
Retinal degenerative diseases (RDDs), such as retinitis 
pigmentosa (RP) and age-related macular degeneration 
(AMD), are characterized by progressive loss of photore-
ceptors and are the leading causes of vision loss in devel-
oped countries [1]. The pathophysiology of RDDs varies, 
encompassing hereditary contributions and environmental 
risk factors, thus complicating the diagnostic and treatment 
regimen. RP is an inherited disorder with known mutations 
in more than 70 genes that cause abnormalities in photore-
ceptors or RPE cells, leading to progressive vision loss [2]. 
Conversely, several dietary- and lifestyle-related risk factors 
[3,4] and a few known genetic components [5-8] lead to vision 

loss in AMD. Currently, there are no effective treatments for 
most RDDs, and no therapies are able to reverse the degenera-
tion of vision.

Stem cell–based therapies offer the potential to treat 
several diseases, including RDDs. The benefits of stem 
cell–based approaches include therapeutic longevity, a range 
of cell sources (e.g., embryonic, fetal, adult, and induced 
pluripotent stem cells), and the only available option for some 
patients with RDDs. Two main therapeutic strategies have 
evolved with the use of stem cells. In replacement therapies, 
stem cell–derived retinal cells act to replace the degenerating 
retina, although the longevity, cell orientation, intervention 
timing, and integration of these cells are still in question. 
The second strategy is to use non-retinal lineage stem cells 
in a neurosupportive role to halt or slow the progression of 
degeneration, thus preserving the remaining visual func-
tion. Although current clinical trials using neural stem cells 
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Purpose: Retinal degenerative diseases (RDDs) affect millions of people and are the leading cause of vision loss. Al-
though treatment options for RDDs are limited, stem and progenitor cell–based therapies have great potential to halt or 
slow the progression of vision loss. Our previous studies have shown that a single subretinal injection of human forebrain 
derived neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) retinal degenerate rat offers long-term 
preservation of photoreceptors and visual function. Furthermore, neural progenitor cells are currently in clinical trials 
for treating age-related macular degeneration; however, the molecular mechanisms of stem cell–based therapies are 
largely unknown. This is the first study to analyze gene expression changes in the retina of RCS rats following subretinal 
injection of hNPCs using high-throughput sequencing.
Methods: RNA-seq data of retinas from RCS rats injected with hNPCs (RCShNPCs) were compared to sham surgery in 
RCS (RCSsham) and wild-type Long Evans (LEsham) rats. Differential gene expression patterns were determined with 
in silico analysis and confirmed with qRT-PCR. Function, biologic, cellular component, and pathway analyses were 
performed on differentially expressed genes and investigated with immunofluorescent staining experiments.
Results: Analysis of the gene expression data sets identified 1,215 genes that were differentially expressed between 
RCSsham and LEsham samples. Additionally, 283 genes were differentially expressed between the RCShNPCs and RCSsham 
samples. Comparison of these two gene sets identified 68 genes with inverse expression (termed rescue genes), includ-
ing Pdc, Rp1, and Cdc42ep5. Functional, biologic, and cellular component analyses indicate that the immune response 
is enhanced in RCSsham. Pathway analysis of the differential expression gene sets identified three affected pathways in 
RCShNPCs, which all play roles in phagocytosis signaling. Immunofluorescent staining detected the increased presence 
of macrophages and microglia in RCSsham retinas, which decreased in RCShNPCs retinas similar to the patterns detected 
in LEsham.
Conclusions: The results from this study provide evidence of the gene expression changes that occur following treatment 
with hNPCs in the degenerating retina. This information can be used in future studies to potentially enhance or predict 
responses to hNPC and other stem cell therapies for retinal degenerative diseases.
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are being tested for safety [9], another clinically relevant 
stem cell population under investigation is human neural 
progenitor cells (hNPCs). Previous studies have shown that 
hNPCs provide photoreceptor neuroprotection and preserve 
visual function in retinal degenerate animal models [10-12]. 
In addition to neuroprotective effects, hNPCs have long-term 
survival, cause no immune-related pathology [12,13], have 
little proliferate capacity [11], and survive in nonhuman 
primates without immunosuppression [13]. Decidedly, hNPCs 
have all the factors that are crucial for transplantation into 
humans.

Proposed mechanisms of supportive stem cell–based 
therapies include growth factor release, regulation of endog-
enous protein expression, and restoration of cell-to-cell 
interactions, yet the mode of action is largely unestablished. 
Photoreceptor survival directly correlates to areas with 
grafted hNPCs [14,15], which have been shown to phagocy-
tose photoreceptor outer segment debris in vivo [15,16] and 
have a greater effect when expressing certain neurotrophic 
growth factors [14]. Although hNPCs are able to impart 

a paracrine signaling effect on the retina, another major 
contributor to the preservation of vision is the retinal host 
tissue response to the stem cells [17,18]. Evidence suggests 
that exogenous stem cells can have a distal effect on retinal 
survival by inducing neurotrophic factor production by the 
retina [19,20] and are able to trigger regeneration in endog-
enous cells [21]. There may also be an indirect effect on other 
retinal cells, such as Müller glia, that induce photoreceptor 
survival. The dynamics of the injected stem cells and host 
tissue must be collaborative and synergistic for the mainte-
nance of the host tissue; however, to what extent this occurs 
is unknown.

Knowing the gene expression profiles of the retina 
and the changes that occur during retinal degeneration is 
vital in creating targeted and more efficacious therapies. 
Previous studies have detected gene expression changes in 
human AMD retinas [22,23] and animal models of retinal 
degeneration [24,25]. Another clinically relevant animal 
model is the Royal College of Surgeons (RCS) rat, which is 
commonly used in preclinical testing of RDD therapies. RCS 

Figure 1. hNPCs aid in visual func-
tion preservation and photoreceptor 
survival in RCS rats. A: Optokinetic 
response (OKR) measurements 
showed that subretinal injection 
of human forebrain derived neural 
progenitor cells (hNPCs) into Royal 
College of Surgeons (RCS) rats 
(RCShNPCs) at P21 had a higher rela-
tive visual acuity (0.4503 ± 0.0064 
c/d) compared to the RCSsham rats 
(0.3245 ± 0.0047 c/d), though 
lower than LEsham (0.6350 ± 0.0020 
c/d); ***p<0.001. B: Histological 
analysis of the retinal sections of 
the LEsham rats had approximately 
ten layers of photoreceptor cells in 
the outer nuclear layer (ONL). C: In 
contrast, the RCSsham rats had three 
photoreceptor cell layers. D: Trans-
planted hNPCs (arrows) survived in 
the subretinal space of the RCS rats 
and preserve approximately five to 
six photoreceptor cell layers. RGC 
= retinal ganglion cell layer, INL 
= inner nuclear layer, ONL =outer 
nuclear layer. Scale bar = 25 μm.
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rats have slow, progressive photoreceptor degeneration due 
to a mutation in the Mertk gene, which is expressed by RPE 
cells and is important in the binding of shed photoreceptor 
outer segments for proper phagocytosis [26,27]. The global 
transcriptome of the RCS rat has not been studied, and this 
knowledge could contribute to understanding the process of 
retinal degeneration. Furthermore, MERTK mutations have 
been detected in a subset of patients with retinitis pigmentosa 
[28], thus stressing the need for better understanding of this 
animal model as it relates to human disease.

