBS algorithm [27] exhibiting the most effective artefact suppression compared to the previously
used approaches in sleep. Furthermore, we validated the data quality using our recent algorithm based
on an application of a machine learning clustering algorithm called t-distributed stochastic neighbour
embedding (t-SNE) [28].

For the purpose of EEG and fMRI data integration, one has to ensure that the EEG equipment does
not influence the blood-oxygen-level-dependent (BOLD) signal in terms of producing an EEG-specific
BOLD artefact. Previous EEG–fMRI studies in sleep have not addressed this phenomenon in sufficient
detail. Here, we validated the BOLD signal by deriving well established resting state networks from
the awake epochs during the recording session.

The aim of the study was to compare the sleep of NREM parasomnic individuals and a control
group using simultaneously recorded hdEEG and fMRI. We present a methodology based on the
available literature on EEG–fMRI in the sleep of healthy human subjects, and we propose mathematical
tools to evaluate the quality of EEG and fMRI data in sleep. The first goal of this study is to prove
that it is possible to simultaneously record all sleep stages in NREM parasomnia patients. The second
goal was to validate the preprocessed and integrated simultaneous EEG–fMRI data. Most importantly,
the paper answers the question of whether there are significant differences between parasomnia
patients and a control group according to the introduced hdEEG–fMRI integration approach.

2. Materials and Methods

This section describes all the methods utilised in this study and is divided into 9 subsections.
The first Section 2.1 describes the complete experimental design. Section 2.2 summarises all the
equipment utilised in this study together with MR scanner acquisition parameters. Sections 2.3 and 2.4
include EEG and fMRI preprocessing methodology and their evaluation. Sections 2.5 and 2.6
describe the integration approach itself on the electrode level and fMRI volume level, respectively.
Finally, Sections 2.7–2.9 involve statistical testing. All scripts are freely available online (https:
//github.com/MPio23/SimultEEG_fMRI).

2.1. Experiment Design

Patients with NREM parasomnia and healthy subjects (control group) were compared during
the experiment. All the patients met the ICSD-3 criteria for SW (sleepwalking) and for ST (sleep
terror). Every study subject underwent a clinical interview performed by a neurologist specialised
in sleep medicine and overnight video-polysomnography in the National Institute of Mental Health
(NIMH). The absence of exclusion criteria was verified before the start of the experiment for each
subject; see Table 1.

Table 1. Exclusion criteria of volunteers before starting the measurements.

Exclusion Criteria before Start the Experiment

pregnant or breastfeeding women
persons taking medications that affect sleep

persons with clinically significant sleep comorbidities
persons with clinically significant neurological or psychiatric comorbidities

persons who cannot be examined by a MRI device due to somatic or mental illness

https://github.com/MPio23/SimultEEG_fMRI
https://github.com/MPio23/SimultEEG_fMRI
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In our study, subjects were asked in advance whether they have had any kind of claustrophobic
experience in the past. Subjects underwent sleep deprivation for 28 h ± 1 h. The subject got up in
the morning according to his habits (no later than 8:00), a normal working day took place, and at
17:00 he arrived at the sleep laboratory in NIMH. Subjects were under control all night, and a supine
position was not allowed. An examination by a physician was performed in the morning, and the
measurement itself was performed around lunch time. The entire process is summarised in a timeline
of the entire study in Figure 1. Small pillows were used to fix the subject’s head and increase the
comfort of the subject during a recording session. An EEG cable harness below the subject’s body was
placed in accordance with subject comfort. We emphasised the subject’s comfort over minimising the
GA artefact, which was further removed by an appropriate preprocessing technique. A solution to this
trade-off was designed for future studies; see Appendix A. We utilised an 83-min-long fMRI series that
allowed us to reliably involve the first sleep circle. Despite the control of subject comfort, most of the
recordings did not contain enough NREM sleeping phases; see Section 4.

Figure 1. The diagram (time goes from top to bottom) shows the time schedule of the study, including the
volunteer selection phase.
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We recorded 10 subjects in the control group and the group with patients with NREM parasomnia.
This dataset is very unique in the specific experimental design and the types of disease studied.

Simultaneous recordings from 8 control subjects and 9 patients with NREM parasomnia remained
for subsequent data processing after the exclusion of wrong datasets (one control subject was proven
to present symptoms of patients with NREM parasomnia retrospectively; two recordings had to
be excluded due to technical issues during recording). Sleep phases and transitions to sleep and
awakening were scored by two experts in accepted datasets. A third expert scored unclear parts of the
data when two experts did not find a match.

The study protocol and patient informed consent were approved by the National Institute of
Mental Health’s ethical committee on 9th of August, approval code: 185/17. The procedures followed
were in compliance with the ethical standards of the responsible committee on human experimentation
(institutional and national) and with the World Medical Association’s Declaration of Helsinki on
Ethical Principles for Medical Research Involving Human Subjects.

