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Bioluminescence tomography (BLT) has a great potential to provide a powerful tool for tumor detection,monitoring tumor therapy
progress, and drug development; developing new reconstruction algorithms will advance the technique to practical applications.
In the paper, we propose a BLT reconstruction algorithm by combining SP3 equations and Bregman iteration method to improve
the quality of reconstructed sources. e numerical results for homogeneous and heterogeneous phantoms are very encouraging
and give signi�cant improvement over the algorithms without the use of SP3 equations and Bregman iteration method.

1. Introduction

As an emerging molecular imaging technique, biolumines-
cence imaging (BLI) is potentially well suited for early detec-
tion, clinical drug development and monitoring, and regen-
eration research [1–5]. erefore, this imaging modality has
received increasingly intense research interest worldwide
over the recent years.

To date, planar BLI is commonly used because of its
ease of implementation and operational simplicity, but it
also suffers from signi�cant limitations, including the low
resolution, the lack of quanti�cation, and the incapacity
of accurately providing depth information [6]. In contrast,
bioluminescence tomography (BLT) could overcome these
limitations by using accurate reconstruction algorithms
coupled with theoretical models of photon propagation in
biological tissues, providing higher resolution, quanti�cation
accuracy, and depth information [7]. In comparing BLT to
planar BLI, planar BLI is a qualitative analysis and BLT is a
quantitative analysis [8]. erefore, scientists are now paying
more attention to the advancement of BLT research.

e objective of BLT is to recover the unknown biolumi-
nescent source distribution 𝑠𝑠 𝑠 𝑠𝑛𝑛 based on the noisy surface
measurements Φmeas ∈ℝ 𝑚𝑚 [6, 7]. Indeed, the problem is
also called the inverse problem.However, amajor difficulty in
recovering the bioluminescent source distribution is imposed

by multiple scattering which occurs when light propagates
through biological tissues. is makes the inverse problem
severely ill-posed [7]. Furthermore, the number of recovered
unknown source distributions is usually far more than the
number of detected boundary measurements, that is, 𝑚𝑚 𝑚 𝑚𝑚
(in many cases, 𝑚𝑚 𝑚 𝑚𝑚). Hence, BLT is also a typically
underdetermined problem. To obtain a meaningful solution,
regularization techniques are usually adopted, which consist
of solving the following constrained optimization problem
[9]:

min
𝑠𝑠𝑠𝑠

󶙱󶙱𝐴𝐴𝐴𝐴 𝐴 𝐴meas󶙱󶙱22 + 𝜆𝜆 𝜆 𝜆𝜆 (𝑠𝑠) , (1)

where 𝐽𝐽𝐽𝐽𝐽 is a properly chosen regularization term, 𝜆𝜆 𝜆 𝜆
represents regularization parameter, and𝐴𝐴 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚 is a linear
operator, typically formed by discretizing diffusion equation
with �nite element methods [10].

When 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽22, the above regularized problem becomes
the popular Tikhonov regularization, which inherently pro-
vides smoothed solutions and therefore offers compromised
accuracy in localizing bioluminescent sources [11]. Recently,
𝑙𝑙1-regularized problems, that is, 𝐽𝐽𝐽𝐽𝐽𝐽 𝐽 𝐽𝐽𝐽𝐽1, have received
an increasing amount of attention in optical imaging, which
allow high-quality images to be reconstructed from a small
amount of boundary measurements [11–14]. However, 𝑙𝑙1-
regularized problems can sparsify the bioluminescent source
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distribution, which affects the quality of reconstructed
images [13, 15].

