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Determining the genome sequence of an organism is challenging, yet fundamental to understanding its biology. Over the

past decade, thousands of human genomes have been sequenced, contributing deeply to biomedical research. In the vast

majority of cases, these have been analyzed by aligning sequence reads to a single reference genome, biasing the resulting

analyses, and in general, failing to capture sequences novel to a given genome. Some de novo assemblies have been con-

structed free of reference bias, but nearly all were constructed by merging homologous loci into single “consensus” se-

quences, generally absent from nature. These assemblies do not correctly represent the diploid biology of an individual.

In exactly two cases, true diploid de novo assemblies have been made, at great expense. One was generated using Sanger

sequencing, and one using thousands of clone pools. Here, we demonstrate a straightforward and low-cost method for cre-

ating true diploid de novo assemblies. We make a single library from ∼1 ng of high molecular weight DNA, using the 10x

Genomics microfluidic platform to partition the genome. We applied this technique to seven human samples, generating

low-cost HiSeq X data, then assembled these using a new “pushbutton” algorithm, Supernova. Each computation took 2

d on a single server. Each yielded contigs longer than 100 kb, phase blocks longer than 2.5 Mb, and scaffolds longer

than 15 Mb. Our method provides a scalable capability for determining the actual diploid genome sequence in a sample,

opening the door to new approaches in genomic biology and medicine.

[Supplemental material is available for this article.]

Determining the genome sequence of an individual organism is of
fundamental importance to biology and medicine. Although the
ability to correlate sequence with specific phenotypes has im-
proved our understanding of human disease, the molecular basis
of ∼20% of Mendelian phenotypes is still unknown (http://
omim.org/statistics/geneMap), and the situation for common dis-
ease ismuchworse. Contributing to this is the incomplete elucida-
tion of the genomic architecture of the genomes under study
(Eichler et al. 2010).

Decades of research have yielded a vast array of laboratory and
computational approaches directed at the problem of knowing the
genome sequence of a given sample. These vary dramatically in
their aggregate experimental burden, including input DNA
amount, organizational complexity, laboratory and computation-
al requirements for expertise and hardware, project complexity,
cost and timeline, with greater burden tending to yield a higher
quality genome sequence.

At the lowend, and by far themostwidely executed, are “rese-
quencing” methods that generate short reads, then align them to
a haploid reference sequence from the same species, to identify
differences with it, thereby partially inferring the sequence
of the sample (Li et al. 2008; McKenna et al. 2010). Several
projects have generated and analyzed over a thousand human
samples each, yielding extraordinarily deep information across
populations (The 1000 Genomes Project Consortium 2015;
Gudbjartsson et al. 2015; Nagasaki et al. 2015); although in gene-
ral, such methods cannot completely catalog large-scale changes,
nor distinguish between parental alleles. Moreover, such methods
are intrinsically biased by comparison to a reference sequence,
thus limiting their ability to see sequences in a sample that are sig-
nificantly different from it (Chaisson et al. 2015b).

In contrast, an analysis of an individual genome would ideal-
ly start by reconstructing the genome sequence of the sample,
without using a reference sequence. This de novo assembly process
is difficult for large and complex genomes (Istrail et al. 2004;
Chaisson et al. 2015a; Gordon et al. 2016; Steinberg et al. 2016).
A core challenge is the correct representation of highly similar se-
quences, which range in scale from single base repeats (homopol-
ymers) to large complex events including segmental duplications
(Bailey et al. 2002).

There is an even larger scale at which similar sequences ap-
pear: homologous chromosomes, which are “repeats” across their
entire extent. To correctly understand the biology of a diploid or-
ganism, these homologous chromosomes need to be separately
represented (or phased), at least at the scale of genes (Muers 2011;
Tewhey et al. 2011; Glusman et al. 2014; Snyder et al. 2015). This
is required to correctly understand allele-specific expression and
compound heterozygosity. For example, two frameshifts in one
gene allele could have a completely different phenotype than
one each in both alleles; likewise, larger-scale effects such as chang-
es to gene copynumber (Horton et al. 2008; Pyo et al. 2010) need to
be understood separately for each homologous chromosome.
However, precisely because homologous chromosomes are so sim-
ilar, it is challenging to keep them separate in assemblies.

In fact, the standard of the field for genome assembly has
been to represent homologous loci by a single haploid “consen-
sus” sequence that merges parental chromosomes. This loses
“half” of the information, and in general does not represent a
true physical sequence present in nature. As a step in the right di-
rection, one could generate a haploid assembly together with a
phased catalog of differences between the two originating chromo-
somes (Pendleton et al. 2015; Mostovoy et al. 2016). However, for
the same reasons that a de novo assembly can carry more informa-
tion than a simple catalog of differences with a reference sequence,
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these “phasedhaploid” assemblies carry less information than true
diploid assemblies that separately display homologous loci. In a
few cases, these diploid de novo assemblies have been demonstrat-
ed for small and midsized genomes (Jones et al. 2004; Chin et al.
2016). There are two extant instances of diploid de novo assem-
blies of human genomes—one obtained by Sanger sequencing of
multiple libraries (Levy et al. 2007), and one from thousands of
separate clone pools, each representing a small, low-throughput
partition of the genome (Cao et al. 2015).

In this work, we bridge the gap between low-cost resequenc-
ing approaches and high-cost diploid assembly approaches, by cre-
ating diploid de novo assemblies, at very lowexperimental burden.
Our method is also based on genome partitioning. Using an auto-
mated microfluidic system (Zheng et al. 2016), we are able to gen-
erate the entirety of data for an assembly project from one library.
Moreover, this library is made from ∼1 ng high molecular weight
DNA, far less than alternative approaches. The cost of our data is
in the range of lowendmethods based on read alignment, and spe-
cial expertise is not required for assembly, because the process is
automatic.

To demonstrate our method, we chose seven human samples
from diverse populations, including four for which parental data
was available, allowing us to test phasing accuracy. This set also in-
cluded a sample for which 340 Mb of finished sequence was gen-
erated during the Human Genome Project (HGP), thus providing
an unprecedented source of truth data, and allowing us to assess
the fine-scale accuracy of our method in a way that has not been
previously possible.We assembled these samples using a new algo-
rithm called Supernova Assembler. Both the laboratory and com-
putational methods are encapsulated in a complete commercial
system from 10x Genomics. Open source software, data sets, and
assemblies described in this work are publicly available.

