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Abstract: Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS), versus attenuated total
reflectance spectroscopy (FTIR-ATR) and diffuse reflectance spectroscopy (DRIFT), was firstly applied
in quick assessment of rice quality in response to rising CO2/temperature instead of conventional
time-consuming chemical methods. The influences of elevated CO2 and higher temperature were
identified using FTIR-PAS spectra by principal component analysis (PCA). Variations in the rice
functional groups are crucial indicators for rice identification, and the ratio of the intensities of two
selected spectral bands was used for correlation analysis with starch, protein, and lipid content, and
the ratios all showed a positive linear correlation (R2 = 0.9103, R2 = 0.9580, and R2 = 0.9246, respec-
tively). Subsequently, changes in nutritional components under future environmental conditions
that encompass higher CO2 and temperature were evaluated, which demonstrated the potential
of FTIR-PAS to detect the responses of rice to climate change, providing a valuable technique for
agricultural production and food security.

Keywords: Fourier transform infrared photoacoustic spectroscopy; climate change; rice quality;
principal component analysis

1. Introduction

Temperature and CO2 concentration are major environmental variables influencing
crops’ growth and are expected to change rapidly in the future, which will impact food
security [1]. Rice (Oryza sativa L.) is one of the most important crops in the world and
provides a daily source of food for over 2 billion people [2], with approximately 600 million
people relying on rice for more than 50% of their daily calories [3]. Nutrition of rice intake is
of obvious importance for promotion and maintenance of human health, and any changes
associated with nutritional availability for rice might have global health consequences [4,5].

For the time being, the majority of nutritional information for rice has been obtained
primarily from single climate variables; i.e., either CO2 or temperature. Results from a
meta-analysis indicated that rice grain protein content was reduced by CO2 concentration
enrichment [6]. There were also considerable studies indicating that future CO2 concen-
tration will reduce protein [3,7,8], while the amylose content responds more variably to
elevated CO2 [8–10]. Temperature effects on rice quality were more disparate, although
there were evidences indicating that temperature may also negatively influence rice qual-
ity [11,12]. For instance, rice grains produced under rising temperature exhibited lower
amylose content [13], and the protein content was increased or not affected under elevated
temperature 2–4 ◦C [7,9,11]; however, the interactions of temperature and CO2 concentra-
tion remain unclear, and it is necessary to investigate the interactions regarding the main
nutritional items including starch, protein and lipids.

Frequently used methods for assessing rice nutrition have been based on chemical
determination. Conventional methods for determining the starch content of rice grains
include the amyloglucosidase-α-amylase method [14]. Relatively common traditional
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methods for analyzing protein content include the Dumas method, Kjeldahl methods,
and AOAC (Association of Official Analytical Chemists) official method 979.09 [15,16].
Lipid content is quantified by the traditional Soxhlet extraction method [17] and the acid
hydrolysis method [18]. The analysis process of these chemical methods is time-consuming
and laborious because of sample pretreatment, destructive owing to digestion procedures,
and even dangerous owing to the use of corrosive and potentially toxic reagents. Thus, a
fast and nondestructive method to determine the grain nutrition of rice is in high demand.

For this purpose, much attention has been focused on near-infrared reflectance spec-
troscopy (NIRS) as an alternative option to traditional means. A number of studies have
shown that NIRS has the potential to be used as a quick procedure for predicting the
quality properties involving amylose content, protein content, and other grain quality
traits [19–22]. However, weak absorption of overtone and combination, broad bands and
lack of characteristics are typical of NIRS, thus making NIRS calibration models largely
dependent on chemometric methods. Instead, mid-infrared spectroscopy (MIRS) was
found to have more potential to characterize various samples, since it displays stronger
basic frequency absorption and more well-resolved spectral features associated with the
sample component. Also, photoacoustic spectroscopy-FTIR (FTIR-PAS), attenuated to-
tal reflectance-FTIR spectroscopy (FTIR-ATR), and diffuse reflectance FTIR spectroscopy
(DRIFT) are commonly used MIRS for rapid analysis [23–27]. Recent progress in micro-
phone sensitivity has dramatically increased the performance of FTIR-PAS. The advantage
of FTIR-PAS is that the shape of the photoacoustic spectrum is independent of the sample’s
morphology [28]. Spectra of FTIR-ATR are obtained from the absorption of an evanescent
wave, which is transmitted through an internal reflection element with a high refractive
index and penetrates the sample [29,30]. Direct contact between the sample and the ATR
crystal is required, which can be achieved easily using liquids, pastes and powders [28].
Diffuse reflectance spectroscopy is based on the detection of electromagnetic radiation
reflected at a characteristic wavelength and does not require direct contact between the
sensor and the samples. The energy that penetrates one or more particles is reflected in all
directions [26,28,29]. Schematic diagram of light path of FTIR-PAS, FTIR-ATR, and DRIFTS
are shown in Figure 1.
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In this paper, FTIR-PAS was firstly applied to characterize and identify rice grain
samples from temperature/free air CO2 enrichment (T-FACE) platform, and subsequently,
the objective of this study was to rapidly analyze the selected nutritional properties (starch,
protein, and lipid content) in milled rice grain of one variety in response to climate change
using FTIR-PAS spectra.
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2. Materials and Methods
2.1. Experimental Site

The experiment was carried out in Yangzhou, Jiangsu Province, China (32◦355′′ N,
119◦420′′ E). This region has a typical subtropical monsoon climate, with an average annual
temperature of 14.9 ◦C and annual precipitation of 980 mm. The soil is classified as a
Shajiang Aquic Cambosol with a sandy loam texture. The details of the soil properties
are as follows: sand (0.02–2 mm) 578.4 g kg−1, silt (0.002–0.02 mm) 285.1 g kg−1, clay
(<0.002 mm) 136.5 g kg−1, bulk density 1.16 g cm−3, soil organic C 18.4 g kg−1, total N
1.45 g kg−1, total P 0.63 g kg−1, total K 14.0 g kg−1, available P 10.1 mg kg−1, available K
70.5 mg kg−1, and pH 7.2.