Furthermore, in order to obtain the matrix 𝐴𝐴 in (1), the
diffusion approximation (DA) to radiative transfer equation
(RTE) is widely used as the forward model for BLT recon-
structions. Although the DA is one of the most important
approximation methods in BLT [6–11], it suffers from some
limitations [12–14]. Firstly, the scattering is dominated over
absorption and secondly, the DA fails in modeling light
propagation in the vicinity of those highly vascularized tissue
parts [12–14]. erefore, the DA will introduce signi�cant
error in some BLT cases [14]. In contrast, the RTE is widely
accepted as an accurate model for light propagation in
biological tissues. However, the use of the RTE as the forward
model for BLT is oen not feasible due to the facts that
analytical solutions cannot exist for biological tissues with
spatially nonuniform scattering and absorption properties
and the computation of numerical approximations for the
solution is extremely time consuming [16, 17]. A generalized
delta-Eddington phase function was recently presented to
simplify the RTE, and the more accurate solution was
obtained relative to the DA [18, 19]. However, the parameter
𝑓𝑓 used in the model is difficult to compute [18, 19]. In
addition, the system matrix for the model is also difficult
to construct for complex heterogeneous geometries. ese
factors seriously limit the utilization of the model in BLT.
e use of simpli�ed spherical harmonics (SPN) equations to
approximate the RTE has been demonstrated to signi�cantly
improve the diffusion solution in domains with high absorp-
tion and small geometries [5, 12–14, 16, 20]. Meanwhile, the
SPN methods are computationally less expensive than the
RTE ones.

Large efforts in combining multiple types of a priori
information to develop BLT reconstruction algorithms to
improve the quality of reconstructed images, particularly
the permissible source region and multispectral information,
have formed the grounds of BLT reconstructions [9–11,
20–26]. Despite the recent advances in BLT reconstruction
algorithms and light propagation models, it is necessary to
develop and re�ne reconstructionmethods to improve image
quality.

Bregman iteration method has been studied recently and
is widely used in compressed sensing [27, 28]. e idea
is to add the residual, that is, the error produced at the
current iteration, back to the data for the next iteration to be
corrected [27].emethod is particularly attractive for sparse
reconstruction, but so far it has not been fully investigated
and analyzed in BLT, and this is the goal of this paper.

In this paper, we propose a BLT algorithm to improve
the quality of reconstructed images. In the algorithm, SP3
equations are adapted to model light propagation, and Breg-
man iteration method is used to solve the inverse problem
for BLT. Numerical results demonstrate that the quality of
reconstructed images is improved greatly. e rest of the
paper is organized as follows. In the following section, we
described SP3 equations as light propagation model and
Bregman iteration method. Last, numerical experiments
were performed to evaluate the proposed algorithm, and
corresponding conclusions were made.

2. Methods

2.1. SP3 Equations. epropagation of light in biological tiss-
ues can be well modeled by SP3 equations. SP3 equations are
two coupled diffusion equations for the moments 𝜙𝜙1 and 𝜙𝜙2
[16, 17]:

− ∇ ⋅ 󶀦󶀦
1

3𝜇𝜇𝑎𝑎𝑎 (𝑟𝑟)
∇𝜙𝜙1 (𝑟𝑟)󶀶󶀶+𝜇𝜇𝑎𝑎 (𝑟𝑟) 𝜙𝜙1 (𝑟𝑟)−

2𝜇𝜇𝑎𝑎 (𝑟𝑟)
3

𝜙𝜙2 (𝑟𝑟)=𝑆𝑆 (𝑟𝑟) ,

−
2𝜇𝜇𝑎𝑎 (𝑟𝑟)
3

𝜙𝜙1 (𝑟𝑟) − ∇ ⋅ 󶀦󶀦
1

7𝜇𝜇𝑎𝑎𝑎 (𝑟𝑟)
∇𝜙𝜙2 (𝑟𝑟)󶀶󶀶

+ 󶀤󶀤
4
9
𝜇𝜇𝑎𝑎 (𝑟𝑟) +

5
9
𝜇𝜇𝑎𝑎𝑎 (𝑟𝑟)󶀴󶀴 𝜙𝜙2 (𝑟𝑟) = −

2
3
𝑆𝑆 (𝑟𝑟) ,

(2)

where 𝜇𝜇𝑎𝑎𝑎𝑎 = 𝜇𝜇𝑎𝑎 + (1 − 𝑔𝑔
𝑚𝑚) ⋅ 𝜇𝜇𝑠𝑠 (𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚   , and 𝜇𝜇𝑎𝑎 and 𝜇𝜇𝑠𝑠

are the absorption and scattering parameters, respectively. 𝑔𝑔
is the anisotropy parameter.