2.2. Technical Equipment

The MR compatible Geodesic EEG System (GES) 400 from Electrical Geodesics, Inc., Eugene, OR,
USA (EGI) was used to measure EEG. The system included a Net Amps 400 amplifier, which was
controlled by an iMac computer with Net Station software; synchronisation was controlled by the GES
Clock Sync I/O device. The system versions used are described in Table 2. The EEG measurement
cap was used by the same company MR-compatible HCGSN (HydroCel Geodesic Sensor Net) 256
channels (see the last row of Table 2). Due to the length of the measurement, a hydrogel-based material
was used. EEG data were recorded with a sampling frequency of 1 kHz.

Table 2. GES 400 system parameters.

Species of Equipment System Version

Firmware 2.0.14
Amp Server 3.6.0

FPGA 7.40
HydroCel GSN 220 MR LTM

An MR device with a static magnetic field size of 3T from Siemens, model Siemens Magneton
Prisma, was used for the measurement. The sequence parameters used for fMRI sleep recording are
described in Table 3.

Table 3. fMRI sequence parameter settings.

Parameter Setting

Field of view (FoV) 220 mm
Resampling phase (FoV) 100%

Slice thickness 3 mm
Time echo (TE) 30 ms

Repetition time (TR) 1000 ms
Voxel size 3 mm × 3 mm × 3 mm

SNR 1
Multi-band acceleration factor 4

Number of slices 64
Maximal numb. of sken 4960

Flip angle 52 ◦

Band width 1988 Hz/Px
Echo gap 0.58 ms
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2.3. EEG Preprocessing

First of all, the EEGlab plug-in FMRIB was utilised. The FASTR algorithm, which is based on
the average artefact subtraction (AAS) method, was applied to EEG data to suppress the gradient
artefact [23,26]. To remove the ballistocardiographic artefact from the EEG data, the adaptive optimal
basis set (aOBS) algorithm was utilised [27]. Subsequently, the eye artefact was removed from the data
based on a method in the Fieldtrip toolbox [29,30]. Finally, a notch filter was applied, and the data were
then band-pass-filtered between 0.5 and 30 Hz and referenced to the average signal obtained from two
electrodes corresponding to mastoids, which is the most typical electrode reference in studies dealing
with sleep data. For validation of preprocessed EEG data, our unsupervised clustering algorithm
based on tSNE was applied to the data, and resulting clusters were visually checked and compared
with resting-state datasets utilised in our previous study [28].

2.4. fMRI Preprocessing

The BOLD data were preprocessed by a pipeline consisting of the following steps: a bias field
correction, motion correction, slice-timing correction, normalisation, and spatial smoothing. All the
steps were performed in the SPM toolbox [31]. The bias field correction is not a standard step in the
BOLD data preprocessing. This step is included with the pipeline to utilise a 64-channel coil that is
sensitive to intensity inhomogeneity in recorded signals. Typically, this step is performed directly
within the MR scanner post-processing utilities. If this is not done, it can be performed as a first step in
the preprocessing itself, e.g., using the segmentation tool in SPM and estimating a bias field. The bias
field is then used to correct the data, as in our case.

For the bias field correction, the regularisation parameter was set to 0.001, and the FWHM
parameter was set to 60. These are the segmentation parameters, which represent an auxiliary
step in our bias field correction method. Subsequently, all volumes were realigned by a rigid body
transformation to the average volume, which was chosen as a reference volume.. Finally, volumes
were normalised to the MNI space and smoothed by a Gaussian of 8 × 8 × 8 voxel size. Translation
and rotation parameters were utilised as additional regressors to a GLM. As a validation part of the
fMRI preprocessing, the part of the BOLD data labelled by a specialist as a resting-state was merged
in time and subjected to a spatial ICA to visually check whether a set of resting-state networks can
be obtained.

2.5. Spectral Analysis

Spectrum estimation was performed using multitaper frequency transformation [32]. The Slepian
window (discrete prolate spheroidal sequences, DPSS), which maximised the energy concentration in
the main lobe and averaged the noise in the spectrum of [32,33], was used. The frequency bands were
defined as follows: delta (0.5–4.5 Hz), theta (4.5–8.5 Hz), alpha (8.5–13.0 Hz), and beta (13.0–30.0 Hz).
The obtained absolute power spectrum was normalised. The individual spectral bands were divided
by the total power (sum over all bands). The resulting relative spectra of individuals then ranged
from 0 to 1, allowing for interindividual comparisons. Normalisation also suppresses, for example,
differences in the conductivity of the skull [34]. Permutation tests (Monte Carlo estimates of the
probability of significance and critical values) of the FieldTrip toolbox for MATLAB [35] were used for
statistical evaluation of normalised power spectra. The tested dataset contained time series from 256
electrodes from each subject. The multiple comparisons were corrected by the cluster method [35].