2.2. T-FACE Facility

The method for controlling CO2 and temperature in situ has been described in detail
by Cai et al. [31] and Wang et al. [32,33]. The temperature and free-air CO2 enrichment
(T-FACE) system is characterized by six rings located within a paddy field with a similar
soil and cultivation history. For the higher CO2 treatment, three octagonal plots were
randomly allocated to the elevated CO2 (eC) treatments and the other three to the ambient
(aC) conditions. To avoid CO2 contamination, each plot was separated by at least 90 m.
The FACE plots were equipped with emission tubes around the perimeter at heights of
50–60 cm above the canopy, which released CO2 in the day time throughout the growing
season to maintain a CO2 concentration at approximately 200 µmol mol−1 above ambient
levels. To maintain the elevated CO2 concentration, the FACE plots were controlled by
computer systems that monitored the ambient CO2 concentration variation, wind direction,
wind speed, and canopy height during daylight hours. The plants received additional CO2
from 29 June to 25 October during the day time. The average concentrations of ambient
and elevated CO2 were 384.7 ± 4.5 µmol mol−1 and 574.0 ± 5.4 µmol mol−1, respectively.
No attempt was made to control CO2 in the ambient plots. Temperature treatment was
imposed for each plot as a split-plot. In brief, we established a plot for elevated temperature
(eT) by encircling a 2.7 m × 5.25 m area with copper pipes. In the eT plots, temperature
was elevated by approximately 1.5 ◦C at the canopy height through coordination between
a temperature sensor (SI-109, Campbell, CA, USA) and a computer feedback system that
controlled the speed of the running hot water in the copper pipes. Temperature rising
lasted from 29 June to 25 October, daily from 09:00 h to 18:00 h. The average increment of
elevated temperature was 1.4 ± 0.3 ◦C higher than the ambient. Temperatures were not
elevated in the other half of each plot. Overall, the study had four treatments: (1) aCaT
(ambient treatment), (2) aCeT (ambient CO2 concentration and increased temperature), (3)
eCaT (increased CO2 concentration and ambient temperature), and 4) eCeT (combination of
elevated CO2 and increased temperature). The CO2 and temperature metrics were chosen
based on IPCC (Intergovernmental Panel on Climate Change) RCP 4.5 (Representative
Concentrative Pathway) scenario predictions of ca 500–700 mg L−1 CO2 and 1.1–2.6 ◦C
temperature increases by century’s end [34].

2.3. Crop Cultivation and Experimental Treatment

Nanjing 9108 (NJ9108), a commercial japonica rice cultivar authorized by the China
Ministry of Agriculture, was used. NJ9108 is recognized as a high-yield and high-grain
quality cultivar in Jiangsu Province, where the experiment was conducted. Jiangsu Province
is the fifth most productive rice province in China [35].

Rice seedlings were selected and manually transplanted at a density of two seedlings
per hill. The spacing of the hills was 16.7 cm × 25 cm (equivalent to 24 hills m−2). All plots
received equal amounts of phosphorus (P) and potassium (K) as the basal dressing 1 day
before transplanting, when both PK compound chemical fertilizers were applied at a rate
of 9 g m−2. Nitrogen (N) was supplied as urea (N = 46%) and compound chemical fertilizer
(N:P2O5:K2O = 15:15:15) at a rate of 22.5 g N m−2. Of the total N, 40% was applied as the
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basal dressing 1 day before transplanting, 30% was top-dressed at the early tillering stage,
and 30% was top-dressed at the panicle initiation stage.

At maturity, aboveground plant parts were harvested by hand with a sickle from
the whole treatment area. Subsequently, grains were husked by rice huller (JLG-II, Grain
Reserves Corporation, Beijing, China) to produce brown rice. To ensure consistent removal
efficiency, equal weight brown rice was taken and then removed from the bran layer by
a rice polisher (JNM-III, Grain Reserves Corporation, Beijing, China) to obtain white rice.
Then, a ball mill (MM400, Retsch, Germany) was used to grind white rice separately into
powder samples that could pass through a 100-mesh (0.15 mm) sieve. After drying (70 ◦C,
6 h), the sample was placed in a desiccator and cooled to room temperature for further
analyses. All samples were analyzed for three analytical replicates. The moisture content
of the samples was displayed in the Supplementary Materials Table S1.

2.4. Spectra Recording
2.4.1. FTIR-PAS Spectra Acquisition

Rice grain sample spectra were collected using a Nicolet 6700 FTIR spectrometer
(Thermo Scientific, Waltham, MA, USA) coupled with a Model 300 photoacoustic cell
(MTEC Photoacoustics, Inc., Ames, USA). The sample was placed in a cell holding cup
(diameter of 10 mm and height of 5 mm), after which the cell was purged with dry helium
(10 mL min−1) for 20 s to minimize the interference caused by CO2 and H2O. Thirty-two
successive scans were performed in the range of 400–4000 cm−1 with a resolution of 4 cm−1

and a mirror velocity of 0.32 cm s−1. Carbon black was used as the background for intensity
normalization of the spectra.