A greater understanding of the molecular changes that 
occur during photoreceptor degeneration and how these 
changes are affected following stem-cell transplantation 
may enhance future stem cell treatments. This study aims 
to identify the gene expression changes that occur following 
treatment of hNPCs in the RCS rat, a rodent model for retinal 
degeneration. hNPCs provided a functional benefit in slowing 
vision loss, and histological analysis showed that hNPCs aided 
in photoreceptor survival. Transcriptome-wide profiling of 
gene expression by RNA-sequencing (RNA-seq) showed 
that there are differentially expressed genes in the retinas 
of wild-type Long Evans (LEsham) versus RCSsham rats and in 
RCS rats following injection of hNPCs (RCShNPCs). From this 
gene set, 68 genes were shown to have inverse relationships 
between LEsham versus RCSsham and RCSsham versus RCShNPCs 
comparisons, suggesting that the expression of these genes 
is rescued with treatment of hNPCs. Bioinformatic analyses 
of functional, biologic, and cellular components indicate 
an increase in immune response in RCSsham. Additionally, 
differentially expressed genes were found to correlate to three 
signaling pathways, and expression levels were validated with 
qRT-PCR analysis. The affected pathways indicate that there 
is a modulation of phagocytosis signaling due to the decrease 
in phagocytic cells in the retina following subretinal trans-
plantation of hNPCs. Immunofluorescent staining experi-
ments revealed increases in macrophages and microglia in 
RCSsham and a subsequent decrease in RCShNPCs, suggesting 
that hNPCs aid in immunomodulation. The information from 
this study will aid in a better understanding of the patho-
genesis of retinal degeneration and the changes that occur 
following treatment with hNPCs.

METHODS

Derivation, maintenance, and transplantation of hNPCs: 
Human neural progenitor cells (hNPCs) isolated from fetal 
cortical brain tissue were obtained with institutional review 
board approval and in accordance with the National Insti-
tutes of Health guidelines for the collection of such tissues. 
hNPCs were cultured as neurospheres in Stemline Neural 

Stem Cell Expansion Medium (Sigma-Aldrich, St. Louis, 
MO) supplemented with 20 ng/ml epidermal growth factor 
(Sigma-Aldrich) and 10 ng/ml leukemia inhibitor factor 
(Millipore, Billerica, MA) as previously described [12]. 
Neurospheres of hNPCs at passage 23–25 were dissociated 
into a single cell suspension by incubation at 37 °C for 10 min 
with Accutase (Sigma-Aldrich) followed by trypsin inhibitor 
(Sigma-Aldrich) for 5 min and DNase (Sigma-Aldrich) for 
10 min with gentle trituration in PBS (1X; 120 mM NaCl, 
20 mM KCl, 10 mM NaPO4, 5 mM KPO4, pH 7.4; Life 
Technologies, Paisley, UK). An injection of 4×104 cells/eye 
in 2 µl of balanced salt solution (BSS) cell carrying medium 
(Alcon, Fort Worth, TX) was delivered to the subretinal space 
through a glass micropipette, as previously described [12]. 
Rats receiving a sham surgery were injected with BSS cell 
carrying medium alone.

Animals: Retinal degenerate RCS rats (n = 8) received a 
subretinal injection of hNPCs into one eye (RCShNPCs) and 
either sham surgery (RCSsham; n = 4) or no treatment (n = 
4) in the fellow eye at postnatal day 21 (P21). Long Evans 
(LE) rats (n = 3) received subretinal sham surgery (LEsham) of 
cell carrying media into one eye, and the fellow eye received 
no treatment at P21. All rats received dexamethasone intra-
peritoneal injections for 2 weeks (2.5 mg/kg/day) following 
subretinal injection and cyclosporine A (Novartis, Basel, 
Switzerland) in the drinking water (210 mg/l) until the rats 
were euthanized at P60 following the functional studies. 
This study adhered to the Association for Research in Vision 
and Ophthalmology Statement for the Use of Animals in 
Ophthalmic and Vision research and was conducted with the 
approval of the Institutional Animal Care and Use Committee 
at Cedars-Sinai Medical Center.

Visual function testing: The optokinetic response (OKR) 
testing apparatus comprises a rotating cylinder displaying 
a vertical sine wave grating presented in virtual three-
dimensional space on four computer monitors arranged in 
a square. Unrestrained rats were placed on a platform in the 
center of the square and tracked the grating with reflexive 
head movements. Visual acuity was quantified by increasing 
the spatial frequency of the grating until an OKR could no 
longer be elicited. Statistical analyses were performed with 
one-way ANOVA (ANOVA) and Newman-Keuls multiple 
comparison test using GraphPad Prism 5.01 (GraphPad Soft-
ware, La Jolla, CA). Data were expressed as mean ± standard 
error of the mean (SEM), and a p value of less than 0.05 was 
considered statistically significant.

Tissue extraction and preparation: Eyes were enucleated from 
rats at age P60–64. For histology staining, eyes were fixed 
with 4% paraformaldehyde (Sigma-Aldrich) for 1 h followed 
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Figure 2. Hierarchical cluster 
analysis displays gene expression 
changes in LEsham, RCSsham, and 
RCShNPCs rats. Gene expression 
profiles of wild-type Long Evans 
(LEsham, n = 2) rats were compared 
to retinal degenerate Royal College 
of Surgeons (RCSsham, n = 2) rats and 
RCS rats with a subretinal injection 
of human forebrain derived neural 
progenitor cells (RCShNPCs, n = 2).
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by increasing sucrose before embedding in optimum cutting 
temperature (OCT) compound (Sakura Finetek, Torrance, 
CA) and storage at −80 °C. Horizontal sections were cut 
on a Leica CM1850 cryostat microtome (Leica Biosystems, 
Nussloch, Germany) at 10 μm per section. Four sections 
(50 μm apart)/slide were collected in five series, and every 

fifth slide was used for cresyl violet staining and imaged 
with a Leica DM6000B transmitted light microscope (Leica 
Microsystems, Wetzlar, Germany). For the RNA extraction 
experiments, the rats were euthanized with CO2 followed by 
bilateral pneumothorax, and the eyes were briefly cleansed 
with ethanol before they were removed. Neural retinas were 

Figure 3. Comparison of differen-
tially expressed gene sets reveals 
the presence of rescue genes. Up- 
and downregulated differentially 
expressed gene sets were deter-
mined for retinal degenerate Royal 
College of Surgeons (RCSsham) 
rats versus wild-type Long Evans 
(LEsham) rats and Royal College 
of Surgeons rats with a subretinal 
injection of human forebrain 
derived neural progenitor cells 
(RCShNPCs) rats versus RCSsham 
rats and compared for overlapping 
genes. Genes with inverse relation-
ships between the gene sets, termed 
rescued genes, were identified 
(circle and square).