2.6. EEG and Sleep Covariates

As it was not possible to detect standard sleep phases in the EEG recordings, physicians identified
sections of the EEG that corresponded to transitions to sleep and awakening. The presence of a given
phase (A/T) was indicated in the occurrence vectors by ones and zeros. These vectors (A/T) were
convolved with a hemodynamic response function. The vectors of spectral power fluctuations over
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time (for all bands) were convolved with the hemodynamic response function. With regard to the size of
the dimension—for one subject, 256 vectors (corresponds to the number of channels)—an appropriate
method for reducing the dimension of selected electrodes was chosen. In previous papers, several
linear [36,37] and non-linear [38–40] dimension reduction methods were utilised directly to EEG data.
Nevertheless, it is still unknown what combination of EEG features and the dimension reduction
technique reliably describes the BOLD signal and if the association is linear or not. Since it was
shown in [4] that parasomnia is connected with EEG high-beta power activation in cingulate motor
areas, the band-limited power (BLP) fluctuations of an EEG can be considered as a robust feature for
hdEEG–fMRI data integration. In this paper, BLP-based integration was validated by deriving known
correspondence between fluctuations of BLP in an EEG alpha band and the BOLD signal in occipital
regions. Electrodes were selected based on previous statistics for each frequency band separately,
with an emphasis on differentiating patients and controls. Electrodes belonging to the most significant
cluster are marked. At the same time, the part in which subjects were awake just after being placed in
the MR scanner was always recorded. This part was used to validate the BOLD preprocessing pipeline
and to orthogonalise BOLD components of awake epochs in GLMs.

2.7. First Level Statistic

The GLM is a compact way to write multiple regression models. It can be considered as an
extension of linear regression. Linear regression is the method used to calculate the trend that best
approximates the set of experimental data. In linear regression, the measured BOLD signal intensity
data are plotted on the y axis, and the stimulus for which the response is sought on the x axis. For the
voxel and each data point with coordinates [xi, yi], the following relation can be written:

yi = xi · β + εi, (1)

where β is the calculated slope of the line, and εi is the calculated error, or residual. The residue
corresponds to the distance between the line and the corresponding data point. The values of xi
are defined by the experiment itself, the values of yi are measured, while the parameters β and εi
are calculated. Matrix X containing the experiment information is usually larger (it is not just one
vector). Each X column reflects a specific factor that is assumed to affect the outcome of the experiment.
In this study, the last seven columns are made up of regressors describing the interference. There are
translations and rotational movements in three directions and a regressor representing an increased
hemodynamic response to placement in the MR scanner.

The resulting values of the β parameters can then enter statistical tests, where it is possible to
test hypotheses about the covariates themselves or their combinations. In the first level of statistics,
the activations for each subject are compared separately. The extracted models for each individual
then enter the second level of statistical testing for cross-group comparisons.

The final output is usually a statistical parametric map, which often overlaps with an anatomical
image or a template made up of average images when the results are displayed.

2.8. Second-Level Statistic

Statistical parametric mapping (SPM) is the most common approach to characterise functional
changes and changes related to brain pathology. SPM displays the result of statistical analyses for the
GLM group/groups. It corresponds to beta coefficient contrasting images summarising the effects
for each subject (see Equation (1)). This approach is implemented in the tool of the same name in the
MATLAB environment. A version of this software SPM12 [31] was used in this study. This is statistical
testing for each voxel followed by multiple comparison corrections. Statistical parametric maps are
images with voxel values, which are distributed according to the null hypothesis according to the
known probability density function, according to the T distribution. The results are colour-coded on
maps with anatomical images. The p value was not corrected for multiple comparisons due to the high
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number of voxels (corrected p value threshold in the order of 10−7). Highlighted areas represent areas
of the brain or voxels that are thought to have statistically significant activations or correlations with
given covariates at a significant level of 0.01 or 0.05. A significant level represents the maximum error
we can have in statistical testing. A significance level of 0.05 was used in case of low sensitive results.
The reason is, that the significance level of 0.01 can suppress substantial results with low sensitivity.
Both settings of significant level are used in the studies with simultaneous measuring EEG/fMRI.
Post-statistical correction was performed by setting the threshold for the minimum number of voxels
in the cluster, thus eliminating spatially insignificant activations.

In order to answer the hypotheses concerning joint activation, an “intersection” approach was
proposed. This approach involves the extraction of activation based on the second-level statistics
of both groups (patients and controls) and the subsequent comparison of areas where there is an
intersection in the statistical parametric map for both groups.

2.9. Hypotheses and Statistical Evaluation

The first main hypothesis was focused on comparing the patients with NREM parasomnia with
control subjects in deep sleep. This hypothesis had to be changed due to small occurrences of deep
sleep phases in the records scored by experts (see Section 3.1). The results of scoring showed that
transitions to sleep and awakening occurred more often in the recorded datasets. The awakening phase
was joined with a parasomnic effect of sleep disturbation [7]. The new hypotheses were focused on
comparing patients with NREM parasomnia with control subjects under T and A conditions, for this
reason. The study tested several modified hypotheses regarding the relationship between EEG, sleep
covariates (A and T), and spontaneous BOLD fluctuations.

Complete list of the tested hypothesis:

1. Awakening (A) covariates vs. BOLD

(a) Hypothesis 1 (H1). The awakening regressor in the GLM control group does not correlate with
BOLD fluctuations.

(b) Hypothesis 2 (H2). The awakening regressor in the GLM patient group does not correlate with
BOLD fluctuations.

(c) Hypothesis 3 (H3). The awakening regressor for the patient and control groups in the GLM has no
common region activation (intersection methodology—not a significance level).

2. Transition to a sleep (T) covariates vs. BOLD

(a) Hypothesis 4 (H4). The transition to a sleep regressor in the GLM control group does not correlate
with BOLD fluctuations.