2.4.2. Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy

The FTIR-ATR spectra were scanned on a handheld TruDefender Fourier transform
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Spectra were acquired in
the range 4000–650 cm−1 with a spectral resolution of 4 cm−1. Diamond was used as the
ATR-reflecting element for improved contact, and a blank reference was scanned before
each sample was scanned. The background was subtracted from each scan to correct for
atmospheric and instrumental noise.

2.4.3. Diffuse Reflectance Fourier-Transform Infrared Spectroscopy

Diffuse reflectance Fourier transform mid-infrared spectra were collected on a Nicolet
6700 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) fitted with a diffuse
reflectance accessory (PN 044–10XX 300, PIKE Technologies, Fitchburg, WI, USA). Spectra
were collected as an average of 32 scans at a resolution of 4 cm−1 within the range from 4000–
400 cm−1 [18–20,25]. A gold reference was used as a background at the beginning of each
sample scan. The background was subtracted from each scan to correct for atmospheric
and instrumental noise.

2.5. Chemical Methods

Ethanol (10 mL) was added to a 100 mg sample of rice flour and kept in a water bath
at 80 ◦C for 30 min. The tube was then centrifuged at 2000 rpm for 20 min after cooling
and repeated three times. The residue in the centrifuge tube was dried at 80 ◦C for starch
extraction. Then, 2 mL of distilled water was added to the tube, which was shaken in
a boiling water bath for 15 min, and 2 mL of 9.36 HClO4 was added after cooling. The
solution was shaken for 15 min, made up to approximately 10 mL, and centrifuged at
2000 rpm for 20 min. The supernatant was collected and 2 mL of 4.68 HClO4 was added
to the residue. The extraction was repeated as described above, then the supernatant was
added, and the volume was made up to 50 mL with distilled water. The starch content was
measured according to the method of Pucher et al. [36]. The N content was determined
using the Kjeldahl method and multiplied by 5.95 to obtain the protein content. The lipids
were extracted from the rice using a FOSS Soxtec 2050 [17]. In brief, 5 g of rice was weighed
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into cellulose thimbles (Foss North America, Eden Prairie, MN, USA). Then, the thimbles
and kernels were pre-dried for 1 h in a 100 ◦C oven. Subsequently, the lipids were extracted
from the sample using 70 mL of petroleum ether (boiling point 35–60 ◦C; VWR, Suwanee,
GA). Samples were boiled in the solvent for 20 min over a 135 ◦C hot plate, rinsed with
petroleum ether condensate for 30 min, and dried for 5 min. After the extraction cycle, the
extraction cups were removed from the Soxtec unit and placed in an oven maintained at
100 ◦C for 30 min to evaporate the solvent. The extraction cups were placed in a desiccator
at room temperature for approximately 30 min to cool before weighing. The difference
between the mass of the cups containing the extracted lipid and the original empty cup
mass was calculated to obtain the mass of the extracted lipid. Lipid content was expressed
as the mass percentage of the extracted lipid mass to the original one.

2.6. Statistical Analysis

Both FTIR-PAS and DRIFT data were first truncated to span a smaller wavelength
range (4000–650 cm−1) identical to the FTIR-ATR data on account of FTIR-ATR spectra and
were recorded on an instrument different from that used to record FTIR-PAS and DRIFT
spectra. The spectra recorded using the FTIR-PAS, FTIR-ATR, and DRIFT techniques for all
the samples were smoothed using the Savitzky–Golay filter and subsequently averaged.
The scanning depth of the sample can be calculated as follows (Equation (1)):

u =

√
D

πvr
(1)

where u is the thermal diffusion length (µm), D is the thermal diffusivity, v is the moving
mirror velocity, and r is the wavenumber. D is approximately 0.01 × 10−5 m2 s−1.

The FTIR-PAS spectra were smoothed using the Savitzky–Golay filter and subse-
quently averaged and normalized. PCA was performed as exploratory data analysis in
order to obtain an overview of the variation among samples and to identify clusters and
outliers. This step is applied to reduce the spectral information into principal components
(PCs), which are a linear combination of the variables in the spectral data and contain most
of the relevant information. The spectral pre-processing, PCA, and statistical analysis were
implemented in MATLAB R2016a (The Math Works, Natick, MA, USA). Curve fitting was
conducted using a Peakfit v.4.12 (SeaSolve Software Inc. San Jose, CA, USA). Analysis of
variance (ANOVA) was performed using SPSS v.20.0 for Windows (SPSS Inc., Chicago,
IL, USA).

3. Results and Discussion
3.1. Spectral Characterization

For the same technique, the spectra of rice samples from different treatments displayed
very similar shapes and peaks positions but differed in intensity across the spectral region
(Figure 2), which indicated that the rice samples had the same composition but varied in
amounts. FTIR-PAS and FTIR-ATR provided similar spectra and contained more features
than the spectra recorded by DRIFT.

A broad and strong peak attributed to O-H stretching vibration absorption [37,38]
overlapping with N-H stretching vibration (amide I and amide II) [39] was observed
from FTIR-PAS and FTIR-ATR in the region 3800–3000 cm−1, whereas DRIFT showed a
separate and shift of the peaks toward higher wavenumbers (at 3843 cm−1, 3735 cm−1