Results

Data generation

We provide a conceptual explanation of our schema for data gen-
eration, including the fundamental characteristics of the data
type. Our method uses an updated version of the 10x microfluidic
gel bead partitioning system (Zheng et al. 2016), called the
Chromium Genome Reagent Kit (Methods). Library construction
starts from 1.25 ng of DNA having size 50 kb or longer (Zhang
et al. 2012), froma single individual organismor clonal population
(such as a cell line).

Briefly, the system exploits a reagent consisting of severalmil-
lion gel beads, with each bead containingmany copies of a 16-base
barcode unique to that bead. A microfluidic device delivers indi-
vidual beads into approximately one million partitions, along
with high-molecular weight genomic DNA molecules and re-
agents. Each partition receives several longmolecules (as discussed
below), and the molecular biology of the system is arranged to cre-
ate constructs having the barcode, along with ∼350 bp of genomic
DNA from a molecule, sandwiched between Illumina adapters.
The barcode is placed at the beginning of the first read in a pair.
These constructs are then sequenced on an Illumina instrument,
yielding groups of read pairs organized by barcode. Sets of these
read pairs that originate from the same molecule are called
Linked-Reads.

We describe the sequencing configuration that we used for de
novo assembly. Paired reads of length 150 bases each are generat-
ed. This read lengthwas chosen so that data could be sequenced on

the HiSeq X instrument, which yields the lowest cost data among
Illumina instruments and that has amaximum read length of 150.
Data can also be generated on the HiSeq 2500 in rapid run mode.
We tested the HiSeq 4000, observing a twofold reduction in contig
size (Supplemental Note 1). We recommend that samples be se-
quenced to 56× (including bases in barcodes), or about 1200 M
reads for a human genome. Lower coverage is possible and de-
scribed later.

Here, we describe the model behavior of the system. Of the
DNA that is loaded,∼40%makes it completely through the process
and contributes to the sequencing library. For 1.25 ng of loaded
material, distributed across 106 partitions and supposing that all
molecules had size 50 kb, the mean number of molecules per
partition would be about 10, in total representing ∼0.5 Mb of
the genome per partition. At 56× coverage, the mean number of
Linked-Reads (read pairs) permolecule for a human genomewould
thus be (1200M/2)/(106 × 10) = 60, and covering the molecule to
depth (120 · 150)/(50,000) = 0.36×. Importantly, themode of oper-
ation of the system is to provide shallow coverage by many reads
for each of many long molecules. In particular the system is not
designed to deeply cover individual molecules, in contrast to
Synthetic Long-Reads (Voskoboynik et al. 2013).

For smaller genomes, assuming that the same DNA mass was
loaded and that the library was sequenced to the same read depth,
the number of Linked-Reads (read pairs) per molecule would drop
proportionally, which would reduce the power of the data type.
For example, for a genome whose size is one-tenth the size of the
human genome (320 Mb), the mean number of Linked-Reads
per molecule would be about six, and the distance between
Linked-Reads would be about 8 kb, making it hard to anchor bar-
codes to short initial contigs. Modifications to workflow, such as
loading less DNA and/or increasing coverage would be potential
solutions for smaller genomes, but are not described here.

Using the method described above, we generated data sets
from seven human individuals of varied ancestry and sex (Table
1). All were created from DNA of size > 90 kb, measured by
length-weighted mean (Table 1). We tested the performance of
the system on DNA of several different sizes, noting degradation
in performance (Supplemental Note 2), particularly for DNA <30
kb (DNAof size∼20 kb yielded scaffolds of N50 size 0.6Mb, where-
as DNA of size ∼50 kb yielded scaffolds of N50 size 12.8 Mb). We
also tested the effect of reducing coverage from 56× to 38×
(Supplemental Note 3), noting some degradation in quality, e.g.,
scaffold N50 declining from 17 to 12 Mb.

De novo assembly

Because barcoded 10x data provide shallow coverage of each mol-
ecule, it is not possible to separately assemble the reads from each
barcoded partition, which would otherwise be a natural approach
(Voskoboynik et al. 2013). Instead the assembly process creates
progressively larger contigs. At the point where many contigs are
at least a few kb long, most molecules that “pass through” a given
contig will have at least one read landing on it. This information
about partitions touching the contig may be used to link to other
contigs; moreover, all reads from all partitions touching the contig
may be assembled together. This is the Supernova analog of single-
partition assembly.

Following this strategy, barcodes play a relatively minor role
in the initial process. To start out, we use a de Bruijn graph ap-
proach (Pevzner et al. 2001), adapting the method of DISCOVAR
(Weisenfeld et al. 2014). k-mers (k = 48) are prefiltered to remove
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Table 1. Genome assemblies

Input Continuity Comparison to truth data Run
time

Ida Sampleb Ethnicityc Sexd Data descriptione Xf Fg

N50
contig
(kb)h

N50
phase
block
(Mb)i

N50
scaffold
(Mb)j Gappinessk

Same Parental Reference

N50
perfect
stretch
(kb)l

Phasing
error
ratem

Missing k-mers (%)n

Inconsistent
at given

distance (%)q

Wall
clock
(days)rHaploido Diploidp 1 Mb 10 Mb

A NA19238 Yoruban F One 10× library 56 115 114.6 8.0 18.7 2.1 14.5 10.0 1.2 0.8 1.7
B NA19240 Yoruban F One 10× library 56 125 118.8 9.3 16.4 2.3 0.00008 14.4 9.8 1.2 0.7 1.7
C HG00733 Puerto Rican F One 10× library 56 106 123.6 3.4 17.8 2.0 0.00008 12.7 9.2 1.0 1.2 1.7
D HG00512 Chinese M One 10× library 56 102 113.2 2.7 15.4 2.2 13.6 10.0 1.3 0.5 1.7
E NA24385 Ashkenazi M One 10× library 56 120 106.4 4.2 15.1 2.6 0.00006 13.9 9.6 1.3 2.0 1.8
F HGP European M One 10× library 56 139 120.2 4.5 18.6 2.5 19.8 12.4 8.8 1.8 0.9 2.0
G NA12878 European F One 10× library 56 92 118.5 2.8 16.4 2.0 16.5 0.00077 12.6 9.1 1.1 0.6 1.8
H NA12878 European F Unknown number of PacBio

libraries plus
BioNano Genomics data

46 1594.2 25.4 4.6 18.0 0.5 2.0

I NA12878 European F Six libraries (fragment,
jumping, 10×)