(b) Hypothesis 5 (H5). The transition to a sleep regressor in the GLM patient group does not correlate
with BOLD fluctuations.

(c) Hypothesis 6 (H6). The transition to a sleep regressor for the patient and control groups in the
GLM has no common region activation (intersection methodology—not a significance level).

3. BLP covariates vs. BOLD in alpha band

(a) Hypothesis 7 (H7). The alpha BLP regressor in the GLM control group does not correlate with
BOLD fluctuations.

(b) Hypothesis 8 (H8). The alpha BLP regressor in the GLM patient group does not correlate with
BOLD fluctuations.

(c) Hypothesis 9 (H9). The alpha BLP regressor for the patient and control groups in the GLM has no
common region activation (intersection methodology—not a significance level).

4. BLP covariates vs. BOLD in theta band

(a) Hypothesis 10 (H10). The theta BLP regressor in the GLM control group does not correlate with
BOLD fluctuations.
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(b) Hypothesis 11 (H11). The theta BLP regressor in the GLM patient group does not correlate with
BOLD fluctuations.

(c) Hypothesis 12 (H12). The theta BLP regressor for the patient and control groups in the GLM has
no common region activation (intersection methodology—not a significance level).

5. BLP covariates vs. BOLD in delta band

(a) Hypothesis 13 (H13). The delta BLP regressor in the GLM control group does not correlate with
BOLD fluctuations.

(b) Hypothesis 14 (H14). The delta BLP regressor in the GLM patient group does not correlate with
BOLD fluctuations.

(c) Hypothesis 15 (H15). The delta BLP regressor for the patient and control groups in the GLM has
no common region activation (intersection methodology—not a significance level).

6. BLP EEG in case of T conditions

(a) Hypothesis 16 (H16). Alpha power fluctuations under T conditions have the same character in the
patient and control groups.

(b) Hypothesis 17 (H17). Beta power fluctuations under T conditions have the same character in the
patient and control groups.

(c) Hypothesis 18 (H18). Delta power fluctuations under T conditions have the same character in the
patient and control groups.

(d) Hypothesis 19 (H19). Theta power fluctuations under T conditions have the same character in the
patient and control groups.

7. BLP EEG in case of A conditions

(a) Hypothesis 20 (H20). Alpha power fluctuations under A conditions have the same character in the
patient and control groups.

(b) Hypothesis 21 (H21). Beta power fluctuations under A conditions have the same character in the
patient and control groups.

(c) Hypothesis 22 (H22). Delta power fluctuations under A conditions have the same character in the
patient and control groups.

(d) Hypothesis 23 (H23). Theta power fluctuations under A conditions have the same character in the
patient and control groups.

8. BLP EEG in case of Th-A difference

(a) Hypothesis 24 (H24). Alpha power fluctuations under difference Th-A conditions have the same
character in the patient and control groups.

(b) Hypothesis 25 (H25). Beta power fluctuations under difference Th-A conditions have the same
character in the patient and control groups.

(c) Hypothesis 26 (H26). Delta power fluctuations under difference Th-A conditions have the same
character in the patient and control groups.

(d) Hypothesis 27 (H27). Theta power fluctuations under difference Th-A conditions have the same
character in the patient and control groups.

Each hypothesis on GLM was tested by a single-sample t-test. The results are shown without
corrections for multiple comparisons, at a significance level of 0.01, and in the case of lower sensitivity,
at a significance level of 0.05. Hypotheses concerning the comparison of spectral power fluctuations in
EEG were tested by a permutation test and corrected using the cluster method.

The tool [41] in MATLAB was used to display significantly activated areas. This tool also includes
the possibility for export pronounced anatomic areas from the automated anatomical atlas (AAL) and
the Brodmann labels corresponding to the statistically significant cluster. The exported table contains,
for each significant cluster, its spatial distribution over given anatomical structures and the number of
voxels belonging to the cluster that fall into the given anatomical area. At the same time, with this tool,
it is possible to display multiple resulting activations over each other for an average brain template.
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3. Results

The results are divided into five parts in the manuscript. The first subsection answers the question
of the implementation of EEG and fMRI sleep recording. The second subsection describes the validation
of the quality of the measured data. The last three subsections reflect approaches to finding differences
in brain behaviour in NREM parasomnic individuals.

3.1. Characterised Limitation of the Sleep Simultaneous Recording

When scoring sleep, it was found that the measured subjects had problems falling into a deep
sleep. This may be caused by a combination of several factors. The first one we reflect is a growing
feeling of constraint in the space of the MR gantry. Figure 2 shows head translation and rotation over
time during simultaneous recording estimated by the method for correction. This correction was
performed using the commonly used function spm12_realign from the SPM toolbox [31]. The figure
shows that, with a longer recording time, there was a greater movement of the head, associated with
increasing discomfort leading to awakening at the end of the recording.