and 3618 cm−1). The peak related to the asymmetric stretching vibration of methylene at
2920 cm−1 [40] was clearly visible in all techniques, while the peak related to the symmetric
stretching vibration of aliphatic methylene at 2850 cm−1 [26] was just present in FTIR-
ATR and DRIFT. Diffuse reflectance-FTIR was more sensitive to carbon dioxide in the
environment than FTIR-PAS and FTIR-ATR with a strong CO2 absorption peak around
2350 cm−1. The spectral region between 1800 and 900 cm−1 was called the fingerprint
region because of the unique patterns’ characteristic of a given sample [41]. More resolved
important characteristic peaks in the fingerprint region were clearly visible in the recorded
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FTIR-PAS and FTIR-ATR spectra, but FTIR-ATR spectra were less detailed and nosier than
the FTIR-PAS in the region 1200–1500 cm-1. Furthermore, DRIFT seemed to be missing
characteristic peaks in the region 1300–900 cm−1, which includes information related to the
C-O stretching/C-C stretching/C-O-C stretching (900–1200 cm−1) in starch and lipid, and
C-N stretching/N-H bending (1240 cm−1) in protein [37,38,42,43].
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Figure 2. Averaged spectra of (a) Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS), (b) Fourier transform
infrared attenuated total reflectance spectroscopy (FTIR-ATR), and (c) Fourier transform infrared diffuse reflectance spec-
troscopy (DRIFTS) of rice samples under different treatments. Note: aCaT, aCeT, eCaT, and eCeT refer to ambient conditions,
increased temperature, elevated CO2, and the combination of elevated CO2 and increased temperature, respectively.

Table 1 shows the functional groups and modes of vibration according to the most
observed prominent absorption bands. The recorded mid-infrared spectra of rice revealed
a better performance overall of FTIR-PAS and FTIR-ATR than of DRIFT spectra.

Table 1. Assignment of the main bands of the FTIR spectra of the rice samples.

FTIR-PAS FTIR-ATR DRIFT

Wavelength
(cm−1) Assignment Profiling

Depth (µm)
Wavelength

(cm−1) Assignment Wavelength
(cm−1) Assignment

3600–3000 -O-H/-N-H 5.26–5.76 3600–3000 -O-H/-N-H 3843 -O-H

2920 -C-H 5.84 2920 -C-H 3735 -N-H

1750 -C=O 7.54 2850 -C-H 3618 -N-H

1650 amide
I/-O-H/-C=C 7.77 1750 -C=O 2920 -C-H

1545 amide II 8.07 1650 amide
I/-O-H/-C=C 2850 -C-H

1460 -C-O-O/-C-H 8.26 1530 amide II 1750 -C=O

1340 -C-H 8.62 1460 -C-O-O/-C-H 1650 amide
I/-O-H/-C=C

1240 amideIII/-
CH2OH 8.96 1340 -C-H 1530 amide II

1150 -C-O/-C-C 9.30 1240 amideIII/-
CH2OH 1460 -C-O-O/-C-H

1080 -C-O-H 9.60 1150 -C-O/-C-C 1080 -C-O-H

1010 -C-O-C/-C-O 9.93 1080 -C-O-H 930 α-1,4 glycosidic
linkage

930 α-1,4 glycosidic
linkage 10.34 1010 -C-O-C/-C-O

930 α-1,4 glycosidic
linkage

FTIR-PAS: Fourier transform infrared photoacoustic spectroscopy; FTIR-ATR: Fourier transform infrared attenuated total reflectance
spectroscopy; DRIFTS: Fourier transform infrared diffuse reflectance spectroscopy.
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In order to acquire precise characteristic peaks’ number and position, second-derivative
analysis was used, and the second-derivative spectra in the fingerprint region are shown
in Figure 3. Second-derivative spectra of FTIR-ATR and DRIFT were incapable of ex-
tracting more information than FTIR-PAS spectra, especially in the 1800–1200 cm−1 and
1500–900 cm−1 regions respectively, which were dominated by noise.
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Figure 3. Inverted second-derivative curves of Fourier transform infrared photoacoustic spec-
troscopy (FTIR-PAS), Fourier transform infrared attenuated total reflectance spectroscopy (FTIR-
ATR), and Fourier transform infrared diffuse reflectance spectroscopy (DRIFTS) spectra in the range
of 900–1800 cm−1.

The CV (coefficient of variation) of characteristic peaks’ intensity within group and
between groups are exhibited in Table 2. FTIR-PAS had a smaller coefficient of variation
within the group, followed by FTIR-ATR and DRIFT. This manifested that FTIR-PAS
spectroscopy was characterized by high reproducibility. The main advantage of FTIR-ATR
was small optical contact, and the main drawback of DRIFT was strongly dependent on
particle size and packing density. All these issues might result in the problem in the
method’s reproducibility, and FTIR-PAS seemed to be the most appropriate technique for
the rice samples [44].

Table 2. CV of spectral intensity within group and between groups.

Coefficient of
Variation

FTIR-PAS FTIR-ATR DRIFT

I1080 I1545 I1650 I1750 I1080 I1530 I1650 I1750 I1080 I1530 I1650 I1750

Within
group

aCaT 0.032 0.058 0.041 0.057 0.075 0.112 0.035 0.143 0.111 0.218 0.157 0.140
aCeT 0.051 0.067 0.043 0.066 0.094 0.121 0.034 0.037 0.089 0.437 0.245 0.065
eCaT 0.067 0.099 0.091 0.051 0.125 0.154 0.050 0.310 0.127 0.555 0.349 0.152
eCeT 0.057 0.100 0.113 0.061 0.150 0.167 0.161 0.152 0.097 0.337 0.307 0.113

Among groups 0.135 0.143 0.137 0.072 0.192 0.154 0.181 0.144 0.128 0.759 0.163 0.764

Note: CV, Coefficient of variation; aCaT, aCeT, eCaT, and eCeT refer to ambient conditions, increased temperature, elevated CO2, and the
combination of elevated CO2 and increased temperature, respectively.