Table 1. Sequences for primers used in qRT-PCR.

Primer Name Sequence Primer Name Sequence
ActBL TGTCACCAACTGGGACGATA Pax4R GTGTCTTCAGGCAGAGAGGT
ActBR GGGGTGTTGAAGGTCTCAAA PdcL ACCGCTTTTCCTCAGACGTA
Amigo2L TGCCATGTTCCAGGAGCTAA PdcR GTTGGTCTGCCCTAGGTCAT
Amigo2R AGATCAGCCAGCTTGAACCT RhoL GCAGTGTTCATGTGGGATTG
Cdc42ep5L CAGTGTTAGGCGTCATGGAC RhoR CTGCCTTCTGAGTGGTAGCC
Cdc42ep5R CAAAAGTGGAGTGCAGGGAG Rp1L CTTGTGGTGCCATGCTCATT
Cdh22L GCTCTCTTGGTCTGTGTCCT Rp1R CCCTGAATGCCTACCTCCAT
Cdh22R GTCATAAGCCTCGGTGTCCT SeboxL CTCTTCCAGACACTCCCCAG
Glb1l2L GCTTCCTTCCTTCCTGTCCT SeboxR TTAGCCCCTGACCAACTCTG
Glb1l2R CAGAAAATGCCCGTCCACAA Ubald1L CCTCTGTCTGCACCCCTAAA
Htr1fL ACAACCACCATCAACTCCCT Ubald1R CACCCAAGCCACTTTGAGTC
Htr1fR GTCACAGAGTCCTTGTCCCA Ypel1L TGGGCTCTCAGATTTTCCGT
Pax4L GCTCTTCCTAGTCCCCACAG Ypel1R CCTTCTTCCTGCCTTTCTGC
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removed from the eye cup and oriented so that only the 
hemisphere containing the injected cells was isolated, flash 
frozen with liquid nitrogen, and stored at −80 °C until RNA 
extraction.

RNA isolation: Total RNA was extracted from individual 
halved neural retinas using the Purelink RNA Mini Kit (Life 
Technologies) according to the manufacturer’s instructions. 
RNA quality was assessed using a NanoDrop ND-1000 spec-
trophotometer (NanoDrop Technologies, Wilmington, DE) 
and the Agilent 2100 system (Agilent Technologies, Santa 
Clara, CA).

RNA-sequencing (RNA-seq): Total RNA (1 μg) was poly-A 
selected using Dynabeads® Oligo(dT)25 (Life Technologies). 
cDNA libraries were constructed with barcoded primers 
using Ion Total RNA-Seq Kit v2 (Life Technologies), and 
were multiplexed and amplified onto ion sphere particles 
(ISPs) using Ion PI™ Template OT2 200 Kit v3 (Life Tech-
nologies). Libraries were sequenced to an average depth of 10 
million reads/sample using the Ion PI™ Sequencing 200 Kit 
v3 (Life Technologies) by the Genomics Core at Cedars-Sinai 
Medical Center.

Bioinformatic analyses: Raw reads were filtered and 
trimmed with the FASTX toolkit and then were aligned to 
the rat reference genome rn5. Fragment per kilobase of gene 
per million reads sequenced (FPKM) values were calcu-
lated for 26,407 genes with Cufflinks 2.0.8 software [29]. 
Genes with sample FPKMs equaling 0 were excluded from 
further analyses. Sequence data were deposited in GEO per 
MIAME standards (accession number: GSE70600) [30,31]. 
All FPKM values were increased with an addition of 1, log2 
transformed, and hierarchical cluster analysis of gene expres-
sion was performed with Cluster and TreeView software 
[32]. Differentially expressed genes were determined using a 
two-tailed t test, and were then corrected with calculation of 
the q value with the Benjamini-Hochberg method. Genes with 
significant expression differences with a false-discovery rate 
below 5% (q<0.05) were used for further analyses. Differen-
tial gene profiles (RCSsham versus LEsham and RCShNPCs versus 

RCSsham) were compared for matching genes. Rescue genes 
were defined as those common between upregulated RCSsham 
versus LEsham and downregulated RCShNPCs versus RCSsham or 
downregulated RCSsham versus LEsham and upregulated RCSh-

NPCs versus RCSsham. To determine the degree to which the 
genes were rescued, the fold changes between the two sets 
were then added to yield a fold change difference and were 
sorted based on values closest to 0. Functional annotation 
clustering analysis of the differentially expressed gene lists 
(RCSsham versus LEsham up- and downregulated and RCShNPCs 
versus RCSsham up- and downregulated) were performed 
by submission to the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID v6.7) [33,34], and 
Gene Ontology (GO) term significance was accepted at 
Benjamini-Hochberg <0.001. Pie charts were generated 
using Microsoft Excel using the activation scores. Biologic 
processes and cellular components were determined by 
submission of the aforementioned differentially expressed 
gene lists to the Gene Ontology enRIchment anaLysis and 
visuaLizAtion tool (GOrilla) [35,36] for GO term analysis, 
and subsequently submitted to REViGO online software for 
visualization [37]. For canonical pathway analysis, differen-
tially expressed genes from each gene list were submitted to 
the Ingenuity Pathway Analysis (IPA) Spring 2015 Release 
software (QIAGEN, Redwood City, CA), and significance 
was accepted with a –log Fisher’s exact test p≥1.3 and a z 
score of ≥2 or ≤–2.

qRT-PCR: The top five characterized rescue genes from 
the gene list in the square in Figure 3 and the top six rescue 
genes from the genes in the circle in Figure 3 were further 
analyzed with quantitative real-time polymerase chain reac-
tion (qRT-PCR) for expression validation. Total RNA was 
extracted from isolated halved neural retina samples of three 
biologic replicates each of LEsham, RCSsham, and RCShNPCs as 
described above. RCSsham and RCShNPCs retinas were taken 
from the same animals, corresponding to the left and right 
eyes, respectively. cDNA synthesis was performed using 
the High-Capacity cDNA Reverse Transcription Kit (Life 
Technologies) according to the manufacturer’s instructions. 

Table 2. Numbers of expressed genes in LEsham, RCSsham, and RCShNPCs. 