160 12.3 30.1 10.2 19.7 1.1 7.1

J NA12878 European F Nine libraries (fragment,
jumping, Fosmid, Chicago)

150 43.6 42.8 0.6 14.8 5.6 6.0

K NA24385 Ashkenazi M Seven PacBio libraries 71 4525.2 4.5 0.0 11.8 2.2 17.9
L NA24143 Ashkenazi F Two PacBio libraries 30 1048.4 1.0 0.0 14.3 15.2
M YH Chinese M ∼18,000 Fosmid pools and six

fragment and jumping
libraries, Illumina
sequenced, plus Complete
Genomics data

702 52.5 0.5 23.2 1.5 10.4 1.2 1.6

Assemblies of this work plus preexisting assemblies (H from Pendleton et al. 2015; I from Mostovoy et al. 2016; J from Putnam et al. 2016; M from Cao et al. 2015; see Supplemental Note 4). All sta-
tistics were computed after removing scaffolds shorter than 10 kb. Comparisons to reference use GRCh37 (Chr1-22,X,Y), with ChrY excluded for female samples. Software used to create assemblies:
(A–G) Supernova 1.1 with default parameters; (H) Falcon, BLASR (Chaisson and Tesler 2012), Celera Assembler (Koren et al. 2012), RefAligner (Anantharaman and Mishra 2001; Nguyen 2010),
custom scripts; (I) SOAPdenovo2 (Luo et al. 2012), ABySS (Simpson et al. 2009), Longranger (Zheng et al. 2016), BWA-MEM (Li 2013), fragScaff (Adey et al. 2014), RefAligner, Lastz (Harris 2007),
BioNano hybrid scaffold tool (Mak et al. 2016); (J) Meraculous (Chapman et al. 2011), HiRise (Putnam et al. 2016); (K,L) Celera Assembler, Quiver (Chin et al. 2013); (M) SOAPdenovo2, ReFHap
(Duitama et al. 2012), custom pipeline.
aIdentifier of assembly in this table.
bSource of starting material. HGP is from the donor to the Human Genome Project for libraries RPCI 1,3,4,5 (https://bacpacresources.org/library.php?id=1), for which 340 Mb of finished sequence
are in GenBank. HGP was from fresh blood; others are Coriell cell lines.
cEthnicity of individual.
dSex of individual.
eCapsule description of data type.
fEstimated coverage of genome by sequence reads. For assemblies of this work, reads were 2×150; 1200 M reads were used for each assembly; all samples were sequenced on HiSeq X.
gInferred length-weighted mean molecule length of DNA in kb (for other statistics, see Supplemental Table 1).
hN50 size of FASTA records, after breaking at sequences of 10 or more n or N characters.
iN50 size of phase blocks, computed for A–G, and as reported for assembly M.
jN50 size of FASTA records, excluding Ns.
kFraction of bases that are ambiguous.
lN50 length in kb of segments on finished sequence from same sample that are perfectly mirrored in assembly (see text).
mFraction of phased sites in megabubble branches whose phasing did not agree with the majority.
nFraction of 100-mers in reference that are missing from the assembly (includes bona fide sample/reference differences).
oValue for haploid version of assembly.
pValue for diploid version of assembly.
qOf k-mer pairs at the given distance in the assembly, and for which both are uniquely placed on the reference, fraction for which either the reference chromosome, orientation, order, or separation
(±10%) are inconsistent (includes bona fide sample/reference differences).
rRun time (days) for assemblies using a single server having 28 cores and 384 GB available memory (booted with “mem= 384G”), exclusive of subsampling to 1200 M reads, sorting by barcode
and trimming of barcodes (total 2–5 h).
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those present in only one barcode, thus reducing the incidence of
false k-mers, i.e., those absent from the sample. The remaining k-
mers are formed into an initial directed graph, in which edges rep-
resent unbranched DNA sequences, and abutting edges overlap by
k−1 bases. Operations are then carried out to recover missing k-
mers and remove residual false k-mers (Weisenfeld et al. 2014).
At this point, the graph (called the base graph) is an approximation
to what would be obtained by collapsing the true sample genome
sequence along identical 48-base sequences (Butler et al. 2008).We
thenuse the readpairs to effectively increase k to about 200, so that
the new graph represents an approximation to what would be ob-
tained by collapsing the true sample genome sequence along iden-
tical 200-base sequences, thus achieving considerably greater
resolution (Methods).

The remainder of the assembly process consists of a series of
operations that modify this graph, so as to improve it. To facilitate
these operations, we decompose the graph into units called lines
(Fig. 1; Methods). Lines are extended linear regions, punctuated
only by “bubbles.” Bubbles are places in the graph where the se-
quence diverges along alternate paths that then reconnect.
Common sources of bubbles are loci that are heterozygous or diffi-
cult to read (in particular, at long homopolymers).

We can use lines to scaffold the assembly graph. This involves
determining the relative order and orientation of two lines, then
breaking the connections at their ends, then inserting a special
“gap” edge between the lines. The end result is a new line, which
has a special “bubble” consisting only of a gap edge. Subsequent
operations (described later) may remove some of these gaps, re-
placing them by sequence.

Scaffolding is first carried out using read pairs. If the right end
of one line is unambiguously connected by read pairs to the left
end of another line, then they can be connected. Read pairs can
reach over short gaps. To scaffold across larger gaps, we use the
barcodes. Briefly, if two lines are actually near each other in the ge-
nome, then with high probability, multiple molecules (in the par-
titions) bridge the gap between the two lines. Therefore for any
line, we may find candidate lines in its neighborhood by looking
for other lines sharingmanyof the same barcodes. By scoring alter-
native orders and orientations (O&Os) of these lines, we can scaf-
fold the lines by choosing their most probable configuration,
excluding short lines whose position is uncertain (Methods).

Once the assembly has been scaffolded, some gapsmay be re-
placed by one or more sequences. For short gaps, read pairs from
both sides of the gap reach in and may cover the intervening se-
quence, from which it may be inferred. For long gaps, we first
find the barcodes that are incident upon sequence proximate to
the left and right sides of the gap. Thenwe find all the reads in these

barcodes. This set of readswill include reads thatproperly liewithin
thegap andyetbe roughly 10 times larger than that set (as eachpar-
tition contains about 10 molecules). We assemble this set of reads.
Reads outside the gap locus tend to be at low coverage in this re-
stricted read set and hence not assemble. In this way, it is typically
possible to fill in the gapwith a chunkof graphand thereby remove
the gap from the assembly. The chunk may not be a single se-
quence. For example, at this stage, heterozygous sites within the
gap would typically be manifested as simple bubbles.