e boundary conditions are given by

󶀤󶀤
1
2
+ 𝐴𝐴1󶀴󶀴 𝜙𝜙1 (𝑟𝑟) +

1 + 𝐵𝐵1
3𝜇𝜇𝑎𝑎𝑎 (𝑟𝑟)

󶀡󶀡𝑛𝑛𝑛𝑛𝑛𝑛  1 (𝑟𝑟)󶀱󶀱

= 󶀤󶀤
1
8
+ 𝐶𝐶1󶀴󶀴 𝜙𝜙2 (𝑟𝑟) +

𝐷𝐷1
𝜇𝜇𝑎𝑎𝑎 (𝑟𝑟)

󶀡󶀡𝑛𝑛𝑛𝑛𝑛𝑛  2 (𝑟𝑟)󶀱󶀱 ,

󶀤󶀤
7
24

+ 𝐴𝐴2󶀴󶀴 𝜙𝜙2 (𝑟𝑟) +
1 + 𝐵𝐵2
7𝜇𝜇𝑎𝑎𝑎 (𝑟𝑟)

󶀡󶀡𝑛𝑛𝑛𝑛𝑛𝑛  2 (𝑟𝑟)󶀱󶀱

= 󶀤󶀤
1
8
+ 𝐶𝐶2󶀴󶀴 𝜙𝜙1 (𝑟𝑟) +

𝐷𝐷2
𝜇𝜇𝑎𝑎𝑎 (𝑟𝑟)

󶀡󶀡𝑛𝑛𝑛𝑛𝑛𝑛  1 (𝑟𝑟)󶀱󶀱 .

(3)

e coefficients 𝐴𝐴1,… ,𝐷𝐷1,… ,𝐴𝐴2,… ,𝐷𝐷2 can be found
in [16]. Furthermore, the partial current can be obtained from
solutions 𝜙𝜙1 and 𝜙𝜙2:

𝐽𝐽+ (𝑟𝑟) = 󶀤󶀤
1
4
+ 𝐽𝐽0󶀴󶀴 𝜙𝜙1 (𝑟𝑟) −

0.5 + 𝐽𝐽1
3𝜇𝜇𝑎𝑎𝑎 (𝑟𝑟)

󶀡󶀡𝑛𝑛𝑛𝑛𝑛𝑛  1 (𝑟𝑟)󶀱󶀱

+󶀤󶀤−
1
16

−
2
3
𝐽𝐽0+

1
3
𝐽𝐽2󶀴󶀴 𝜙𝜙2 (𝑟𝑟) −

𝐽𝐽3
7𝜇𝜇𝑎𝑎𝑎 (𝑟𝑟)

󶀡󶀡𝑛𝑛𝑛𝑛𝑛𝑛  2 (𝑟𝑟)󶀱󶀱 .

(4)

e coefficients 𝐽𝐽0, 𝐽𝐽1,… , 𝐽𝐽3 can also be found in [16].
Solving the above equations by �nite element methods, a
linear operator 𝐴𝐴 can be established [29].

2.2. Bregman Iteration Method. Bregman iteration method is
based on the de�nition of Bregman distance. e Bregman
distance associated with a convex function 𝐸𝐸 at the point 𝜐𝜐 is
given as [27]

𝐷𝐷𝑝𝑝
𝐸𝐸 (𝑢𝑢𝑢 𝑢𝑢) = 𝐸𝐸 (𝑢𝑢) − 𝐸𝐸 (𝑣𝑣) − 󶄁󶄁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   󶄑󶄑 , (5)

where 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 is in the subgradient of 𝐸𝐸 at 𝑣𝑣. Clearly, this is
not a distance in the usual sense because it is not in general
symmetric. However, it does measure closeness in the sense
that 𝐷𝐷𝑝𝑝