Sample Total number of 
genes

Number of DE genes 
compared with RCSsham

Number of genes 
with higher 

expression in RCSsham

Number of genes 
with lower 

expression in RCSsham
LEsham 18,254 1215 852 363
RCSsham 18,662 - - -
RCshNPcs 18,627 283 232 51

Total number of genes is from mean of samples. Number of differentially expressed (DE) genes identified from each comparison of RC-
Ssham versus LEsham and RCShNPCs versus RCSsham. Significance was accepted at FDR q<0.05.

http://www.molvis.org/molvis/v22/472
http://revigo.irb.hr/
http://www.qiagen.com/ingenuity


Molecular Vision 2016; 22:472-490 <http://www.molvis.org/molvis/v22/472> © 2016 Molecular Vision 

478

The qRT-PCR analyses were performed using 50 ng cDNA 
on 96-well plates (Applied Biosystems, Paisley, UK), 
and run in technical duplicates on a 7500 Real-Time PCR 
System (Applied Biosystems). The ΔΔCt method was used 
to calculate fold changes, using ActB as a housekeeping 
standard and the LEsham sample as the calibrator. Primers 
were designed with Primer3 online software [38,39] and 
selected to amplify fragments with 150–250 bp and with 
a Tm of approximately 60  °C (Table 1). Primers were 
designed for the following gene targets: Actb (NM_031144), 
Amigo2 (NM_182816), Cdc42ep5 (NM_001108469), Cdh22 
(NM_019161), Htr1f (NM_021857), Pax4 (NM_031799), Pdc 
(NM_012872), Rp1 (NM_001195676), Sebox (NM_023951), 
Ubald1 (NM_001007668), and Ypel1 (XM_002727914). To 
ensure accurate qRT-PCR expression patterns, primers were 
also designed and used for rhodopsin (NM_033441), which 
is expressed in photoreceptors.

RESULTS

Preservation of photoreceptors and visual function following 
hNPC treatment: At P21, wild-type LE rats received sham 
surgery (LEsham), while retinal degenerate RCS rats received 
sham surgery (RCSsham) in one eye and a subretinal injection 
of hNPCs (RCShNPCs) into the fellow eye. To ensure functional 
benefit, the OKR test measured the relative visual acuity of 
the LEsham, RCSsham, and RCShNPCs eyes at age P60. The OKR 
measurements for the LEsham eyes were 0.6350 ± 0.0020 c/d, 
compared to a significant decrease to 0.3245 ± 0.0047 c/d 
in the RCSsham eyes (p<0.001) and a subsequent significant 
increase to 0.4503 ± 0.0064 c/d in RCShNPCs eyes (p<0.001; 
Figure 1A). Following OKR analysis, eyes were enucleated 
and fixed for histological analysis. To confirm that hNPCs 
aided in photoreceptor survival, retinal cross sections were 
stained with cresyl violet dye (Figure 1B–D). The LEsham 
eyes had approximately ten layers of photoreceptor cells 
located in the outer nuclear layer (ONL; Figure 1B), whereas 
the number of photoreceptor cells decreased to only three 
layers in the RCSsham eyes (Figure 1C). In the RCShNPCs eyes, 
transplanted hNPCs survived in the subretinal space and 
were able to preserve approximately five to six cell layers 
of photoreceptors (Figure 1D). Similar to previous studies 
[10-12], the hNPCs were able to preserve visual function and 
aid in photoreceptor survival.

Analysis of global gene expression: To examine the overall 
gene expression in the host retinal tissue, retinal RNA was 
isolated (n = 2 for each of LEsham, RCSsham, and RCShNPCs), 
and RNA-seq was performed. Expression levels of 26,407 
RefSeq protein-coding genes using the FPKM values was 
determined. A complete list of genes is registered at GEO 

(accession GSE70600). Only genes with expression of FPKM 
>0 were included for analysis. The total number of expressed 
genes for each sample was similar, with an average number of 
18,254 (69%) in LEsham, 18,662 (71%) in RCSsham, and 18,627 
(71%) in RCShNPCs (Table 2). To compare the similarity of 
the global gene expression profiles of the different samples, 
average linkage hierarchical cluster analysis was performed 
(Figure 2). The LEsham samples clearly separated from the 
RCS samples, suggesting that there is a distinct difference in 
gene expression between wild-type and degenerating retinas. 
These data are in agreement with other transcriptomic studies 
of animal models for retinal degeneration [24,25]. Addition-
ally, the RCShNPCs samples segregated from the RCSsham 
samples indicating that distinguishable gene expression 
changes follow injection of hNPCs.

Differential gene expression in retinal degenerative RCS rats: 
To investigate gene expression changes with retinal degenera-
tion, computational analysis of the differential gene expres-
sion between RCSsham and LEsham was performed. Genes were 
considered to be differentially expressed with an FDR <5% 
(q <0.05). A total of 1,215 differentially expressed genes were 
identified in the RCSsham versus LEsham comparison (Table 1; 
Appendix 1). Of these genes, 852 (70%) genes had increased 
expression in the RCSsham samples (Figure 3, red ellipse), and 
82 genes (10%) were uncharacterized. The top five genes with 
the greatest fold changes included Mir671, Lcn2, Cd74, Gfap, 
and Cebpd. Lcn2, Cd74, Gfap, and Cebpd have all been shown 
to be increased with retinal degeneration [15,19,25,40-45], 
confirming retinal degeneration is detectable at the molecular 
level. Additionally, Mir671, Lcn2, Cd74, and Cebpd play roles 
in the immune response to macrophages and/or microglia 
[45-48], suggesting that there is an increase in macrophage/
microglia activity with retinal degeneration.

Of the 1,215 differentially expressed genes in the RCSsham 
versus LEsham comparison, 363 (30%) genes had decreased 
expression in the RCSsham samples (Figure 3 green ellipse), 
and 29 (8%) were uncharacterized. The top five genes with 
the greatest fold change were Optc, Gnat1, Hk2, Lig4, and Nrl. 
Gnat1, Hk2, and Nrl are expressed in photoreceptors [46-53], 
and Rho (rhodopsin) was also greatly decreased with a fold 
change of −6.4, indicating that there is a significant decrease 
in photoreceptor-specific genes in the RCSsham samples. This 
corroborates with the loss of photoreceptors in the retinal 
histology (Figure 1C). Optc, Gnat1, Hk2, Lig4, and Nrl have 
either been implicated in human retinal degenerative diseases 
[54-58] or are used in animal models for vision disorders 
[24,50,52], further establishing that retinal degeneration is 
discernible on the gene expression level.
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Differential gene expression due to hNPC-induced retinal 
preservation in RCS rats: Computational analysis of the 
differential gene expression between RCShNPCs and RCSsham 
was performed. A total of 283 differentially expressed genes 
were identified in the RCShNPCs versus RCSsham comparison 
(Table 1; Appendix 2). A total of 51 (18%) genes had 
increased expression (Figure 3, yellow ellipse), and 21 (41%) 
of these genes are uncharacterized, suggesting that many of 
the genes expressed following hNPC treatment are currently 
unidentifiable. The top genes with greatest fold changes were 
Mir671, ENSRNOG00000049107, Pde4d, Anxa9, and Mir770. 
As previously described, Mir671 is expressed in response 
to macrophage/microglia activity but also plays a role in 
regulating extracellular matrix production [59]. Downregu-
lation of Pde4d and Anxa9 expression is observed in retinal 
degeneration [24,60,61], and the increase in expression in this 
data set indicates that there is less retinal degeneration in 
RCShNPCs. Mir770 is ubiquitously expressed in the mouse eye 
at P60 [62], and this may be further elucidated by looking at 
the target genes of this microRNA.