3.2. Principal Component Analysis (PCA)

Figure 4 shows the scatter plots associated with PC1, PC2, PC3, and PC4 at full-
spectrum wavenumber ranges. The first four principal components accounted for 32.95%,
20.38%, 13.53%, and 5.77% of the total variance, respectively. The score plots exhibited an
irregular pattern across all of the samples, indicating that some treatments were difficult to
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distinguish. The poor performance of PCA based on full wavelength may be attributed to
some useless and irrelevant information included in the full spectrum [25,45].
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Figure 4. Principal component distributions of rice based on FTIR-PAS spectra (600–4000 cm−1). (a): PC1-PC2 scatterplot;
(b): PC1-PC3 scatterplot; (c): PC1-PC4 scatterplot; (d): PC2-PC3 scatter-plot; (e): PC2-PC4 scatterplot; (f): PC3-PC4
scatterplot; Note: aCaT, aCeT, eCaT, and eCeT refer to ambient conditions, increased temperature, elevated CO2, and the
combination of elevated CO2 and increased temperature, respectively.

Figure 5 shows the score plots of the first three principal components in the wavenum-
ber ranges of 900–4000 cm−1. The first three principal components accounted for 52.50%,
17.73%, and 12.84% of the total variance, respectively. Cumulatively, the first three PCA
scores accounted for 82.77% of the total variance. The fourth and other remaining compo-
nents contributed less than 5% of the residual variance. Therefore, the first three PCA scores
(PC1, PC2, and PC3) were selected for further analysis because they contained substantial
information about the spectra of the rice samples. Different treatments were effortlessly
distinguishable from the scatterplots of PC1 versus PC2 and PC1 versus PC3, suggesting
that significant differences existed among the rice samples under different treatments. The
influence of elevated CO2 can be clearly observed through the distinction of aCaT from
eCaT and of aCeT from eCeT. The same effects were detected for the impacts of elevated
temperature: The aCaT and aCeT samples showed discrepancies, and the eCaT were clearly
distinguishable from eCeT. Beyond that, however, the majority of PCA score plots for the
aCaT and eCeT samples overlapped to a certain extent.

These results illustrate that the two-factor interaction effects between elevated CO2
and elevated temperature can neutralize each other. According to the loading plots
(Figure 5d–f), high absolute values of PC1, PC2, and PC3 loadings were observed at
the wavenumbers of the amide I/C=C/O-H (≈1650 cm−1), amide II (≈1545 cm−1), C-H
(≈1340 cm−1, 1460 cm−1), amide III/CH2OH (≈1240 cm−1), C-O/C-C (≈1150 cm−1), C-O-
H (≈1080 cm−1), C-O-C (≈1010 cm−1), and α-1,4 glycosidic linkage (≈930 cm−1), which
might contribute to the diversity. The dispersion might show individual differences in the
rice samples under different treatments.
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Figure 5. Principal component score distributions (a–c) and principal component loading plots (d–f) of the first three
principal components from the FTIR-PAS spectra of the rice in the range of 900–4000 cm−1. Note: aCaT, aCeT, eCaT, and
eCeT refer to ambient conditions, increased temperature, elevated CO2, and the combination of elevated CO2 and increased
temperature, respectively.

3.3. Curve Fitting through Deconvolution

In the region 1800–900 cm−1, center positions for each sub-band in curve-fitting were
determined by second-derivative analysis, and the shapes of the underlying bands were
chosen using a Gaussian algorithm (Figure 3). The spectrum in this region was divided into
10 isolated peaks (Figure 6). The correlation coefficient (R2) between the raw spectrum and
fitted spectrum was above 0.95, and the standard error was less than 0.1. The deconvolution
curve fitting for the different treatments is shown in Figure 6.
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Figure 6. Deconvolution curve-fitting with four different treatments. (a) aCaT: ambient CO2 and temperature; (b) aCeT: ambient
CO2 and elevated temperature; (c) eCaT: elevated CO2 and ambient temperature; (d) eCeT: elevated CO2 and temperature.

3.4. Detection of Rice Nutritional Parameters

In the spectra, to avoid interference from the equipment and the environment while
measuring differences in the absolute values of the peak intensities [45,46], the ratio of
two selected spectral bands was calculated. Two peaks at approximately 1080 cm−1 and
1650 cm−1 were attributed to C-O-H stretching vibration and O-H bending vibration
(water adsorbed in the amorphous regions) from starch, respectively, which could be
assessed for relative starch content [47]. Amide has been shown to be the main chemical
form for nitrogen storage in plants. Therefore, the peak at approximately 1545 cm−1 was
assigned to C=O stretching (amide I), and 1650 cm−1 was assigned to amide II, which
corresponded to the C-N stretching and N-H bending, respectively, and were selected to
detect relative protein content [45,46]. Relative lipid content was determined by the two
peaks at approximately 1740 cm−1, which was assigned to C=O stretching vibration, and
1650 cm−1 stretching vibration, which was attributed to C=C stretching vibration [47].