Figure 2. Example of the human head translation (axes x, y, and z) in millimetres and the human head
rotation (around axes x, y, and z) in degrees. Grayscale figures show the same information. Moving of
the human head is displayed after the first correction by the SPM toolbox and points to an awakening
of the subject.
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Most of the subjects complained of the increasing pressure of the electrodes in the occipital
region (see Figure 3) over time. Lying on the occipital electrodes could cause this most prominent
discomfort during simultaneous recording. This discomfort, which can become pain, woke up the
subjects during the experiment. Control subjects were asked to locate the dominant area of electrode
pressure. Electrodes causing unpleasant pressure are marked in red in Figure 3.

Figure 3. Spatial mesh of the 256 EEG electrodes from the company EGI with marked electrodes (red)
which subjects described as uncomfortable. The figure shows the mesh from the right temporal site
(left) and the occipital site (right).

Due to the discomfort issue described above, a sufficient amount of reliable deep sleep data was
not available for statistical assessment of the difference between the patients with parasomnia and
the control group in deep sleep. The research question was adjusted to find the difference between
patients with parasomnia (specifically NREM) and those in the control groups in the transitions to
sleep and awakening for this reason (see Section 2.9). Table 4 shows the duration and number of
transitions to sleep and awakening segments in individual subjects in the control group. Table 5 shows
the same information for the patient group. Transitions to sleep and awakening were scored by experts
(see Section 2.1). The tables also show the time at which the subjects were awake after being placed in
the MRI scanner. This part of the recording was used to validate the BOLD preprocessing pipeline.
Furthermore, the initial wake epoch was defined as a separate condition in the GLM design matrix to
fit the brain activations corresponding to this initial state.

Table 4. The duration for which the subject was awake after being placed in the MRI scanner in seconds,
the total duration, and number of transitions to sleep and awakening events for every subject in the
control group.

ID Control Start Wake Transitions to Sleep Awakening
Time [s] Count [-] Time [s] Count [-] Time [s]

1 20 96 331 64 187
2 17 9 38 13 30
3 27 10 53 85 1043
4 25 20 39 49 208
5 30 13 44 10 31
6 27 22 89 31 85
7 30 15 44 41 716
8 25 9 16 9 22
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Table 5. The duration for which the subject was awake after being placed in the MRI scanner in seconds,
the total duration, and number of transitions to sleep and awakening events for every subject in the
patient group.

ID Patient Start Wake Transitions to Sleep Awakening
Time [s] Count [-] Time [s] Count [-] Time [s]

1 20 11 31 14 26
2 20 17 84 28 115
3 16 7 20 30 143
4 18 10 32 7 76
5 20 9 37 23 70
6 21 14 70 19 76
7 29 3 5 47 693
8 34 4 26 35 348
9 17 7 31 6 16

3.2. Validation of Preprocessing Pipelines

To validate the EEG preprocessing pipeline, our unsupervised clustering algorithm introduced
in [28] was applied directly to standardly preprocessed EEG data, and the resulting clusters were
compared to those obtained from a large dataset also described in [28]. It was confirmed that no
additional artefacts or unique clusters were found.

To validate the BOLD preprocessing pipeline, BOLD data were merged in a time domain,
and subsequently the data were subjected to a spatial ICA to determine whether resting-state networks
could be found. Based on the results, a full set of resting-state networks was found in the data. Figure 4
shows the example independent component corresponding to the default mode network.

Figure 4. Default mode network found in the preprocessed BOLD data by spatial ICA analysis of data
concatenated along the temporal domain.

The final step of data quality validation was to define a GLM based on a normalised alpha power
time course obtained as the average over all electrodes and check whether the activation lies in the
occipital part of the brain. In Figure 5, the second-level statistics over all subjects of an alpha power
regressor is visualised.

3.3. Spectral Analysis Evaluation

In the segments scored by clinicians as transitions to sleep (T) or awakening (A) described in
Section 3.4, the spectral power for the four EEG bands was estimated. These values of the spectral
power were normalised to the total power and subsequently entered into a nonparametric statistical
analysis. Differences in spectral power between patients and the control groups were tested. Figure 6
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part A depicts the electrodes showing significant differences between patients and controls in each
frequency band during awakening epochs. Note that there was no significant difference of spectral
power in transition to sleep epochs. Figure 6 part B depicts electrodes pronouncing significant
differences between patients and controls measured by spectral power differences between awakening
and transitions to sleep epochs.

Figure 5. The visualised second-level statistic t values of a relative alpha power regressor. Shown using
xjview at significance level 0.05.

Figure 6. There was no significant difference between patients and controls during T epochs. Statistical
differences between patient and control groups were pronounced in the delta, theta, and alpha
bands (A). The spectral power difference between A and T epochs showed significant differences
between patients and controls in all examined bands (B). Shown at significant level 0.05, corrected.

Electrodes mostly contributing to the statistically significant difference between patients and
controls were used to reduce the spatial dimension in the extraction of EEG covariates for GLM.
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Differences were found between activations in the control group and in patients with parasomnia.
Hypotheses about the difference of these groups related to epochs during sleep (T and A phase) and
to fluctuations in spectral power with the BOLD signal were tested; see summarised hypotheses
in Section 2.9.

3.4. A and T Epochs

The A and T conditions were indicated by physicians for patients and controls. Each record
contained a different number of these epochs and their different durations. A summary of these
parameters is described in Table 6.

Table 6. Information about the duration of stages A and T for patients.