The final step in the assemblyprocess is to phase lines. First for
each line (Fig. 1), we find all its simple bubbles, i.e., bubbles having
just two branches. Then we define a set of molecules. These are de-
fined by a series of reads from the same barcode, incident upon the
line, and not having very large gaps (>100 kb) between successive
reads. A givenmolecule then “votes” at certain bubbles, and the to-
tality of this voting (across all molecules on each line) is then used
to identify phaseable sections of the line, which are then separated
into “megabubble” arms (Fig. 2; Methods).

Software and computational performance

Supernova takes as input FASTQ files. No algorithmic parameters
are supplied by the user. Supernova is designed to run on a single
Linux server. The peak memory usage across the seven human as-
semblies of this work was 335 GB, and accordingly we recommend
using a server having ≥384 GB RAM. Wall clock run times are
shown in Table 1 and are in the range of 2 d.

Supernova output

A Supernova assembly can separate homologous chromosomes
over long distances, in this sense capturing the true biology of a
diploid genome (Fig. 2). These separated alleles (or phase blocks)
are represented as “megabubbles” in the assembly, with each
branch representing one parental allele. Sequences betweenmega-
bubbles are nominally homozygous. Successive megabubbles are
not phased relative to each other (if they were, they would have
been combined). A chain of megabubbles as shown comprise a
scaffold. In addition to large-scale features, the Supernova graph
encodes smaller features such as gaps and bubbles at long homo-
polymers, whose lengths are not fully determined by the data.

A Supernova assembly can be translated into FASTA in several
distinct ways that might prove useful for different applications
(Fig. 3). These allow representation of the full (or “raw”) graph
(Fig. 3A), or erase microfeatures (choosing the most likely branch

Figure 1. Lines in an assembly graph. Each edge represents a DNA se-
quence. (A) Blue portion describes a line in an assembly graph, which is
an acyclic graph part bounded on both ends by single edges. The line al-
ternates between five common segments and four bubbles, three of which
have two branches. The third bubble is more complicated. The entire
graph may be partitioned so that each of its edges lies in a unique line (al-
lowing for degenerate cases, including single edge lines, and circles). (B)
The same line, but now each bubble has been replaced by a bubble con-
sisting of all its paths. After this change, each bubble consists only of par-
allel edges.

Figure 2. Supernova assemblies encode diploid genome architecture.
Each edge represents a sequence. Blue represents one parental allele,
and gold represents the other. Megabubble arms represent alternative pa-
rental alleles at a given locus, whereas sequences between megabubbles
are homozygous (or appear so to Supernova). Successive megabubbles
are not phased relative to each other. Smaller scale features appear as
gaps and bubbles.
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at small bubbles and replacing gap edges byNs). There ismore than
one way to package the result, depending on how megabubble
branch points are handled (Fig. 3B–D).Wenote that erasingmicro-
features entails some loss of information, as in some cases the
wrong branch of a bubble is chosen.

Cycles in the graph provided an interesting test case. By a cy-
cle, we mean a set of one or more edges that include a path from a
vertex back to itself. These are left intact in the full graph; however,
in the other forms, they are replaced by a path through the cycle
that traverses each edge at least once, followed by Ns. This unfor-
tunately signifies a gap (which could in principle represent any se-
quence), whereas the full graph indicates precisely which
sequences could be present at the locus.

Inferred DNA length

From each of the Supernova assemblies, we inferred the statistics of
DNA molecules that were delivered to a partition and thence se-
quenced. This reflects the quality of input material as well as deg-
radation during the initial steps of library construction. Table 1
shows the inferred values for the length-weighted mean (LWM)
of these molecules, as field F. It was in the range of 92–139 kb.
The HGP sample was obtained from fresh blood, and yielded the
longest DNA. The other samples were obtained from cell lines.
The sample NA12878 may have yielded the shortest DNA because
of repeated handling of the DNA tube to create multiple libraries,
as that DNA sample was used as a control for many experiments
(not directly connected to this work).

Assembly assessment

We assessed in the same way our seven human assemblies and six
human assemblies from the literature that represent the state of

the art, encompassing a wide range of laboratory approaches,
from low coverage (30×) Pacific Biosciences (PacBio) to complex
combinations of multiple technologies at much higher coverage
(Table1).Thesecomparisonassembliesweredownloadedfrompub-
licly accessible FTP sites (Supplemental Note 4). For Supernova as-
semblies, we computed using the pseudohap FASTA output (Fig.
3C), except as noted.

To facilitate a uniform comparison, we computed all statistics
from scratch (except as noted), rather than referring to published
values. Before computing these statistics, we removed all scaffolds
shorter than 10 kb from each assembly, thereby normalizing for
differences in the actual cutoffs used in defining the assemblies,
which would otherwise significantly affect statistics, including
coverage of the genome.

To assess the continuity of the assemblies, we first computed
the N50 contig size. The mean across the seven Supernova assem-
blies was 116 kb, with little variation. The three PacBio-based as-
semblies had much larger contigs, whereas contigs from the
other assemblies were two-fold or more shorter than those from
Supernova.

All of the Supernova assemblies were diploid, with N50 phase
block size ranging from 2.7 to 9.3Mb, with variability due presum-
ably to varied ancestry and variedDNA length. Of the six other hu-
man assemblies, only the 702× assembly of YH (assembly M) was
diploid, and it had anN50 phase block size of 0.5Mb (as reported).
The ∼100 kb molecules underlying Linked-Reads enable the long
phase blocks that are difficult to achieve with other technologies.

Scaffolds in the Supernova assemblies ranged from 15.1 to
18.7 Mb (N50). For the PacBio-only assemblies (KL), scaffolds are
contigs, as these assemblies have no gaps; these scaffolds are
much shorter than the Supernova scaffolds. The four combination
assemblies (HIJM) had longer scaffolds, ranging from 23 to 43Mb.