The starch content of the rice showed a positive linear correlation (R2 = 0.9103) with the
intensity ratio of I1080/I1650 (Figure 7a). The ratio of aCaT showed a minimal value of 1.074;
however, the same ratio reached 1.138, 1.126, and 1.158 when the aCeT, eCaT, and eCeT
treatments were used, respectively (Figure 8). A significant increase was only observed
between aCaT and eCeT, indicating that there was no significant increase from either CO2
or temperature, and a significant increase was observed for concomitant increases in both
variables relative to the control. Figure 7b shows that the correlation between the ratio
of I1545/I1650 and protein content was relatively high, with a coefficient of 0.9580. From
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Figure 8, we can see that the ratios of all treatments displayed lower values relative to
the control, and protein content was significantly decreased by elevated CO2 concentra-
tion. A high correlation (R2 = 0.9246) was observed between lipid content and I1750/I1650
(Figure 7c). Warmer temperature and elevated CO2 resulted in opposing effects, increasing
and decreasing lipid content, respectively. Owing to these opposing effects, a significant
interaction was noted for both variables (Figure 8). Given the relative content of rice
nutrition, any changes are consistent with previous reports measuring these parameters by
chemical methods [6–8,48–50].
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Figure 7. Linear regression between (a) starch content and the ratio of I1080/I1650; (b) protein content and the ratio of
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combination of elevated CO2 and increased temperature, respectively. Bars represent the standard
error of the means. In each column, the values followed by different letters indicate a significant
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4. Conclusions

Three FTIR spectra (PAS, ATR, DRIFT) of the rice displayed similar shapes and dis-
similar intensities across the spectral region in the different treatments of elevated CO2,
increasing temperature and the combination of elevated CO2 and increased temperature.
Comparing the three techniques, FTIR-PAS was the best technique for rice sample quanti-
tative analysis due to being more detailed and less noisy. The FTIR-PAS spectra of the rice
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displayed similar shapes and dissimilar intensities across the spectral region in the different
treatments of elevated CO2, increasing temperature, and the combination of elevated CO2
and increased temperature. Based on the principal component analysis, the effects of
elevated CO2 and increasing temperature could be easily distinguished from FTIR-PAS
spectra in the range of 900–4000 cm−1. The ratio of I1080/I1650 showed a positive linear
correlation (R2 = 0.9103) with the starch content of rice, and a significant interaction effect
was observed between elevated CO2 and temperature treatment. The correlation between
the ratio of I1545/I1650 and protein content was relatively high, with a coefficient of 0.9580,
and the protein content was significantly decreased by elevated CO2 concentration. A
high correlation (R2 = 0.9246) was observed between lipid content and I1750/I1650, and the
opposing effects of significantly increased lipid content from warmer temperatures and
significantly reduced lipid content from elevated CO2 resulted in a significant interaction.
Hence, nondestructive and rapid FTIR-PAS provides a novel and unique technique to
characterize rice grains, which shows great potential for detecting how milled rice grains
respond to future environmental conditions that encompass higher CO2 and temperature.
This study also has its limitations: Regarding the method, the aspect of FTIR-PAS is rela-
tively equipment-expensive compared with traditional biochemical methods in measuring
carbohydrates, protein, and lipids; regarding material aspects, only one variety is evaluated
using FTIR, and varied varieties grown in different environments are needed to validate
the method in further explorations.

Supplementary Materials: The following are available online at https://www.mdpi.com/2304-815
8/10/1/159/s1, Table S1: Statistics of main nutritional parameters for rice samples.

Author Contributions: Conceptualization, C.D.; methodology, C.D. and L.W.; software, L.W. and
F.M. validation, L.W. and F.M.; formal analysis, L.W.; investigation, L.W.; resources, C.D.; data
curation, L.W. and C.D.; writing—original draft preparation, L.W.; writing—review and editing,
L.W. and C.D.; visualization, C.D. and F.M.; supervision, C.D.; project administration, C.D.; funding
acquisition, C.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key Research and Development Program of Jiangsu
Province China, grant number BE2017388 and the “STS” project from Chinese Academy of Sciences,
grant number KFJ-STS-QYZX-046.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions privacy.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Ziska, L.H.; Manalo, P.A.; Ordonez, R.A. Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and

temperature: Growth and yield response of 17 cultivars. J. Exp. Bot. 1996, 47, 1353–1359. [CrossRef]
2. Bailey, R.L.; West, K.P., Jr.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33.

[CrossRef] [PubMed]
3. Zhu, C.; Kobayashi, K.; Loladze, I.; Zhu, J.; Jiang, Q.; Xu, X.; Liu, G.; Seneweera, S.; Ebi, K.L.; Drewnowski, A.; et al. Carbon

dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health
consequences for the poorest rice-dependent countries. Sci. Adv. 2018, 4, 1012. [CrossRef] [PubMed]

4. DellaPenna, D. Nutritional genomics: Manipulating plant micronutrients to improve human health. Science 1999, 285, 375–379.
[CrossRef]

5. Rizza, W.; Veronese, N.; Fontana, L. What are the roles of calorie restriction and diet quality in promoting healthy longevity?
Ageing Res. Rev. 2014, 13, 38–45. [CrossRef]

6. Taub, D.R.; Miller, B.; Allen, H. Effects of elevated CO2 on the protein concentration of food crops: A meta-analysis. Glob. Chang.
Biol. 2008, 14, 565–575. [CrossRef]

7. Usui, Y.; Sakai, H.; Tokida, T.; Nakamura, H.; Nakagawa, H.; Hasegawa, T. Rice grain yield and quality responses to free-air CO2
enrichment combined with soil and water warming. Glob. Chang. Biol. 2016, 22, 1256–1270. [CrossRef]

https://www.mdpi.com/2304-8158/10/1/159/s1
https://www.mdpi.com/2304-8158/10/1/159/s1
http://doi.org/10.1093/jxb/47.9.1353
http://doi.org/10.1159/000371618
http://www.ncbi.nlm.nih.gov/pubmed/26045325
http://doi.org/10.1126/sciadv.aaq1012
http://www.ncbi.nlm.nih.gov/pubmed/29806023
http://doi.org/10.1126/science.285.5426.375
http://doi.org/10.1016/j.arr.2013.11.002
http://doi.org/10.1111/j.1365-2486.2007.01511.x
http://doi.org/10.1111/gcb.13128