Of the 283 differentially expressed genes between 
RCShNPCs and RCSsham, 232 (82%) genes had decreased 
expression in the RCShNPCs samples (Figure 3, blue ellipse). 
Similar to the upregulated RCShNPCs versus RCSsham gene 
set, a high percentage of genes (79; 34%) are uncharacter-
ized. The top five most downregulated genes include Cryaa, 
Tomm6, ENSRNOG00000050736, Crybb3, and Cryba1. The 
expression of crystallin genes, such as Cryaa, Crybb3, and 
Cryba1, is altered following retinal trauma and may play a 
protective role [63-68]. Decreased crystallin expression in 
RCShNPCs may be due to increased photoreceptor survival 
and less need for endogenous retinal neuroprotection. Tomm6 
encodes a protein that is part of the TOM complex of the 
mitochondrial membrane [69], and altered expression of TOM 
complex proteins has been detected in patients with diabetic 

retinopathies [70]. Collectively, the downregulation of these 
genes suggests that there is less retinal injury following treat-
ment with hNPCs.

Functional, biologic, and cellular component analyses of 
differential gene expression sets: To identify functional 
processes that are affected, gene profiles were submitted 
to DAVID [33,34]. Of the 852 upregulated differentially 
expressed genes in the RCSsham versus LEsham comparison, 
ten functional processes were identified (Figure 4A). These 
genes were heavily associated with immune and inflamma-
tory responses, suggesting that there is an increase in the 
immune response in the RCSsham samples. The remaining 
functional processes participate in motility, suggesting there 
is an increase in the transportation of proteins across the 
cell and in cellular movement. Functional analysis of the 
363 downregulated genes from the RCSsham versus LEsham 
comparison identified four significantly enriched pathways 
(Figure 4B). The downregulation of these processes (visual 
perception, phototransduction, photoreceptor cell develop-
ment and differentiation, and detection of visible light) further 
confirm that retinal degeneration is detectable on a molecular 
basis in the RCSsham samples. To determine the affected 
functional processes with treatment of hNPCs, the differen-
tially expressed gene sets from the RCShNPCs versus RCSsham 
comparisons were submitted to DAVID. The 51 upregulated 
genes yielded two processes (protein biosynthesis and 
cytosol; Figure 4C), and no processes were enriched using 
the downregulated genes. The lack of processes may be due 
to the small number of genes submitted to DAVID or the high 
percentage of uncharacterized genes in the RCShNPCs versus 
RCSsham comparison.

To determine gene relation to biologic processes, GO 
terms from the differential gene expression profiles were 
submitted to REViGO. Similar to the functional analysis 

Figure 4. Analysis of affected functional processes in differential gene expression lists. Gene lists were submitted for DAVID analysis, 
and affected functional processes from the retinal degenerate Royal College of Surgeons (RCSsham) versus wild-type Long Evans (LEsham) 
upregulated (A) and downregulated (B) gene sets, and the Royal College of Surgeons rats with a subretinal injection of human forebrain 
derived neural progenitor cells (RCShNPCs) versus RCSsham upregulated (C) gene list were identified. No significant functional processes were 
found for the RCShNPCs versus RCSsham downregulated gene set. Significance was accepted at a Benjamini-Hochberg p value of less than 0.01.
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by DAVID, the RCSsham versus LEsham upregulated biologic 
processes mainly included immune system regulation 
(Figure 5A). This analysis further demonstrates that the 
immune response is heightened in RCSsham. The downregu-
lated differentially expressed gene list from RCSsham versus 
LEsham procured only one biologic process (Figure 5B). Cation 
transport is important for the directed movement of molecules 
between or within cells, and the downregulation of this 
process may be linked to the decreases of photoreceptor cells 
and in phototransduction. To identify biologic processes that 
are affected following treatment with hNPCs, GO terms from 
the RCShNPCs versus RCSsham differentially expressed gene 
lists were submitted to REViGO. Three biologic processes 
were determined from the upregulated gene list (Figure 5C). 
These processes participate in cell adhesion and regulation of 
morphogenesis, which could be due to the increase in rescued 
photoreceptors. The genes from the downregulated gene set 
could not be classified into any significantly enriched biologic 
processes.

The differential gene lists were also analyzed for cellular 
component ontology, which describes where the gene product 
is located in the cell. Submission of GO terms from the 
RCSsham versus LEsham upregulated gene list identified five 
cellular components (Figure 6A). These components suggest 
that the abundance of immune cells is increased in the 
RCSsham samples. The downregulated gene list from RCSsham 
versus LEsham yielded one cellular component (cilium; Figure 
6B). Photoreceptor outer segments are characterized as 

specialized sensory cilia [71], and RCSsham have a defect in 
phagocytosing outer segments [26]. Additionally, inherited 
retinal degenerative diseases can be linked to cilia mutations 
[72], further demonstrating that retinal degeneration can be 
detected at the molecular level in RCSsham. No significant 
cellular components were established in either of the RCShNPCs 
versus RCSsham comparisons.

Rescue gene expression in RCShNPCs: RCShNPCs were shown to 
have increased visual function and photoreceptor cell survival 
(Figure 1). To analyze genes that may be aiding in these 
processes, computational analysis of the differential gene sets 
between the comparisons was conducted, and rescue genes 
were identified (Figure 3, circle). Fifty-five genes common 
to the upregulated RCSsham versus LEsham and downregulated 
RCShNPCs versus RCSsham gene lists were identified (Figure 
3, square, Appendix 3). To determine genes with RCShNPCs 
expression similar to that of LEsham, the fold change differ-
ence (FCD) was calculated. FCD was defined as ((RCSsham 
versus LEsham fold change) + (RCShNPCs versus RCSsham fold 
change). The top characterized genes with an FCD closest to 
0 are Ubald1 (FCD 0.02) Sebox (FCD −0.02), Cdh22 (FCD 
−0.02), Amigo2 (FCD −0.03), and Cdc42ep5 (FCD 0.04). To 
date, there are no publications on the expression of Ubald1 or 
Sebox in the retina. Amigo2 is expressed in the rat retina [73], 
and Cdh22 is expressed in the developing mouse brain [74], 
but little is known about their biologic relevance. Cdc42 is 
important for tissue organization during retinal development, 
and loss of Cdc42 results in retinal degeneration [75,76]. 

Figure 5. Scatterplot of biologic processes generated from differentially expressed genes. Gene Ontology (GO) terms from the differential 
gene expression lists were submitted to the REViGO web server. GO terms are represented by circles and are plotted according to similarity 
to other GO terms, and size is proportional to frequency of the GO term. Circle color defines the log10 p value (red is larger, blue is smaller). 
A: The retinal degenerate Royal College of Surgeons (RCSsham) versus wild-type Long Evans (LEsham) upregulated gene list produced several 
affected biologic processes. B: Only one process was identified in the downregulated gene list. C: The Royal College of Surgeons rats with 
a subretinal injection of human forebrain derived neural progenitor cells (RCShNPCs) versus RCSsham upregulated gene list identified three 
affected processes, and no processes from the downregulated gene set. Significance was accepted at a Benjamini-Hochberg p value of less 
than 0.01.
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Cdc42ep5 encodes an effector protein that binds to Cdc42 
to negatively regulate its function [77,78]. The decrease in 
Cdc42ep5 expression in RCShNPCs may allow for more Cdc42 
expression and subsequent retinal preservation.