𝐸𝐸(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢 and 𝐷𝐷𝑝𝑝
𝐸𝐸(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢𝑢𝑝𝑝

𝐸𝐸(𝑤𝑤𝑤𝑤𝑤𝑤  for 𝑤𝑤 on the line
segment between 𝑢𝑢 and 𝑣𝑣 [27].
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Initialization: 𝜀𝜀 𝜀 𝜀, 𝑘𝑘max >0 , 𝑘𝑘 𝑘 𝑘, 𝑣𝑣1 =0 , and 𝑠𝑠
Construct the operator 𝐴𝐴 by solving SP3 equations

While 󶙱󶙱𝑠𝑠𝑘𝑘𝑘𝑘 − 𝑠𝑠𝑘𝑘󶙱󶙱 / 󶙱󶙱𝑠𝑠𝑘𝑘𝑘𝑘󶙱󶙱 < 𝜀𝜀 or 𝑘𝑘 𝑘 𝑘𝑘max do
Solve (7): 𝑠𝑠𝑘𝑘𝑘𝑘 ← arg min

𝑠𝑠𝑠𝑠
󶁂󶁂‖𝐴𝐴𝐴𝐴𝐴  𝐴𝐴meas + 𝑣𝑣𝑛𝑛)‖

2
2 + 𝜆𝜆 𝜆 𝜆𝜆𝜆𝜆𝜆𝜆󶁒󶁒

Update 𝑣𝑣𝑘𝑘: 𝑣𝑣𝑘𝑘𝑘𝑘 ← 𝑣𝑣𝑘𝑘 +Φ
meas − 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘

𝑘𝑘 𝑘 𝑘𝑘 𝑘 𝑘
End while

A 1: BLT reconstruction with SP3 equations and Bregman iteration method.

Based on Bregman iteration method, (1) can be reformu-
lated as

𝑠𝑠𝑘𝑘𝑘𝑘 = arg min
𝑠𝑠𝑠𝑠

𝐷𝐷𝑝𝑝
𝐽𝐽 󶀡󶀡𝑠𝑠𝑠 𝑠𝑠𝑘𝑘󶀱󶀱 +

1
𝜆𝜆
󶙱󶙱𝐴𝐴𝐴𝐴𝐴  𝐴meas󶙱󶙱22

= arg min
𝑠𝑠𝑠𝑠

󶁄󶁄𝐽𝐽 (𝑠𝑠) − 󶄁󶄁𝑝𝑝𝑘𝑘, 𝑠𝑠 𝑠 𝑠𝑠𝑘𝑘󶄑󶄑 +
1
𝜆𝜆
󶙱󶙱𝐴𝐴𝐴𝐴𝐴  𝐴meas󶙱󶙱22󶁔󶁔 ,

𝑝𝑝𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑘𝑘 −
1
𝜆𝜆
𝐴𝐴𝑇𝑇 󶀡󶀡𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘 − Φ

meas󶀱󶀱 ,
(6)

where 𝑝𝑝𝑘𝑘𝑘𝑘 ∈ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑘𝑘𝑘𝑘) and 𝐴𝐴𝑇𝑇 is the adjoint operator of
𝐴𝐴. Since the operator 𝐴𝐴 is linear in BLT reconstructions,
the above complicated iteration can be transformed to the
following two-stage iteration procedure with 𝑣𝑣0 =0  [27]:

𝑠𝑠𝑘𝑘𝑘𝑘 = arg min𝑠𝑠𝑠𝑠
󶁂󶁂󶁂󶁂𝐴𝐴𝐴𝐴𝐴  󶀡󶀡Φmeas + 𝑣𝑣𝑛𝑛󶀱󶀱󶀱󶀱

2
2 + 𝜆𝜆 𝜆 𝜆𝜆 (𝑠𝑠)󶁒󶁒 , (7)

𝑣𝑣𝑘𝑘𝑘𝑘 = 𝑣𝑣𝑘𝑘 +Φ
meas − 𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘. (8)

is is done by iteratively solving the optimization problem
(7) and then modifying the measured value of Φmeas used in
the next iteration. And (8) is usually referred as “adding back
the noise” [30]. In the paper, 𝐽𝐽𝐽𝐽𝐽 is �xed as the 𝑙𝑙1 regularizer.
e implementation of (7) was performed by a gradient
projected (GP) algorithm [31]. e proposed algorithm was
depicted in Algorithm 1.