Figure 3. Representation of Supernova assemblies as FASTA. Several styles are depicted. (A) The raw style represents every edge in the assembly as a
FASTA record (red segments). These include microbubble arms and also gaps (printed as records comprising 100 Ns for gaps bridged by read pairs, or
a larger number, the estimated gap size) (Supplemental Note 5). Unresolved cycles are replaced by a path through the cycle, followed by 10 Ns.
Bubbles and gaps generally appear once per 10–20 kb; consequently, FASTA records from A are much shorter (∼100 times) than those from B, C, and
D. For each edge in the raw graph, there is also an edge written to the FASTA file representing the reverse complement sequence. For the remaining output
styles, we flatten each microbubble by selecting the branch having highest coverage, merge gaps with adjacent sequences (leaving Ns), and drop reverse
complement edges. (B) In this style each megabubble arm corresponds to a FASTA record, as does each intervening sequence. (C) The pseudohap style
generates a single record per scaffold. As compared to the megabubble style, in the example, seven red edges are seen on top (corresponding to seven
FASTA records) that are combined into a single FASTA record in the pseudohap style. Megabubble arms are chosen arbitrarily so many records will mix
maternal and paternal alleles. (D) This style is like the pseudohap option, except that for each scaffold, two “parallel” pseudohaplotypes are created
and placed in separate FASTA files.
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The gappiness (fraction of Ns) in these scaffolds also varied greatly,
from 0% for the PacBio-only assemblies, to ∼2% for the Supernova
assemblies, to ∼10% for assembly I.

Any assessment of assembly continuity would be tempered
by an assessment of the accuracy and completeness of those
same assemblies. Although one could do this by comparing to a
human reference sequence (and we do so later), the ideal would
be to exploit ground truth data from the same sample that was as-
sembled. These data would consist of clones (from individual hap-
lotypes), that had been independently sequenced and assembled,
and which were representative of the genome. We could find only
two samples, forwhich such truth datawas available and forwhich
high quality DNA could be procured to create assemblies. These
were the sample from a living Human Genome Project donor,
which we refer to as HGP, for which 340 Mb of finished clones
had been sequenced and assembled during the project, at great ex-
pense, and NA12878, for which we had previously sequenced and
assembled 4 Mb of random clones (Weisenfeld et al. 2014).
Although the HGP clones were not truly random, we reasoned
that they comprised so much of the genome (∼10%) that they
would be reasonably representative of it. They comprise a remark-
able and unique resource.

For a given sample, if we knew the exact sequence for each of
its chromosomes, we could assess the accuracy of an assembly of
that sample by enumerating maximal regions of the genome that
are perfectly represented in the assembly. Such regions would be
terminated by errors or gaps in the assembly (note that displaying
the wrong allele would count as an error). We call the N50 size of

such perfectly represented regions the “N50 perfect stretch.” For
diploid genomes, if one has both a diploid assembly (thus attempt-
ing to display all chromosomes), and representative finished se-
quence from the exact same sample (thus providing a sample of
those chromosomes), then one can approximate the N50 perfect
stretch (Supplemental Note 6). There are no publicly available as-
semblies that satisfy these requirements, other than those generat-
edbySupernova. Inparticular,wecanassess theN50perfect stretch
for Supernova assemblies of HGP and NA12878 in Table 1 (assem-
blies F and G). These were computed from the raw output (Fig. 3).

We found that the N50 perfect stretch in these Supernova as-
semblies was 19.8 kb for the HGP assembly and 16.5 kb for the
NA12878 assembly (Table 1). The difference might be attributable
to sampling error as the finished sequence for NA12878 comprised
4 Mb, whereas the finished sequence for HGP comprised 340 Mb.
We further examined the alignments of the finished sequence to
the HGP assembly to understand the exact nature of the assembly
defects that terminated perfect stretches. For example Figure 4 (and
the corresponding alignments for thousands of other clones) show
a preponderance of errors in low complexity sequence, particular-
ly, near long homopolymers. These errors might be attributable to
library construction defects, sequencing defects, algorithmic de-
fects, or possibly errors in the finished sequence (International
Human Genome Sequencing Consortium 2001).

In more detail, Figure 4 displays the alignment of the Super-
novaHGP assembly to a 162-kb finished clone from the same sam-
ple, interesting because it subsumes a region of Neandertal origin
(Mendez et al. 2013). Each of several discrepancies between the

Figure 4. Alignment of Supernova assembly to finished sequence from the same sample. GenBank sequence AC004551.1 for finished clone RPCI1-
71H24 has length 162,346 bases, and its reverse complement perfectly matches GRCh37. The clone encompasses a region of Neandertal origin
(Mendez et al. 2013). Both the clone and assembly F (Table 1) represent DNA from the same HGP donor. The clone matches a region of which 96% is
between two megabubbles in the assembly, thus represented as homozygous. The alignment of the assembly to the clone region on GRCh37 is shown.
Each line pair shows the assembly on top and the reference on the bottom. (Yellow) abbreviated, perfectly matching stretches; (green) mismatched bases;
(blue) indels; (cyan) indels, but not present in comparison to raw graph; (red) captured gap: signified by 34 Ns (actual number in assembly is 100); assem-
bly region also has two cycles, each suffixed by 10 Ns in output, not shown. In these cases the flattened sequence for the cycle exactly matches the
reference.
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assembly and finished sequence are annotated. Although we ex-
pect that most of these correspond to defects in the Supernova as-
sembly, there is at least one case in which the clone sequence is
likely in error: for the first mismatch (shown in green), all reads
in the Supernova assembly support the assembly base, and more-
over the base was changed in the transition from GRCh37 to
GRCh38, so that the latter now matches the assembly.

The exact list of discrepancies depends on the particular
form of the Supernova assembly that the clone is compared to
(Fig. 4), and this is interesting because it speaks to the power of
the different forms. For this clone, only indel discrepancies are
affected. If we compare the clone to the raw graph (full assem-
bly), choosing the best path through the graph, then only the
indel discrepancies shown in blue occur. However if we instead
compare to the pseudohap style, in which small bubbles have
been flattened by choosing the most probable path through
the bubble (without looking at any reference sequence), then
there are additional discrepancies, seen in cyan. Bubbles in the
full assembly thus contain some information that is lost in
the other forms.

Parental sequence data may also be used to assess the assem-
bly of their child. In particular, this could provide a direct readout
on the accuracy of phase blocks in a diploid assembly. This has not
been done before for human genomes, because for the two extant
diploid human assemblies (Levy et al. 2007; Cao et al. 2015), the
parents were not sequenced. For four of the Supernova assemblies,
(BCEG in Table 1), the parents had been sequenced, and phased
VCFs were available (Supplemental Note 7). This allowed us to es-
timate the phasing accuracy of these assemblies.