To further evaluate rescue genes, the downregulated 
RCSsham versus LEsham and upregulated RCShNPCs versus 
RCSsham were compared. A total of 13 genes were identified 
(Figure 3, circle), and the top rescue genes with an FCD closest 
to 0 are Htr1f (FCD −0.14), Ypel1 (FCD −0.17), Pdc (FCD 
−0.36), Glb1l2 (FCD 0.47), and Pax4 (FCD 0.50; Appendix 
4). Htr1f was found to have higher expression in the temporal 
retina than in the macular retina of human patients [79]. Ypel1 
may play a role in regulation of cell morphology [80] and/or 
in cell division [81], but no expression analysis in the retina 
has been performed. Pdc (phosducin) is highly expressed in 
photoreceptors [82,83], suggesting that there is a significant 
increase in photoreceptor gene expression in RCShNPCs. Glb1l2 
is ubiquitously expressed in the eye, including the retina, 
and may play a role in retinal cell homeostasis [84]. Pax4 is 
expressed in photoreceptors [85] and can stimulate expres-
sion of the rod-derived cone viability factor for photoreceptor 
survival [86,87]. Collectively, the upregulation of these rescue 

genes indicate that there is an increase in photoreceptor gene 
expression following treatment with hNPCs.

Validation of differential gene expression: qRT-PCR analysis 
was performed on the genes with an FCD closest to 0 from 
each of the lists of rescued genes. Of the rescued genes that 
were upregulated in the RCSsham versus LEsham and downregu-
lated in the RCShNPCs versus RCSsham sets (Appendix 3), one 
of the five genes (Cdc42ep5) followed similar gene expres-
sion patterns as seen in the RNA-seq expression (Figure 7A). 
As described previously, the downregulation of Cdc42ep5 
expression in RCShNPCs may be due to photoreceptor preser-
vation. Of the rescued genes that were downregulated in the 
RCSsham versus LEsham and upregulated in the RCShNPCs versus 
RCSsham sets (Appendix 4), all six genes (Htr1f, Ype1l, Pdc, 
Glb1l2, Pax4, and Rp1) followed similar expression patterns 
as those detected in the RNA-seq analysis (Figure 7B). To 
confirm the histological analysis, the photoreceptor gene 
rhodopsin (Rho) was also included in qRT-PCR analysis.

Pathway analysis of rescued genes following hNPC trans-
plantation: To determine which pathways may be rescued 
following transplantation of hNPCs into the RCS rat, gene 
lists were uploaded into the Ingenuity Pathway Analysis (IPA) 
software. All of the genes that were significantly upregulated 

Figure 6. Scatterplot of gene product cellular components generated from differentially expressed genes. Gene Ontology (GO) terms from the 
differential gene expression lists were submitted to the REViGO web server. GO terms are represented by circles and are plotted according 
to similarity to other GO terms, and size is proportional to frequency of the GO term. Circle color defines the log10 p value (red is larger, 
blue is smaller). A: The retinal degenerate Royal College of Surgeons (RCSsham) versus wild-type Long Evans (LEsham) upregulated gene 
list produced five affected cellular components. B: Only one process was identified in the downregulated gene list. No significant cellular 
components were identified in either of the Royal College of Surgeons rats with a subretinal injection of human forebrain derived neural 
progenitor cells (RCShNPCs) versus RCSsham gene lists. Significance was accepted at a Benjamini-Hochberg p value of less than 0.01.
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in the RCSsham versus LEsham and downregulated in the RCSh-

NPCs versus RCSsham gene profiles were compared, and three 
pathways were found to coincide (Table 3). Integrin signaling 
is involved in promotion of inflammation [88] and the uptake 
of apoptotic cells by macrophages and microglia [89]. The 
second affected pathway, phospholipase C signaling, is 
important for efficient phagocytosis [90], which is one func-
tion of macrophages and microglia. The third pathway, Rho 
Family GTPase signaling, promotes phagocytic engulfment 
[91]. The importance of the three pathways coincides with 
the functional, biologic, and cellular components analyses 
that indicated that there is an increased immune response 
in RCSsham (Figure 4, Figure 5). The three affected pathways 
all play roles in the phagocytic response, suggesting that 
the host RCSsham retina is infiltrated with macrophages and 
microglia. Fewer macrophages and microglia may be due to 
less degenerative materials or less stress on photoreceptors 
targeted for phagocytosis, since photoreceptors are preserved 
with hNPC treatment. No pathways were identified in the 
downregulated RCSsham versus LEsham and upregulated RCSh-

NPCs versus RCSsham comparison.

Decrease in abundance of macrophages and microglia 
following hNPC treatment: Comparison of the pathways 
affected by the gene sets suggest phagocytosis signaling as 

the common biologic process by which all three pathways 
participate. To determine whether the presence of macro-
phages and microglia contributes to the overall gene expres-
sion changes, immunofluorescent staining was performed 
(Figure 8). A greater amount of positive staining for Iba1, a 
marker of macrophages and microglia, was detected in the 
RCSsham retina (Figure 8B) compared to the LEsham retina 
(Figure 8A). Treatment with hNPCs decreased the amount 
of positive staining in areas with rescued photoreceptors 
(Figure 8C), similar to the expression patterns detected in 
the LEsham retina. Similar to RCSsham expression, areas away 
from the grafted region of the treated retina had an increase 
in macrophages and microglia (Figure 8D), suggesting that 
the decrease in the abundance of macrophages and microglia 
is directly due to the presence of hNPCs.

DISCUSSION

Effective therapies for RDDs, such as retinitis pigmentosa 
and age-related macular degeneration, remain a challenge 
from a clinical perspective, and many questions still surround 
the use of stem cell–based therapies. This study enhances the 
knowledge of gene expression changes that occur following 
injection of human neural progenitor cells into a clinically 
relevant rodent model for retinal degeneration. By comparing 

Figure 7. Validation of rescue 
gene expression using qRT-PCR 
analysis. Primers were designed 
for rescue genes with a fold 
change difference (FCD) closest 
to 0. A: The top five retinal degen-
erate Royal College of Surgeons 
(RCSsham) versus wild-type Long 
Evans (LEsham) downregulated and 
Royal College of Surgeons rats with 
a subretinal injection of human 
forebrain derived neural progenitor 
cells (RCShNPCs) versus RCSsham 
upregulated rescue genes. The top 
six RCSsham versus LEsham upregu-
lated and RCShNPCs versus RCSsham 
downregulated rescue genes were 
examined. B: The photoreceptor-
specific gene rhodopsin (Rho) was 
also probed.
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the degenerating retina to the hNPC-treated retina, greater 
knowledge of the responses that occur due to hNPCs will 
aid in understanding the molecular mechanisms of treatment. 
Challenges arise from determining exact signaling mecha-
nisms in heterogeneous tissue. Because a multitude of cell 
types constitute the retina, it is difficult to attribute exact 
gene expression differences to specific cells. However, this 
whole neural retinal approach is useful for determining global 
changes to the retina, and certain signaling mechanisms may 
be extrapolated from this data set and further studied on a 
cell-specific basis.