3. Results

To fully evaluate the performance of the proposed algo-
rithm, homogeneous and heterogeneous experiments were
performed. In the experiments, the parameters 𝜀𝜀 and 𝑘𝑘max
were set to 1×10−3 and 10, respectively.e parameters in GP
algorithm set default values, except the maximum iteration
number is �xed at 50000 to ensure the convergence of the
algorithm unless otherwise is speci�ed.

3.1. Homogeneous Phantom Experiments. In this section, 2D
numerical simulations were used to investigate the perfor-
mance of the proposed algorithm since less computational
time was required for 2D data. Here, two individual cases
were considered. In the �rst case, numerical simulations
were performed on a homogenous circle with 10mm radius.
Within this circle, two sources (source 1 and source 2) were
placed in (−5, 0) mm and (0, 5) mm, respectively and each

T 1: Optical properties for different bands [22].

Wavelength 𝜇𝜇𝑎𝑎 (mm−1) 𝜇𝜇𝑠𝑠′ (mm−1) 𝜇𝜇𝑠𝑠′/𝜇𝜇𝑎𝑎 𝑔𝑔
600 nm 0.0281 1.6667 59.3 0.9
620 nm 0.0109 1.6129 147.9 0.9

source had a radius of 1.0mm. e corresponding optical
parameters were listed in Table 1. e boundary data were
generated for two wavelengths (600 and 620 nm) with �nite
element methods, and different levels of Gaussian noise (0%,
10%, and 30%) were added to the datasets. BLT reconstruc-
tions were performed without and with Bregman iteration
method. Corresponding results were shown in Figure 1. In
this case, the ratios of 𝜇𝜇𝑠𝑠′/𝜇𝜇𝑎𝑎 are larger than 10; therefore, the
circular phantom has high-scattering characteristics. Hence,
the DA is suitable for the simulation. For comparison,
we carried out BLT reconstructions with the DA as the
forward model; reconstructed images were also illustrated
in Figure 1. From Figure 1, we can see that the results
with SP3 equations are better than those obtained with the
DA and Bregman iteration method can improve the quality
of reconstructed images. e best results are obtained by
combing SP3 equations and Bregman iteration method. In
addition, quantitative results were summarized in Table 2.
Data inTable 2 show that reconstructed position errors can be
signi�cantly reduced when SP3 equations are used together
with Bregman iteration method

Furthermore, we tested the proposed algorithm by using
experiments with multiple bioluminescent sources.e opti-
cal properties of a real mouse muscle for different wave-
lengths (580 and 620 nm) were assigned as listed in Table 3
[29]. Four identical sources with 1mm radii were placed
different positions. First, the sources were placed near the
surfaces, and the distance to the center of the circle was
7.07mm. e boundary measurements were also produced
by �nite element methods, and 20% Gaussian noise was
added into the simulated data. Note that in the test, 𝜇𝜇′𝑠𝑠/𝜇𝜇𝑎𝑎
for two wavelengths are less than 10; therefore, the condition
𝜇𝜇′𝑠𝑠 ≫ 𝜇𝜇𝑎𝑎 does not hold and the DA is less valid. Hence,
BLT reconstructions with the DA were not implemented.
e results with SP3 equations are shown in Figures 2(a)
and 2(b). Next, the sources were placed at 5mm positions
off the center. en BLT reconstructions were performed, as
shown in Figures 2(c) and 2(d). Furthermore, quantitative
results were shown in Table 4. It is worthy of mentioning
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F 1: Reconstructed images with different methods with different levels of noisy data. e �rst and second columns are reconstructed
results with the DA and SP3 equations as the forward models, respectively. e last column is the images by combing SP3 equations and
Bregman iteration method. e �rst row is the results with noise-free data and the middle and last rows are the results with 10% and 30%
noisy data. e white circles represent the actual sources.