Foods 2021, 10, 159 13 of 14

8. Yang, L.; Wang, Y.; Dong, G.; Gu, H.; Huang, J.; Zhu, J.; Yang, H.; Liu, G.; Han, Y. The impact of free-air CO2 enrichment (FACE)
and nitrogen supply on grain quality of rice. Field Crops Res. 2007, 102, 128–140. [CrossRef]

9. Chaturvedi, A.K.; Bahuguna, R.N.; Pal, M.; Shah, D.; Maurya, S.; Jagadish, K.S.V. Elevated CO2 and heat stress interactions affect
grain yield, quality and mineral nutrient composition in rice under field conditions. Field Crops Res. 2017, 206, 149–157. [CrossRef]

10. Terao, T.; Miura, S.; Yanagihara, T.; Hirose, T.; Nagata, K.; Tabuchi, H.; Kim, H.Y.; Lieffering, M.; Okada, M.; Kobayashi, K.
Influence of free-air CO2 enrichment (FACE) on the eating quality of rice. J. Sci. Food Agric. 2005, 85, 1861–1868. [CrossRef]

11. Wang, J.; Hasegawa, T.; Li, L.; Lam, S.K.; Zhang, X.; Liu, X.; Pan, G. Changes in grain protein and amino acids composition of
wheat and rice under short-term increased [CO2] and temperature of canopy air in a paddy from East China. New Phytol. 2019,
222, 726–734. [CrossRef] [PubMed]

12. Madan, P.; Jagadish, S.V.K.; Craufurd, P.Q.; Fitzgerald, M.; Lafarge, T.; Wheeler, T.R. Effect of elevated CO2 and high temperature
on seed-set and grain quality of rice. J. Exp. Bot. 2012, 63, 3843–3852. [CrossRef] [PubMed]

13. Cao, Z.Z.; Pan, P.; Wand, F.B.; Wei, K.S.; Li, Z.W.; Shi, C.H.; Wei, G.; Chen, F.M. Effect of high temperature on the expressions of
genes encoding starch synthesis enzymes in developing rice endosperms. J. Integr. Agric. 2015, 14, 642–659. [CrossRef]

14. AACC International. Total Starch Assay Procedure (Amyloglucosidase/α-Amylase Method). In AACC Approved Methods of
Analysis, 11th ed.; 76-13.01; AACC International: St. Paul, MN, USA, 2018.

15. Jung, S.D.; Rickert, A.; Deak, N.A.; Aldin, E.D.; Recknor, J.; Johnson, L.A.; Murphy, P.A. Comparison of Kjeldahl and Dumas
methods for determining protein contents of soybean products. J. Am. Oil Chem. Soc. 2003, 80, 1169–1173. [CrossRef]

16. Official Methods of Analysis, 17th ed.; Method 979.09; AOAC International: Gaithersburg, MD, USA, 2000.
17. Matsler, A.L.; Siebenmorgen, T.J. Evaluation of operating conditions for surface lipid extraction from rice using a Soxtec system.

Cereal Chem. 2005, 82, 282–286. [CrossRef]
18. Robinson, J.E.; Singh, R.S.; Kays, E. Evaluation of an automated hydrolysis and extraction method for quantification of total fat,

lipid classes and trans fat in cereal products. Food Chem. 2008, 107, 1144–1150. [CrossRef]
19. Fazeli, N.; Amir, B.; Afkari, H.; Mahdi, S. Prediction of amylose content, protein content, breakdown, and setback viscosity of

Kadus rice and its flour by near-infrared spectroscopy (NIRS) analysis. J. Food Process. Preserv. 2020, e15069. [CrossRef]
20. Chen, H.; Tan, C.; Lin, Z. Authenticity detection of black rice by near-infrared spectroscopy and support vector data description.

Int. J. Anal. Chem. 2018, 1–8. [CrossRef]
21. Siriphollakul, P.; Kanlayanarat, S.; Rittiron, R.; Wanitchang, J.; Suwonsichon, T.; Boonyaritthongchai, P.; Nakano, K. Pasting

properties by near-infrared reflectance analysis of whole grain paddy rice samples. Innov. Opt. Health Sci. 2015, 8, 1–8. [CrossRef]
22. Barnaby, J.Y.; Huggins, T.D.; Lee, H.; Mcclung, A.M.; Pinson, S.R.M.; Oh, M.; Bauchan, G.R.; Tarpley, L.; Lee, K.J.; Kim, M.S.; et al.

Vis/NIR hyperspectral imaging production environment, and physicochemical grain properties in rice. Sci. Rep. 2020, 10, 1–13.
[CrossRef]

23. Sivakesava, S.; Irudayaraj, J. Analysis of potato chips using FTIR photoacoustic spectroscopy. J. Sci. Food Agric. 2000, 80, 1805–1810.
[CrossRef]

24. Irudayaraj, J.; Sivakesava, S.; Kamath, S.; Yang, H. Monitoring chemical changes in some foods using Fourier transform
photoacoustic spectroscopy. J. Food Sci. 2001, 66, 1416–1421. [CrossRef]

25. Lu, Y.; Du, C.; Yu, C.; Zhou, J. Fast and nondestructive determination of protein content in rapeseeds (Brassica napus L.) using
Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). J. Sci. Food Agric. 2014, 94, 2239–2245. [CrossRef] [PubMed]

26. Bekiaris, G.; Bruun, S.; Peltre, C.; Houot, S.; Jensen, L.S. FTIR-PAS: A powerful tool for characterising the chemical composition
and predicting the labile C fraction of various organic waste products. Waste Manag. 2015, 39, 45–56. [CrossRef] [PubMed]

27. Parikh, S.J.; Goyne, K.W.; Margenot, A.J.; Mukome, N.D.F.; Calderon, J. Soil chemical insights provided through vibrational
spectroscopy. Adv. Agron. 2014, 126, 1–148.