To do this, for eachmegabubble, whenever we found two po-
sitions on alternatemegabubble branches that could bemapped to
the same position on GRCh37, which represented different bases
(a heterozygous SNP), and which was phased in the VCF, we re-
corded either 0 or 1, depending on whether the “top” branch of
the megabubble was assigned to the maternal or paternal allele.
A sequence of all 0’s or all 1’s would represent perfect phasing.
We counted all the “votes” (0 or 1), and counted all “wrong votes”
(1 if majority = 0, 0 if majority = 1), and summed across all mega-
bubbles of size ≥1 Mb. The global error rate for phasing of a given
assembly would be (wrong votes)/votes, noting that a “long
switch,” i.e., haplotype misassembly error on even a single mega-
bubble would drive this rate up.

We found that for three individuals (assemblies BCE), the ob-
served phasing error rates were between 0.00006 and 0.00008,
whereas for the fourth individual (assembly G), the observed
error rate was 0.00077. The difference is attributable to rare “long
switch” (haplotype misassembly) events, wherein maternal and
paternal sequences are juxtaposed within a megabubble and that
just happened to have occurred in assembly G and not the others;
for example, exclusion of one such event lowers the rate to
0.00015.

Next, tomeasure the relative completeness of the different as-
semblies, we computed the fraction of nonduplicate k-mers that
were present in the reference sequence (GRCh37) and missing
from a given assembly (Supplemental Note 8). We used k = 100,
balancing between two considerations. First it was important
that the fraction of duplicate k-mers be small, as the analysis would
be blind to them. For k = 100, the fraction of duplicate k-mers in
GRCh37 is 2.3%. Second, we did not want to lose too many k-
mers to polymorphism. Assuming a polymorphism rate of 1/
1000, we would expect ∼10% of k-mers would be missing because
of bona fide differences between the sample and reference.

Most of the comparison assemblies were haploid, and thus
their missing fraction had to be computed based on their haploid
output. For the Supernova assemblies, we computed both the hap-
loid missing fraction (based on output type pseudohap) or their
diploidmissing fraction (basedonoutput typepseudohap2). Foras-
semblyM (the 702× diploid assembly of YH), because there was no
direct way to divide the assembly into haplotypes, we used the en-
tire assembly and reported only the diploid missing fraction.

For the seven Supernova assemblies, the haploidmissing frac-
tion varied from 12.4% to 14.5%, with the highest values for the
African samples (as would be expected, assuming that the African
samples are most divergent from the reference). In general, the
haploid coverage of the comparison assemblies is lower than
that for the Supernova assemblies. For example, assembly I is miss-
ing 19.7%. The one exception is the 71× PacBio assembly of
NA24385 (assembly K), which is missing 11.8%, as compared to
the Supernova assembly of the same sample (assembly E), which
is missing 13.9%. However, the corresponding diploid Supernova
assembly ismissing only 9.6%, again lower than the PacBio assem-
bly (which is haploid).

We next analyzed the missing 100-mers by their type
(Supplemental Table 2), examining both duplication and GC con-
tent, andusingdiploid assemblieswhere available. ForGCcontent,
we were particularly interested in performance at GC extremes,
where we would expect single-molecule technologies to be superi-
or. At lowGC (0%–19%), thiswas not observable. The performance
of the Supernova assemblies was actually somewhat better. For ex-
ample, the totalmissing k-mers in this GC range for the Supernova
assembly of NA24385 was 0.144% as compared to 0.156% for the
71× PacBio assembly of the same sample. Conversely at high GC
(80%–100%), for the same sample, Supernova missed 0.029%,
whereas the PacBio assembly missed 0.019%. Next, we analyzed
duplicate k-mers, i.e., those occurringmore than once in the refer-
ence. For these, the PacBio assembly of the same sample had a clear
advantage, with 0.127% missing compared with 0.485% for
Supernova. Conversely, Supernova excelled at nonduplicate k-
mers, with 9.127%missing compared with 11.654% for PacBio.

We then assessed long-range accuracy of the assemblies. To
do this, for a given assembly and for fixed sizes (1, 10 Mb), we se-
lected all scaffold segments (sequences of the given number of bas-
es, within one FASTA record) of the given size in the assembly,
whose end k-mers occurred exactly once in the reference sequence.
We excluded segments that bridged a gap of size 100 ormore in the
reference, as these gap sizes could be inaccurate or polymorphic
(Bovee et al. 2008). For each segment, we tested its end k-mers
for consistent placement, meaning lying on the same chromo-
some, in the correct order and orientation, and defining a frag-
ment whose length is within 10% of the fixed size. The fraction
of segmentswhose end k-merswere placed inconsistently is report-
ed in Table 1. Inconsistency could be due to assembly error, large
errors in assembly gap measurement, or polymorphism within a
sample or between it and the reference.

For the seven Supernova assemblies, and the two distances (1,
10 Mb), all inconsistent fractions were between 0.6% and 2.0%.
Two of the comparison assemblies were comparably accurate: as-
sembly H, based on PacBio and BioNano Genomics data; and as-
sembly M (the 702× diploid assembly of YH). The other four
comparison assemblies exhibited several-fold higher inconsisten-
cy at one or more measurement distances. For example, assembly
J (including Dovetail data), had long-range inconsistencies of
5.6% and 6.0%, somewhat qualifying the advantage of its very
long scaffolds (42.8 Mb). The 71× PacBio assembly (K) had an
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inconsistency of 17.9% at 10 Mb, suggesting that PacBio data
alone might be insufficient for accurate long-range assembly.

Replicability of results

To test replicability of the laboratory and computational process
for Supernova, we carried out three types of experiments using
NA12878, all with ∼38× data sets consisting of 800 M reads se-
quenced on a HiSeq X instrument (Supplemental Table 3). First,
we sequenced the same library at three different HiSeq X sites,
thus testing only sequencer-to-sequencer variability. Second, we
created five additional libraries and sequenced these on the same
flow cell, thus testing only library-to-library variability. For the
eight assemblies, some statistics are highly stable, e.g., the N50
contig length varies from 96.5 to 120.0 kb, and the N50 perfect
stretch varies from 9.9 to 13.5 kb; whereas other statistics more
dependent on rare events are more variable. Thus, the percent
inconsistent at 10Mb varies from 0.5 to 1.6, with that single value
over 0.9; similarly, the N50 scaffold size varies from 16.1 to 25.5
Mb. The N75 scaffold size, which is less dependent on rare events,
varies less, from 8.7 to 11.4 Mb. Third, we re-ran all eight assem-
blies a second time, to confirm that identical FASTA output files
were generated, which they were.