Previous studies from our laboratory have determined 
that hNPCs are able to preserve vision and aid in photore-
ceptor survival in RCS rats [10-12]. The use of hNPCs in 
humans could yield great promise for treating retinal degen-
erative diseases, but the mechanisms of action of stem cell–
based therapies are largely undiscovered. Previous studies 
on induced pluripotent stem cell-derived neural progenitor 
cells (iNPCs) and fetal-derived central nervous stem cells 
(HuCNS-SC) have shown that neural stem cells are able to 
phagocytose debris in the subretinal space, suggesting one 
mechanism of the benefit of neural stem cells [15,16]. Other 
potential mechanisms have been postulated, such as neuro-
trophic factor release and immunomodulation, but there has 
been little evidence of the exact modes of action of stem cell 

therapies. This is the first study to examine the changes in the 
host retina following stem cell therapy, and this knowledge 
could be used to enhance future applications for treatment.

The RNA-seq data suggest several different gene expres-
sion changes among LEsham, RCSsham, and RCShNPCs. These data 
sets are based on contributions of gene expression changes 
from the whole retina. While not taking into account minute 
changes in specific cells, further studies could examine the 
differences in cell subtypes to further pinpoint gene expres-
sion changes. One concern is that the area of the retina used 
for analysis also contains hNPCs, which could contribute to 
the overall gene expression changes. Studies in our labora-
tory have shown that hNPCs constitute approximately 1% 
of the RCS retinal cells at P60, as determined with flow 
cytometry (unpublished lab data). Transcript levels from the 
hNPCs themselves were therefore not considered to greatly 
contribute to the gene expression differences seen in the host 
retinal tissue RNA-seq.

Although compelling increases in photoreceptor cell 
survival occurs in RCShNPCs, interestingly, Rho was not found 
in the genes that were significantly increased from the RCSh-

NPCs versus RCSsham comparison. The fold change was 1.5 from 
RCShNPCs to RCSsham; thus, although there are more photore-
ceptors with treatment with hNPCs, Rho is not detected in 
the gene expression changes. The low levels of rhodopsin in 

Table 3. Ingenuity pathway analysis (IPA) of differential gene expression lists.

Gene List Canonical 
Pathway

-log(p-value) z-score Gene IDs

RCSsham 
vs. LEsham 
Upregulated

Integrin 
Signaling

3.79 4.123 ACTA1, ACTB, ARPC1B, ITGA6, ITGA9, ITGAL, 
ITGAM, ITGB2, PARVA, PIK3CG, RAC2, RAP2B, 
RHOB, RHOC, RHOJ, RRAS, SRC, TSPAN4

RCShNPCs 
vs. RCSsham 
Downregulated

Integrin 
Signaling

1.54 -2.000 ARPC1A, PARVA, RHOB, RRAS

RCSsham 
vs. LEsham 
Upregulated

Phospholipase C 
Signaling

2.14 3.606 BLNK, FCER1G, FCGR2A, FCGR2B, GNB3, GNG5SRC, 
LYN, PLCE1, PLD4, RHOB, RHOC, RHOJ, RRAS, SYK, 
TGM

RCShNPCs 
vs. RCSsham 
Downregulated

Phospholipase C 
Signaling

1.31 -2.000 GNG5, PLA2G1B, RHOB, RRAS

RCSsham 
vs. LEsham 
Upregulated

Signaling by 
Rho Family 
GTPases

2.6 3.873 ACTA1, ACTB, ARPC1B, CDC42EP5, CDH11, EZR, 
FOX, GFAP, GNB3, GNG5, JUN, MSNRHOC, PIK3CG, 
RHOB, RHOJ, SEPT10

RCShNPCs 
vs. RCSsham 
Downregulated

Signaling by 
Rho Family 
GTPases

1.94 -2.000 ARPC1A, CDC42EP5, GFAP, GNG5, RHOB

Upregulated RCSsham versus LEsham and downregulated RCShNPCs versus RCSsham gene lists were compared. Significance was determined 
at –log p value ≥1.31 and z-score ≥2 or ≤ −2. Gene IDs shown are those that were found to be differentially expressed in the data set as 
determined by IPA software (QIAGEN, Redwood City).
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the RNA-seq and qRT-PCR analyses of RCShNPCs could be 
due to the sample area of the neural retina. The area closest 
to the injection site, approximately half of the neural retina, 
was taken to maximize the hNPC-induced photoreceptor 
survival, but the sample also contains portions of the retina 
that are not affected by hNPCs thus potentially decreasing 
the overall rhodopsin gene expression levels. However, other 
photoreceptor-specific genes were found to be significantly 
upregulated with hNPC treatment. They include Rs1 (FC = 
2.1, q = 0.007) for retinal organization [92], Pdc (FC = 2.3, q 
= 0.03) expressed in photoreceptors [82,83], Rp1 (FC = 2.3, 
1 value 0.02) for stacking of outer segment discs [93], and 
Rpgrip1 (FC = 2.3, q = 0.02), which is expressed in photore-
ceptor cells [94].

Gene expression changes from the RNA-seq were vali-
dated using qRT-PCR. Although not all of the genes were 
validated, Cdc42ep5 expression was confirmed and was also 
found to be important in the bioinformatic pathway analysis. 
Potentially the small sample size for the qRT-PCR was not 

adequate for detecting the subtle fold-change differences 
between the different groups, and using a larger number of 
biologic samples could improve validation efforts. There was 
also variability between the biologic samples, and it could 
not be ascertained how great the photoreceptor preserva-
tion was in each sample, which could skew the expression 
patterns. In addition, the genes that could not be validated 
with qRT-PCR were mainly from the upregulated RCSsham 
versus LEsham and downregulated RCShNPCs versus RCSsham 
rescue gene list. Smaller subtle fold-change differences (range 
from −0.03 to 0.04) from this rescued gene list, compared 
to the downregulated RCSsham versus LEsham and upregulated 
RCShNPCs versus RCSsham rescued genes (range from −0.64 to 
0.5), may be harder to be accurately detected. Additionally, 
the fold changes themselves in the former rescue genes list 
were smaller (up to 2.82 and −2.69) compared to the ones 
that were validated in the latter rescue gene list (up to −3.48 
and 3.39).