28. Ma, F.; Du, C.W.; Zhou, J.M.; Shen, Y.Z. Investigation of soil properties using different techniques of mid-infrared spectroscopy.
Eur. J. Soil Sci. 2019, 70, 96–106. [CrossRef]

29. Rees, C.A.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. Attenuated total reflectance Fourier transform infrared analysis of fly ash
geopolymer gel aging. Langmuir 2007, 23, 8170–8179. [CrossRef] [PubMed]

30. Baker, M.J.; Trevisan, J.; Bassan, P.; Bhargava, R.; Butler, H.J.; Dorling, K.M.; Fielden, P.R.S.; Fogarty, W.; Fullwood, N.J.; Heys,
K.A.; et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 2014, 9, 1771–1791. [CrossRef]

31. Cai, C.; Li, G.; Yang, H.; Yang, J.; Liu, H.; Struik, P.C.; Luo, W.; Yin, X.; Di, L.; Guo, X.; et al. Do all leaf photosynthesis parameters
of rice acclimate to elevated CO2, elevated temperature, and their combination, in FACE environments? Glob. Chang. Biol. 2018,
24, 1685–1707. [CrossRef]

32. Wang, W.; Cai, C.; Lam, S.K.; Liu, G.; Zhu, J. Elevated CO2 cannot compensate for japonica grain yield losses under increasing air
temperature because of the decrease in spikelet density. Eur. J. Agron. 2018, 99, 21–29. [CrossRef]

33. Wang, W.; Cai, C.; He, J.; Gu, J.; Zhu, G.; Zhang, W.; Zhu, J.; Liu, G. Yield, dry matter distribution and photosynthetic characteristics
of rice under elevated CO2 and increased temperature conditions. Field Crops Res. 2020, 248, 107605. [CrossRef]

34. IPCC. Summary for policymakers. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007.

35. National Bureau of Statistics of China (NBS). China Statistical Yearbook; China Statistics Press: Beijing, China, 2018.
36. Pucher, G.W.; Leavenworth, C.S.; Vickery, H.B. Determination of starch in plant tissues. Anal. Chem. 1948, 20, 850–853. [CrossRef]

http://doi.org/10.1016/j.fcr.2007.03.006
http://doi.org/10.1016/j.fcr.2017.02.018
http://doi.org/10.1002/jsfa.2165
http://doi.org/10.1111/nph.15661
http://www.ncbi.nlm.nih.gov/pubmed/30586149
http://doi.org/10.1093/jxb/ers077
http://www.ncbi.nlm.nih.gov/pubmed/22438302
http://doi.org/10.1016/S2095-3119(14)60782-6
http://doi.org/10.1007/s11746-003-0837-3
http://doi.org/10.1094/CC-82-0282
http://doi.org/10.1016/j.foodchem.2007.09.041
http://doi.org/10.1111/jfpp.15069
http://doi.org/10.1155/2018/8032831
http://doi.org/10.1142/S1793545815500352
http://doi.org/10.1038/s41598-020-65999-7
http://doi.org/10.1002/1097-0010(20000915)80:12&lt;1805::AID-JSFA710&gt;3.0.CO;2-L
http://doi.org/10.1111/j.1365-2621.2001.tb15224.x
http://doi.org/10.1002/jsfa.6548
http://www.ncbi.nlm.nih.gov/pubmed/24374740
http://doi.org/10.1016/j.wasman.2015.02.029
http://www.ncbi.nlm.nih.gov/pubmed/25795481
http://doi.org/10.1111/ejss.12741
http://doi.org/10.1021/la700713g
http://www.ncbi.nlm.nih.gov/pubmed/17590027
http://doi.org/10.1038/nprot.2014.110
http://doi.org/10.1111/gcb.13961
http://doi.org/10.1016/j.eja.2018.06.005
http://doi.org/10.1016/j.fcr.2019.107605
http://doi.org/10.1021/ac60021a016


Foods 2021, 10, 159 14 of 14

37. Yang, J.C.; Zhang, J.H.; Wang, Z.Q.; Zhu, Q.S.; Wang, W. Remobilization of carbon reserves in response to water deficit during
grain filling of rice. Field Crops Res. 2001, 71, 47–55. [CrossRef]

38. Fan, D.; Ma, W.; Wang, L.; Huang, J.; Zhao, J.; Zhang, H.; Chen, W. Determination of structural changes in microwaved rice starch
using Fourier transform infrared and Raman spectroscopy. Starch-Starke 2012, 64, 598–606. [CrossRef]

39. Bedoya, A.; Gordillo-Delgado, F.; Cruz-Santillana, Y.E.; Plazas, J.; Marin, E. Thermal effusivity measurement of conventional and
organic coffee oils via photopyroelectric technique. Food Res. Int. 2017, 102, 419–424. [CrossRef] [PubMed]

40. Lu, Y.; Du, C.; Yu, C.; Zhou, J. Use of FTIR-PAS combined with chemometrics to quantify nutritional information in rapeseeds
(Brassica napus). J. Plant Nutr. Soil Sci. 2014, 177, 927–933.

41. Yang, H.; Irudayaraj, J. Characterization of semisolid fats and edible oils by Fourier transform infrared photoacoustic spectroscopy.
J. Am. Oil Chem. Soc. 2000, 77, 291–295. [CrossRef]
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