T 2: Quantitative reconstruction results in the case of two sources for homogeneous phantom experiments.

Noise levels Number of source Reconstructed central position using different methods (unit: mm)
DA SP3 SP3 + Bregman

0% No. 1 (−5.99, 0.35) (−5.49, 0.28) (−5.00, 0.21)
No. 2 (−0.08, 6.00) (0.14, 5.50) (−0.15, 5.00)

10% No. 1 (−5.99, 0.35) (−5.49, 0.28) (−5.00, 0.21)
No. 2 (−0.08, 6.00) (0.14, 5.50) (−0.15, 5.00)

30% No. 1 (−5.45, 0.78) (−5.49, 0.28) (−5.00, 0.21)
No. 2 (−0.86, 5.43) (−0.64, 4.96) (0.07, 4.50)

that BLT reconstructions without andwith Bregman iteration
method use the same regularization parameter (i.e., 3×10−6),
but the reconstructed results are different. From Figure 2
and Table 4, it is easily concluded that better images can be
obtained by combining SP3 equations and Bregman iteration
method.

3.2. Heterogeneous Phantom. In the subsection, a micro-
MRI-based heterogeneous mouse model (MOBY) was used
to validate the proposed algorithm [32]. About 2/3 of the
entire phantomwas used formesh generation, and a volumet-
ric mesh with 17661 nodes and 93312 tetrahedron elements
was obtained by iso2mesh [33], as shown in Figure 3.
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F 2: Reconstructed images in the case of four sources.e corresponding images are shown for sources near the surfaces (top row) and
near the center (bottom row). (a) and (c) are results obtained only with SP3 equations. (b) and (d) are the results by combing SP3 equations
and Bregman iteration method.

F 3: e heterogeneous mouse phantom.

e optical properties of different tissues were assigned
according to Table 5, reproduced from Alexandrakis et al.
[21�. e forward simulation data was produced by �nite
element methods, and 10% Gaussian noise was added. en
BLT reconstructions were performed without and with Breg-
man iterationmethod.e regularization parameters used in

the two methods were the same, and the value was 0.1. e
maximum iteration number in the GP algorithm was set to
5000, and other parameters remained unchanged.e recon-
structed results without and with Bregman iteration method
were shown in Figure 4. From the images, we can see that
the quality of reconstructed images can be improved with the



6 Computational and Mathematical Methods in Medicine

50

40

30

20

10

0

4.5

4

3.5

3

2.5

2

1.5

1

0.5

10 20 30

(a)

50

40

30

20

10

0

10 20 30

7

6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

(b)

4.5

4

3.5

3

2.5

2

1.5

1

0.5

20

15

10

5

10 15 20 25

(c)

20

15

10

5

10 15 20 25

7

6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

(d)

4.5

4

3.5

3

2.5

2

1.5

1

0.5

20

10

0 10 20 30 40 50

(e)

20

10

0 10 20 30 40 50

7
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5
1

(f)

F 4: Cross sections of the reconstructed images through the actual center of the real source for heterogeneous mouse experiment. (a)
and (b) are coronal sections� (c) and (d) transverse sections� (e) and (f) sagittal sections. e �rst and second columns show reconstructions
without and with Bregman iteration method, respectively.

T 3: Optical property parameters used in the case four sources
[29].

Wavelength 𝜇𝜇𝑎𝑎 (mm−1) 𝜇𝜇𝑠𝑠 (mm−1) 𝜇𝜇𝑠𝑠′/𝜇𝜇𝑎𝑎 𝑔𝑔
580 nm 0.463 9.75 2.11 0.9
620 nm 0.107 9.22 8.62 0.9

use of Bregman iteration method. Furthermore, the recon-
structed central positions for the two algorithms are (22.77,
14.95, 13.33mm) and (22.24, 13.95, 14.49mm), respectively.

e real source position is (22.07, 14.43, 13.06mm). e
absolute distances between reconstructed sources and the
real source are 0.91mm and 1.52mm, respectively. e
quantitative results also demonstrate that Bregman iteration
method can improve the quality of reconstructed images.