Figure 8. The presence of macro-
phages and microglia decreases 
after hNPC treatment. A: Wild-
type Long Evans (LEsham) have few 
macrophages and microglia, as 
detected with the Iba1 antibody. B: 
Retinal degenerate Royal College of 
Surgeons (RCSsham) have Iba1+ cells 
throughout the retina. C: Similar to 
LEsham, Royal College of Surgeons 
rats with a subretinal injection of 
human forebrain derived neural 
progenitor cells (RCShNPCs) have 
few Iba1+ cells. D: However, areas 
further from the injection site away 
from the graft (AFG) with less 
photoreceptor survival contain 
numerous macrophage and microg-
lial cells. RGC = retinal ganglion 
cell layer, INL = inner nuclear 
layer, ONL = outer nuclear layer. 
Scale bar = 20 μm.
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Pathway analysis was used to identify affected pathways 
following the subretinal transplantation of hNPCs into RCS 
rats. Although no pathways were found to be significantly 
affected in the downregulated RCSsham versus LEsham and 
upregulated RCShNPCs versus RCSsham comparisons, pathways 
that were found to be affected were the phototransduc-
tion (-log Benjamini-Hochberg p = 2.49E01), visual cycle 
(4.34E00), retinoate biosynthesis (1.96E00), and retinal 
biosynthesis (1.96E00) pathways. The only pathway that had 
a significant z score was the cardiac β-adrenergic signaling 
pathway (-log Benjamini-Hochberg p = 1.95E00, z score = 
−2). This pathway includes the genes Pde8a, Gnb1, Pde6g, 
Pde6a, Gnb5, and Pde6b. These genes were also found in the 
phototransduction pathway, suggesting that certain aspects of 
the phototransduction pathway are affected but did not reach 
significance by such stringent analysis.

Three pathways were found to be significantly affected 
in the upregulated RCSsham versus LEsham and downregulated 
RCShNPCs versus RCSsham comparisons. The first pathway, 
integrin signaling, is essential for synchronizing phagocy-
tosis of photoreceptor outer segments by the retinal pigment 
epithelial cells [95,96]. The RCS rats have a mutation in the 
MerTK gene that cause a truncation of the Mertk protein and 
improper phagocytosis of the photoreceptor outer segments 
[26]. MerTK is activated by pathways controlled by signaling 
via the αvβ5 integrin receptor [96]. Improper phagocytosis 
of photoreceptor outer segments can lead to retinal degenera-
tion [97,98], and loss of αvβ5 integrin allows phagocytosis 
to occur but at an improper rate [99] and leads to vision loss 
[98,100]. The upregulation of integrin signaling factors in the 
RCSsham versus LEsham comparison could be integrin signaling 
compensation by RPE cells due to the lack of functional Mertk 
protein; however, the RNA-seq samples were composed of 
the neural retina with few RPE cells, suggesting alternate 
cells in the retina utilize integrin signaling for phagocytosis. 
Integrin receptors are also expressed on macrophages and 
microglia and are involved in the uptake of apoptotic targets 
[89] and the promotion of inflammation [88]. Inhibition of 
integrin receptors blocked microglial function and reduced 
phagocytosis of apoptotic neurons [89]. hNPCs potentially 
block the action of macrophages and microglia either directly 
by signaling to the phagocytic cells or indirectly by increasing 
photoreceptor survival, thus decreasing the need for phagocy-
tosis of apoptotic cells.

The second affected pathway is phospholipase C (PLC) 
signaling. The PLC signaling cascade affects several cellular 
processes, including metabolism, secretion, phagocytosis, 
proliferation, and neurotransmission [101]. Activation 
of phagocytic receptors, such as integrins, activate PLC 

signaling resulting in elevated Ca2+ concentrations in the 
cytosol, which is required for maturation of phagosomes and 
efficient phagocytosis [90]. In cooperation with Rho family 
GTPase signaling, the third affected pathway, macrophages 
are activated and play a role in actin turnover and rear-
rangement [102,103] to promote phagocytic engulfment [91]. 
Microglial infiltration and activation have been detected in 
RCS rats over the course of retinal degeneration [104], which 
was also identified in RCSsham (Figure 8B). Microglial activity 
is detrimental to the survival of photoreceptors, and suppres-
sion of microglial activity lessens vision loss [105-107]. 
Microglia also aid in the execution of stressed, living photo-
receptors and other neurons [108,109], further contributing 
to neurodegeneration. A decrease in the presence of macro-
phages and microglia was observed in in RCShNPCs in areas 
with photoreceptor survival (Figure 8C), and macrophages 
and microglia were again detected in areas of the same eye 
that had less photoreceptor survival (Figure 8D). In RCShNPCs 
areas away from the injection site, there was no sham surgery 
effect, and it is similar to what is seen in eyes that received 
no surgery or treatment. The ONL thickness is approximately 
two to three cell layers in the RCSsham (Figure 8B), whereas 
the RCShNPCs area away from the injection site (Figure 8D) 
has approximately one to two cell layers. The increased Iba1 
staining in the RCShNPCs area away from the injection site 
could be due to more photoreceptor degeneration, therefore 
causing the presence or increased activity of macrophages 
and microglia. These data suggest that one neuroprotective 
effect of hNPCs on retinal degeneration is due to modulating 
the response of macrophages and microglia in areas of photo-
receptor survival.

In conclusion, this is the first report of RNA-seq tran-
scriptome data that shows gene expression following treat-
ment of a clinically relevant stem cell source, hNPCs, in a 
rodent model for retinal degeneration. The differential gene 
expression data of RCSsham versus LEsham retinas expands the 
knowledge of the progression of retinal degeneration, while 
the analysis of RCShNPCs versus RCSsham gives insight into 
potential genes and pathways that may be targeted in future 
therapeutic studies. Furthermore, these results are the first 
to demonstrate that hNPCs induce immunomodulation in 
the retina, either by directly signaling to immune cells or 
indirectly by aiding in photoreceptor survival thereby inacti-
vating immune cells. Gene expression data sets, such as the 
present study, will elucidate biologic and molecular relevance 
of therapies in retinal degenerative diseases, with the hope of 
generating more efficacious therapeutics.
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APPENDIX 1.

Genes with differential expression between the RCSsham and 
LEsham samples. To access the data, click or select the words 
“Appendix 1.”

APPENDIX 2.

Genes with differential expression between the RCShNPCs and 
RCSsham samples. To access the data, click or select the words 
“Appendix 2.”

APPENDIX 3.

Rescue genes upregulated in RCSsham versus LEsham and down-
regulated in RCShNPCs versus RCSsham comparisons. Numbers 
given are fold changes between the two listed samples. Fold 
change difference (FCD) was determined as ((RCSsham versus 
LEsham fold change) + (RCShNPCs versus RCSsham fold change). 
To access the data, click or select the words “Appendix 3.”

APPENDIX 4.

Rescue genes downregulated in RCSsham versus LEsham 
and upregulated in RCShNPCs versus RCSsham comparisons. 
Numbers given are fold changes between the two listed 
samples. Fold change difference (FCD) was determined 
as ((RCSsham versus LEsham fold change) + (RCShNPCs versus 
RCSsham fold change). To access the data, click or select the 
words “Appendix 4.”
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