Parameter of Occurrence
Patient Control

T A T A

Average duration per occurrence [s] 6.2 3.9 5.7 3.5
Median of duration per occurrence [s] 4.1 4.1 3.1 3.4

Variance of duration per occurrence [s2] 2.1 20.2 1.3 29.4

The covariates of awakening and transition to sleep in the control group showed mostly positive
correlations with the BOLD signal. Activations associated with condition A showed a symmetrical
distribution in the brain and an overall broader spatial representation than for condition T (see Figure 7).
The jointly activated areas for condition A and T in the control group were the thalamus and the
frontal lobe.

Figure 7. Activation associated with the A (top) and T (bottom) conditions for the control group.
Glass Brain (left) and a selected slice with the display of the colour scale of t values (right). Shown using
xjview at significance level 0.05.

In the group of patients, fewer areas were activated than in the control group under condition A.
At the same time, more activations were registered for the T condition than A in the group of patients
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(see Figure 8). Common activations for both conditions were observed in the patient group in the area
of the Frontal and Precentral Gyrus.

Figure 8. Activation associated with the A (top) and T (bottom) conditions for the patient group.
Glass brain (left) and a selected slice displaying the colour scale of t values (right). Shown using xjview
at significance level 0.05.

Table 7 gives an overview of the most significantly activated regions in connection with the A and
T condition.

Table 7. Information about the main activation of the A and T conditions.

Control

A T

Cingular gyrus Cingular gyrus
Hipocampus Dorsolateral prefrontal cortex

Primary motor cortex Secondary visual cortex
Supramarginal gyrus Ventral anterior cingulate cortex

Patient

A T

Anterior prefrontal cortex Insula
Supramarginal gyrus Precuneus
Inferior frontal gyrus Middle temporal gyrus

Dorsal anterior cingulate cortex
Inferior frontal gyrus

3.5. Band Limited Power Fluctuation

Significant changes associated with slow-wave brain activity, especially the delta and partially
theta bands, are typical of parasomnia disorder. With respect to the fluctuating state between
awakening and transitions to sleep and previous results (see Figure 6), the results associated with
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the covariate representing power fluctuations in the alpha band were also included. Table 8 lists the
areas of the most significant activations associated with a given frequency band for the band limited
power (BLP) fluctuation conditions.

Table 8. Information about the main activation of the spectral fluctuation conditions.

Control

alpha theta delta

Midbrain Dorsolateral prefrontal cortex Thalamus
Secondary visual cortex Anterior prefrontal cortex Secondary visual cortex

Supramarginal gyrus Retrosplenial cortex
Auditory cortex Dorsal anterior cingulate cortex

Patient

alpha theta delta

Cerebellum Dorsolateral prefrontal cortex Parahipocampus
Precuneus Insular cortex Frontal eye fields

Secondary visual cortex Secondary visual cortex Dorsolateral prefrontal cortex
Dorsal posterior cingulate cortex Supramarginal gyrus Secondary visual cortex

Associative visual cortex
Supramarginal gyrus

Activations associated with power fluctuations in the alpha band showed spatially similar
characteristics, but with the opposite direction of correlation. The precuneus, secondary visual cortex,
and dorsal posterior cingulate cortex areas were activated for both control and patient groups.

Under the conditions of spectral power fluctuations in the theta band, a lower number
of activations was generally observed compared to activations associated with the alpha band.
The opposite trend in correlation (precuneus, secondary visual cortex, and dorsal posterior cingulate
cortex) was observed again. Co-activation for both groups of patients and controls was detected in the
dorsal prefrontal cortex region.

The covariate representing power fluctuations in the delta band and in the theta band showed a
small amount of significant correlation with the BOLD signal in the control group. On the other hand,
more areas associated with this covariate were involved in the group of patients. The precuneus was
not associated with the control group, and in the patient group there was a negative correlation.

The precuneus, secondary visual cortex, and dorsal posterior cingulate cortex are associated
with parasomnia in the literature [10], so these areas have been investigated in relation to significant
activations and their direction of t values (direction of correlation) (see Table 9).

Table 9. Information about the correlation direction of significant activation of spectral fluctuation conditions.

Area Band Control Patient

alpha + -
Secondary visual cortex theta + -

delta + -

alpha + -
Precuneus theta + -

delta no activation -

alpha + +
Dorsal posterior cingulate cortex theta + +

delta + -

4. Discussion

The goal of our study was to gain knowledge of NREM parasomnia disorders utilising
concurrently registered EEG and fMRI signals. The purpose of this paper was to assess simultaneous
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EEG and fMRI data acquisition, signal integration, and statistical analysis for the characterisation of
a specific sleep disorder called NREM parasomnia. The proposed methodology was adapted on the
very unique dataset. The complexity of the measured dataset was amplified by the sleep disorder of
the tested patient group; see discussion below. In this section, we discuss the obtained results, our data
analysis pipelines, and some limitations of the experiment conducted.