Novel sequences in the Supernova assemblies

We assessed the presence of sequences in the Supernova assem-
blies that were both long and highly divergent from the reference
sequence or absent from it entirely. We scanned each diploid as-
sembly for 10-kb windows, for which at most 10% of the 100-
mers were contained in GRCh38 (k-mers touching gap bases were
ignored). Then we merged overlapping windows. Virtually all of
these sequences had homology only with primate sequences,
with the exception of contaminants, which we removed (Supple-
mental Note 9). We also filtered out redundant windows (defined
by ≥90% 100-mer identity). These would represent novel sequenc-
es shared by haplotypes. Supplemental Table 4 describes the statis-
tics of the residual windows. The amount of novel sequence varied
from 5.8 to 8.1 Mb, depending on the assembly.

The novel sequences have N50 size 101 kb and vary in length
up to 412 kb, but tend to be in relatively small assembly units. For
example for HGP, of 8.1 Mb, only 0.4 Mb is present in scaffolds of
size ≥10 Mb, or present in scaffolds of size ≥1 Mb, whereas 5.7 Mb
is present in scaffolds of size ≥100 kb. The relative lack of continu-
ity in the novel sequence regions suggests that there is substan-
tially more to be found (that would meet the 10-kb threshold).

The fraction of unique 100-mers within a given missing set
varied from 71.5% to 80.9%, as expected, given that two alleles
might be similar, but not so similar as to have been filtered out.
We combined all seven sets of novel sequences and computed
the fraction of unique 100-mers, which was 42.7%, suggesting
that many new assemblies would be needed to fully characterize
“the” human genome. For example, the total number of unique
100-mers in themissing sets for assemblies A–F was 17.8M,where-
as if we add in the one additional assembly (G), we find 19.8 M
missing k-mers, i.e., 2.1 M more.

Discussion

Although knowledge of the genome is a fundamental starting
point for biology, for large and complex genomes, obtaining
that knowledge continues to be a challenge. Low-cost and straight-
forward methods based on read alignment to a reference provide

an extraordinarily valuable but incomplete readout. A far more
complete picture can be obtained through complex and sophisti-
cated de novo assembly approaches, but their material require-
ments and expense preclude widespread use.

Moreover, nearly all de novo assemblies of diploid genomes
have been haploid: at each locus they combine together sequences
from maternal and paternal chromosomes, yielding as output a
single mélange. This both corrupts and loses information; thus,
generating diploid assemblies has been a major goal of the field.
It has been achieved for genomes up to 5% the size of a human ge-
nome (Jones et al. 2004; Chin et al. 2016), and in two cases, at great
expense for human genomes (Levy et al. 2007; Cao et al. 2015).

In this work, we demonstrate true diploid human assemblies
via a single straightforward librarymade from∼1 ng of highmolec-
ular weight DNA. We carried out our approach on seven human
samples, whichwe sequenced on the IlluminaHiSeqX instrument
at lowcost. These assemblies used identical code, with identical pa-
rameters as a “push-button” process, that ran in 2 d on a single
server. The aggregate experiment burden of our approach is dra-
matically lower than that for all the human assemblies that we
compared to. Our approach yields much longer phase blocks
than the previous diploid human assemblies (Levy et al. 2007;
Cao et al. 2015). Our diploid human assemblies are the first to be
validated using finished sequence from the same sample and the
first whose phasing accuracy has been validated using parental
sequences.

We anticipate utility of our newmethod both for routine use
as a single-technology approach and in combination with other
technologies, e.g., for “The Reference Genomes Improvement”
project (Steinberg et al. 2016). We have demonstrated our method
here only on human genomes, and we are confident that it will
work well on similar genomes, for example, most mammals. Fun-
damentally different genomes (including much smaller ones, as
well as polyploid genomes) will likely require modifications to
our methods. For smaller genomes, the primary goal is to achieve
the same level of molecular coverage (LPM= links per molecule)
that is now achieved for human genomes. The most direct ap-
proach would be to simultaneously reduce the input mass loaded,
increase the sequencing depth of coverage, and subsample the
reads by barcode.

Our diploid assemblies open the door to new analytical ap-
proaches, including alignment of assemblies to a reference se-
quence to call variants. The low cost and burden of our approach
makes it applicable to large-scale projects, both for human and
“new” genomes, posing new opportunities and challenges both
for experimental design and biological interpretation.

Methods

Genomic DNA samples

Peripheral blood samples were obtained from a donor (anony-
mous, although known to 10x Genomics, and labeled HGP in
Table 1). The study was performed under written informed con-
sent from the donor and approved by the 10x legal department.
Genomic DNA (gDNA) was extracted from fresh whole blood ac-
cording to 10x Sample Preparation Demonstrated Protocol “DNA
Extraction from Whole Blood” (http://support.10xgenomics.
com/de-novo-assembly/sample-prep/doc/demonstrated-protocol-
hmw-dna-extraction-from-whole-blood). Optimal performance
has been characterized on high molecular weight (HMW) gDNA
with a mean length >50 kb. The gDNA did not require further
size selection or processing.
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Commercially acquired samples were obtained (NA12878,
NA19238, NA19240, HG00733, HG00512, NA24385, and
NA24143 fromCoriell). Genomic DNAwas extracted fromhuman
lymphocyte cells following the HMW gDNA extraction protocol
outlined in the Chromium Genome User Guide Rev A (http://
support.10xgenomics.com/de-novo-assembly/sample-prep/doc/
user-guide-chromiumtm-genome-reagent-kit).

Genomic DNA was quantified with the Qubit dsDNA HS
Assay Kit (Life Technologies) according to 10x Sample Preparation
Demonstrated Protocol “HighMolecularWeightDNAQC” (https://
support.10xgenomics.com/de-novo-assembly/sample-prep/doc/
user-guide-chromium-genome-reagent-kit-v1-chemistry).