4. Conclusion

We have presented a BLT reconstruction algorithm by comb-
ing SP3 equations and Bregman iteration method as a com-
petitive method for reconstructing bioluminescent sources
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T 4: Quantitative results between the actual and the reconstructed source centers with different methods in the case of four sources.

Actual source position Reconstructed source position
with SP3 method

Reconstructed source position
with SP3 and Bregman method

(5, −5) (5.14, −5.47) (4.96, −4.94)
(−5, −5) (−5.27, −5.34) (−4.94, −4.96)
(−5, 5) (−4.81, 5.76) (−4.95, 4.95)
(5, 5) (4.86, 5.72) (4.95, 4.95)
(5, 0) (4.98, 0.50) (4.98, 0.50)
(−5, 0) (−5.45, 0.78) (−5.49, 0.28)
(0, 5) (−0.36, 5.49) (0.14, 5.50)
(0, −5) (0.72, −5.96) (0.58, −5.47)

T 5: Optical properties of biological tissues for different wavelengths [21].

620 nm 700 nm
𝜇𝜇𝑎𝑎 (mm−1) 𝜇𝜇𝑠𝑠 (mm−1) 𝑔𝑔 𝜇𝜇𝑎𝑎 (mm−1) 𝜇𝜇𝑠𝑠 (mm−1) 𝑔𝑔

Muscle 0.086 4.29 0.9 0.0027 11.8 0.9
Skeleton 0.06 24.95 0.9 0.039 23.4 0.9
Heart 0.058 9.63 0.9 0.038 9.05 0.9
Bladder 0.086 4.29 0.9 0.0027 11.8 0.9
Testis 0.086 4.29 0.9 0.043 21.09 0.9
Pancreas 0.345 6.78 0.9 0.23 6.48 0.9
Spleen 0.345 6.78 0.9 0.0077 13.77 0.9
Stomach 0.086 4.29 0.9 0.23 6.48 0.9
Liver 0.345 6.78 0.9 0.043 21.09 0.9
Kidneys 0.05 5.4 0.9 0.23 6.48 0.9
Lungs 0.195 21.73 0.9 0.13 21.24 0.9

and validated the proposed algorithm using homogeneous
and heterogeneous experiments. It has been demonstrated
that the proposed algorithm can enhance the recovery of bio-
luminescent sources in terms of the quality of reconstructed
images and localization error.

e use of SP3 equations is a helpful technique to improve
BLT reconstructions. Our experiments have illustrated that
the appearance of artifacts can be reducedwhen SP3equations
are used as the forward model. However, the computation
of the system matrix 𝐴𝐴 by solving SP3 equations is very
expensive, especially when the imaged objects are very
complex, irregular, and heterogeneous. Fortunately, with the
fast development of graphics processing unit (GPU), the
computation of 𝐴𝐴 can be signi�cantly accelerated.

Onemerit of the proposed algorithm is that the improved
results are obtained by making use of the available boundary
measurements and thus do not require increased number of
boundary measurements and do not bring more hardware
requirements. Meanwhile, the proposed algorithm is rela-
tively easy to implement. erefore, the algorithm is suitable
for in vivo applications. As a sacri�ce, the computational
burden for the proposed algorithm is greatly increased,
especially for the heterogeneous mouse experiment, since
solving (1) brings extra cost through Bregman iteration
method, and each iteration of which is equivalent of solving a
standard “L1” problem. To increase computational efficiency

for mouse experiments, developing fast large-scale optimiza-
tion algorithms is essential.

In conclusion, we have developed a BLT reconstruction
algorithm by combing SP3 equations and Bregman iteration
method and indicated its feasibility and merits. In the near
future, we expect to accelerate the proposed algorithm based
on GPU and extend it to in vivomouse experiments.
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