The first observation was that, despite the control of subject comfort, most of the recordings did
not contain enough NREM sleep phases. There was no technical limitation in this context, but the
main methodology bottleneck was still the subject comfort. The main sources of discomfort were the
increasing pressure of hdEEG net occipital electrodes (see Figure 3), and the pressure of the cable
harness placed under the subject’s body. The former problem was difficult to solve due to limited
space in the receiving MR head coils, and the latter requires significant changes in the MRI table to
be fully eliminated. Furthermore, an ideal technical setup would entail a cable harness lying under
the subject’s body parallel to the z axis of the scanner. This leads to conflicting criteria. In light of the
discomfort caused by cable pressure and the orientation of the cable bundle in the main magnetic field
with regard to minimising the induction of the artefact of this field, we propose a solution using a
mattress with viscous foam; see Figure A1.

Although all subjects filled in the questionnaire before recording that they do not suffer from
claustrophobia, three out of twenty recorded subjects confirmed a first case of claustrophobic sensations
after the experimental measurement. It is therefore appropriate to include habituation to the measuring
inside the MR scanner before the experimental part.

The previous simultaneous EEG–fMRI studies on sleep did not solve or discuss the subjects’
comfort in appropriate detail. We strongly recommend solving the comfort issue in future studies
systematically. Further research utilising simultaneous EEG and fMRI should consider the limitations
mentioned above in advance to the protocol design.

Regarding the mentioned limitations, there were an insufficient amount of deeper sleep stages
for appropriate statistics. The deep sleep stage is associated with the occurrence of abnormal activity
in parasomnic disorders [7,42,43]. However, repeated transitions to sleep and awakening events
were present in all subjects; see Tables 4 and 5. Segments corresponding to transitions to sleep and
awakening were compared between the control group and the DOA patients for this reason. This was
a unique way of tackling with otherwise underpowered GLM statistics. In this way, enough statistical
power was obtained for finding activated brain areas. We have proposed two approaches to EEG
and BOLD signal integration. In the first place, the EEG data were scored by experts to obtain events
related to sleep. These marked events were considered as EEG correlates of sleep and informed the
fMRI analysis. An advantage of this approach lies in considering only specific events corresponding to
sleep as regressors of the BOLD signal. Second, the BOLD covariates were defined as an average of
statistically significant electrodes between patients and controls defined (see Figure 6) for each EEG
band spectral power. The EEG-based regressors were considered as a continuous time series lasting
from the beginning to the end of each session.

It was found that EEG-based GLM analysis informed by preceding spectral analysis is more
sensitive compared to an averaging across all electrodes. Finally, it should be mentioned that
more statistical power (more subjects) is essential for future studies to obtain a more sensitive
integration pipeline.

The spectral analysis was corrected for multiple comparisons, and the significance level was
set at 0.05. Our results from the EEG and fMRI integration pipeline were statistically thresholded at
a significance level of 0.01. The significance level set to 0.01 is strict to find areas of the brain with
statistically significant activation. The results obtained at the significance level set to 0.01, therefore,
indicate statistically more significant results. However, in the case of results with lower sensitivity,
the significance level of 0.01 can lead to the suppression of interesting results. The significance level
was set to 0.05 in the case of lower sensitivity, for this reason. These results were not corrected for
multiple comparisons. Despite the low sensitivity of our statistics, we considered the obtained results
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unique enough for broader discussion. Furthermore, there are studies in the open literature [44–46]
that also report results obtained without correction for multiple comparisons.

Using our previously proposed method [28], we checked whether artefact residues remain in the
EEG data. We found that there is significant residue from the cardioballistic artefact, and there are
also remnants of electrooculographic and electromyographic artefacts. However, the found residues
did not deviate from the standardly preprocessed recordings reported in [28]. In the future, it would
be appropriate to consider the use of a methodology [28] to exclude detected clusters containing
residues from further analysis of the EEG signal. This study points to the need to monitor the quality
of data that enters statistical analyses. This step is not common practice in clinical and experimental
EEG–fMRI reports.

Resting state networks were found in the BOLD signal and were used to evaluate the effectiveness
of selected steps of fMRI data preprocessing in this study. Resting state networks are usually a reflection
of resting activity. The found network (see Figure 4) corresponds to the standard symmetric activations
of rest DMN [47]. DMN is not primarily used to evaluate data quality. However, we consider the
DMN as an effective evaluation tool since it is a well established fMRI concept in the literature.

During the awakening phase for both groups, the frontal lobe area associated with motor tasks is
significantly activated. Furthermore, the thalamus, cingular gyrus, and hippocampus are significantly
active, too. The most significant differences between patients with NREM parasomnia and healthy
controls have been registered in anterior prefrontal cortex. Anterior prefrontal cortex works as a switch,
which allows us to keep a previously running task in the waiting phase so that it can be subsequently
invoked [48]. Anterior prefrontal cortex is negatively correlated in the patient group, so neuronal
synchronisation can be expected.

During the transition to sleep phase in healthy individuals ventral anterior cingulate cortex,
secondary visual cortex, and the motoric part of the frontal lobe was significantly activated.
Ventral anterior cingulate cortex is associated with emotions [49], and secondary visual cortex is
associated with visual images processing [50], which could reflect the remaining conscious processing
of experiences and thoughts. In patients with NREM parasomnia, the insula and precuneus areas
were significantly activated. The middle temporal gyrus, inferior frontal gyrus, and dorsal anterior
cingulate cortex were significantly activated too. The inferior frontal gyrus is associated with language
function [51], which could although reflect the remaining conscious processing of experiences and
thoughts, as in the control group. In the study [52], when measuring fMRI in sleep-deprived subjects,
compensatory reactions were also connected with middle temporal gyrus. Our results show that the
compensation mechanism was more pronounced in the group of patients with NREM parasomnia.