Sequencing library construction using the Chromium Genome

Reagent Kit

A Chromium Controller Instrument (10x Genomics) was used for
sample preparation. The platform allows for the construction of
eight sequencing libraries by a single person in 2 d. Sample index-
ing and partition barcoded libraries were prepared using the
Chromium Genome Reagent Kit (10x Genomics) according to
manufacturer’s protocols described in the Chromium Genome
User Guide Rev A (https://support.10xgenomics.com/de-novo-
assembly/sample-prep/doc/user-guide-chromium-genome-reagent-
kit-v1-chemistry). Briefly, in the microfluidic Genome Chip, a li-
brary of Genome Gel Beads was combined with an optimal
amount of HMW template gDNA in Master Mix and partitioning
oil to create GEMs. Template gDNA (1.25 ng) was partitioned
across approximately 1 million GEMs, with the exception of the
peripheral blood sample, which utilized 1 ng of template gDNA.
Upon dissolution of the Genome Gel Bead in the GEM, primers
containing (1) an lllumina R1 sequence (Read 1 sequencing prim-
er), (2) a 16-bp 10x Barcode, and (3) a 6-bp random primer
sequence were released. GEM reactions were isothermally incubat-
ed (for 3 h at 30°C ; for 10 min at 65°C; held at 4°C), and barcoded
fragments ranging from a few to several hundred base pairs were
generated. After incubation, the GEMs were broken and the bar-
coded DNA was recovered. Silane and Solid Phase Reversible
Immobilization (SPRI) beads were used to purify and size select
the fragments for library preparation.

Standard library prep was performed according to the manu-
facturer’s instructions described in the Chromium Genome User
Guide Rev A (https://support.10xgenomics.com/de-novo-assembly/
sample-prep/doc/user-guide-chromium-genome-reagent-kit-v1-
chemistry) to construct sample-indexed libraries using 10x
Genomics adaptors. The final libraries contained the P5 and P7
primers used in lllumina bridge amplification. The barcode
sequencing libraries were then quantified by qPCR (KAPA
Biosystems Library Quantification Kit for Illumina platforms).
Sequencing was conducted with an Illumina HiSeq X with 2×150
paired-end reads based on the manufacturer’s protocols.

Internal representation of Supernova assemblies

An assembly is first represented as a directed graph in which each
edge represents a single strand of DNA sequence. Abutting edges
overlap by k-1 bases (k = 48). This graph is called the base graph.
Subsequently, a new graph called the super graph is constructed
in which each edge represents a path in the base graph. Each su-
per-graph edge may be translated into a DNA sequence. Where su-
per-graph edges abut, their associated sequences overlap by k−1
bases (k = 48, the same as the base graph). An advantage of this ap-
proach was that it allowed for certain computations to be carried
out on the base graph, once, so that experiments involving su-
per-graph algorithm improvement could be carried out, without

repeating those computations. It is also a convenient mechanism
for effectively changing the k-value, without changing the actual
k-value in use.

Generation of the initial super graph

For each read pair, where possible, we find one (or sometimes
more) paths in the graph that could represent the sequence of
the originating insert (Weisenfeld et al. 2014). These paths are rep-
resented as sequences of integers corresponding to the identifiers
of edges in the base graph.Whenever there are two paths that per-
fectly overlap by k′ = 200 bases, we formally join them via an
equivalence relation. This yields the super graph.

Definition of lines

A line in a graph is an acyclic subgraph, having a unique source
and sink (relative to the subgraph), with one edge exiting the
source and one edge entering the sink (and maximal with respect
to these properties). We also allow for the special case of circles,
which are similar, but have no source or sink. Every edge lies in a
unique line.

Ordering and orienting lines using barcodes

For all lines in the assembly, we carry out an initial computation,
which assigns a linear coordinate system to each line and marks
the positions of uniquely placed reads on it, organized by barcode.
Now for a given line set S, we score alternative O&O possibilities.
Each O&O for S thus yields a sequence of barcoded read positions
along a hypothetical merged line. We compute a penalty for the
given O&O, which is a sum, over all its constituent barcodes. For
each barcode, we first compute the mean separation between suc-
cessive read placements for that barcode (in themerged line). Then
we traverse these placements, in order, finding those pairs of con-
secutive placements that bridge a jump from one constituent line
to another, andwhichmay thus represent amisconnection.We di-
vide the separation for this pair by themean separation for the bar-
code. If the quotient is smaller than a fixed bound (2.0), we discard
it on the theory that it is unlikely to represent an anomaly. The re-
maining quotient is added to the penalty (Supplemental Fig. 1). A
givenO&O is treated as the “winner” if its penalty is at least a fixed
heuristic amount (60.0) less than that for competing tested O&O
possibilities for the same set of lines.

Phasing

A “phasing” is an orientation of each bubble on a line, placing one
of its branches on “top” and the other on the “bottom.” Initially
we choose an arbitrary orientation for the bubbles. Each molecule
touches some bubbles, and thus (relative to a given phasing) may
be represented as a sequencewith entries +1 for top,−1 for bottom,
or 0 for silent. A phasing is “good” if each molecule is coherent,
containing nearly all 1’s or nearly all −1’s (plus 0’s at silent posi-
tions). Accordingly, we define the score of a phasing to be the
sum over all molecules of Max(pluses,minuses)−Min(pluses,
minuses).

We then carry out iterative perturbations, each of which flips
some bubbles, and keeping only those perturbations that increase
the phasing score. Three types of perturbations are attempted:

1. We flip bubbles on a given molecule to make it completely
coherent.

2. We flip an individual bubble.
3. We pivot at a given point, flipping all bubbles to its left.
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This yields an initial phasing. We then look for weaknesses in it.
First, if flipping a bubble has too small an effect on the score, we
exclude it from the phasing operation. For example, a bubble
might arise at a long homopolymer, whose length was fixed in
the sample but changed during data generation. These uncertain
bubbles are “copied” to both megabubble branches. Second, if a
pivot has too small an effect on the score, we break the phasing
at the pivot point, yielding multiple phase blocks for the given
scaffold. For example this could happen if a sufficiently long re-
gion in a given sample was homozygous.

Data access

Raw sequence data from this study have been submitted to the
NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.
gov/sra) under accession number SRP090941. Assemblies have
been deposited at DDBJ/ENA/GenBank (https:// www.ncbi.nlm.
gov/genbank/) under the accessions MSBx000 00000 where x is
in {J,K,L,M,N,O,P}, and the versions described in this work are
MSBx01000000. A file of 3431 finished clones from GenBank for
the HGP sample, which we used for assessment, is available as
Supplemental Material (HGP.GenBank.fasta.gz). These materials
are also available at http://support.10xgenomics.com/de-novo-
assembly/datasets. Source code is available as Supplemental
Material (supernova-1.1-source.tar.gz) and also at https://github.
com/10XGenomics/supernova. In addition, creation of a cell line
from the HGP donor is in progress (Coriell #GM26200).
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