Premotor cortex was similarly activated for patients and controls at the significance level of
0.01. This area is part of the premotor cortex and is responsible for conscious movements [53].
Significant differences between patients and controls were also observed in dorsolateral prefrontal
cortex, which is part of the motor cortex. The frontal cortex was already associated with different
perfusions between healthy and parasomnic individuals in the literature [54]. In the literature [42,43],
awakening is indicated as one of the moments related to the knowledge of NREM parasomnia.
Our results show that the mechanism of transition in the opposite direction, from waking to sleep,
could be also disrupted by the different behaviour of the frontal motor part of the cortex in patients
with NREM parasomnia.

The precuneus, secondary visual cortex, and dorsal posterior cingulate cortex were the most
pronounced areas related with BLP covariates. These areas have been shown to be significant in a recent
study of parasomnia from 2016 [10]. In Table 9, it is evident that the precuneus is positively correlated
with alpha and theta covariates in the control groups, while in patients with NREM parasomnia,
the correlation is negative. This could indicate the synchronisation of neurons in this region and thus
increased theta and alpha spectral activity. Delta BLP covariates do not manifest in the precuneus at
all in the control group, and for dorsal posterior cingulate cortex it is also the only different BLP band,
because it correlates positively in the controls and negatively in the patient group. Secondary visual
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cortex has the opposite direction of correlation for all bands: positive for the control group and negative
for the patients.

Finally, the activations for transition to the sleep and awakening phases in patients and controls
were investigated in these areas: the precuneus, secondary visual cortex, and dorsal posterior
cingulate cortex. The only significant, positively correlated activations were recorded in the group
of patients with NREM parasomnia for the precuneus in both phases. The precuneus is involved
in defining the spatial location of objects in relation to the body, receiving visual inputs from the
visual cortex, stimuli related to the relationship between the hand and objects beyond and within
distance, and determining the location of sound in space [55]. Therefore, the precuneus is strongly
involved in the analysis and integration of visual, audio, and somesthetic information. At the same
time, the precuneus is able to monitor movements in various parts of the body [56]. Thus, it could
be assumed that complex motor and cognitive processes, which may appear significantly during a
sleepwalking attack, may be associated with the precuneus. This fact explains the orientation in space,
sound, and senso-motor perceptions patients with NREM parasomnia.

The promising results of this study are a prerequisites for further investigation. In future work,
we want to verify our results on the larger dataset and extend the study condition. We will focus on
improving the technical aspects of measuring, based on the results of this study.

5. Conclusions

The methodology for simultaneous (EEG and fMRI) sleep recording was proposed. It was not
possible to induce physiological sleep in the tested subjects (neither complete sleep cycle took place)
mostly due to the discomfort of the subjects in the MRI scanner. For this reason, a new data analysis
pipeline was proposed based on analysis of the fluctuations of the transitions to awakening and
sleep phases. The proposed methodology was adapted to compare the group of DOA patients with
the control group, and we reported technical and physiological limitations. A unique dataset of
simultaneous EEG and fMRI data of adults suffering from parasomnia was obtained. Spectral analysis
revealed that patients with NREM parasomnia differed from the control group in the awakening
phase, when, in addition to the physiological increase in alpha band power, significant delta and
theta band activity was still propagated. In the GLM analysis, differences in the deepening of sleep
could be observed in our dataset in terms of spatially more significant activations in a group of
patients. An intersection method was proposed for a between-group comparison of EEG-informed
GLMs. The secondary visual cortex and dorsal posterior cingulate cortex were found to be associated
with a negative alpha BLP correlation and with the precuneus with a negative delta BLP correlation,
specifically in the patients and not in the controls. Our results indicate significant activations of the
motor cortex and the occipital region during fluctuating sleep in individuals with NREM parasomnia.
At the same time, delta activity was promoted in these individuals, which was not represented in the
control group.
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AAL automated anatomical atlas
AAS average artefact subtraction
ADJUST Artifact Detector based on the Joint Use of Spatial and Temporal Features
BOLD blood-oxygen-level-dependent
EEG electroencephalography
fMRI functional magnetic resonance imaging
GA gradient artefact
GLM general linear model
ICA independent component analysis
MARA multiple artefact rejection algorithm
NREM non-rapid eye movement
OBS optimal basis set
PCA principal component analysis
PA pulsion artefact
REM rapid eye movement
SASICA semi-automatic selection of independent components for artefact correction
t-SNE t-distributed stochastic neighbour embedding
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Figure A1. Design of the solution to the most significant discomfort, preventing the transition and
maintaining deep sleep during simultaneous HD EEG and fMRI measurements. In the upper left
corner, the mattress is removed out from the MR scanner table; the individual views B, C, and D
correspond to the colours indicated in A.
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