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Magnesium: pathophysiological mechanisms 
and potential therapeutic roles in intracerebral 
hemorrhage

Introduction: Intracerebral Hemorrhage 
Of the 795,000 people newly-diagnosed with stroke each 
year, Intracerebral Hemorrhage (ICH) remains the sec-
ond-most common subtype (Go et al., 2013). In contrast to 
the improving morbidity and mortality trends of ischemic 
stroke and subarachnoid hemorrhage (Naval et al., 2013; 
Benjamin et al., 2017), ICH remains a highly morbid dis-
ease with a one-month mortality of 40–50% (Fogelholm et 
al., 2005; van Asch et al., 2010) and a dismal mortality rate, 
which has remained unimproved over an almost 30-year 
span (van Asch et al., 2010). 

Spontaneous ICH consists of two pathophysiological stag-
es (Chang et al., 2014b). The first stage occurs acutely and 
reflects initial hematoma volume and expansion. The rela-
tionship between poor clinical outcome and initial hemato-
ma volume (Broderick et al., 1993) and hematoma growth 
(Brott et al., 1997; Davis et al., 2006) is well established. The 
second stage occurs subacutely and consists of perihema-
tomal edema (PHE) expansion, blood-brain barrier (BBB) 
disruption, inflammatory mediator upregulation, global 
depressed cortical excitability, and apoptosis (Qureshi et al., 
2003; Mun-Bryce et al., 2004; Belur et al., 2013). 

To date, recent large randomized multi-center trials have 
targeted this first stage—the attenuation of hematoma vol-
ume expansion through blood pressure control (Anderson 
et al., 2013; Qureshi et al., 2016), surgical evacuation (Men-

delow et al., 2013), and hemostasis (Mayer et al., 2008)—but 
have failed to demonstrate clinical efficacy. Although several 
large trials targeting this primary stage continue at this time, 
the evaluation and targeting of novel therapeutics for the 
secondary stage may hold some promise (Belur et al., 2013). 
Smaller trials using novel therapeutics—sulfonylurea, mino-
cycline, and fingolimod—have already proved promising for 
attenuating PHE and improving ICH clinical outcome (Fu 
et al., 2014; Chang et al., 2017a, b). Magnesium, an essential 
element with wide biological functions, represents another 
potentially novel therapy because of its roles in both primary 
and secondary stages of ICH. 

Although the potential role of magnesium as a neuropro-
tectant in acute ischemic stroke has been well documented 
(Chang et al., 2014a) and has led to two large multi-center 
randomized trials to evaluate for clinical efficacy (Muir et 
al., 2004; Saver et al., 2015), the physiological mechanisms 
for magnesium therapy in ICH are poorly understood. Al-
though the potential of magnesium therapy in ICH can be 
extrapolated from these two studies, to date no trial has been 
designed to specifically evaluate magnesium therapy in ICH. 

Recently, three modest-sized retrospective studies (Beh-
rouz et al., 2015; Liotta et al., 2017; Goyal et al., 2018) have 
highlighted potential therapeutic roles for magnesium in 
attenuating hematoma volume and improving clinical out-
come in ICH. In this review, we will highlight the physio-
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logical mechanisms for magnesium, its role as a therapeutic 
intervention in neuropathology, and its potential as a neuro-
protectant in ICH.

Physiological Roles of Magnesium 
The physiological roles of magnesium have been studied 
extensively through in vitro and in vivo models. In human 
beings, magnesium is renally excreted with physiological 
concentrations ranging from 0.7–1.1 mM (Westermaier 
et al., 2013). Magnesium is an essential ion for various 
enzymatic activities that include the metabolism of carbo-
hydrates, fat, and protein, as well as electrolyte metabolism 
and protein synthesis (Chakraborti et al., 2002). Its wide-
spread properties make it particularly useful in three key 
physiological mechanisms: vasodilation, hemostasis, and 
BBB preservation.

Magnesium’s role in vasodilation likely relates to its prop-
erties as a Ca2+ channel antagonist that inhibits Ca2+ influx 
and release from the sarcoplasmic reticulum, its ability to 
increase prostacyclin synthesis, and its inhibition of angio-
tensin converting enzyme (Reinhart, 1991). Decreased intra-
cellular Ca2+ leads to inactivation of calmodulin-dependent 
myosin light chain activity and decreased vascular contrac-
tion (Altura et al., 1987). Rabbit models further specified 
this vasodilatory role by demonstrating the inhibitory effect 
of magnesium on L-type Ca2+ channels on basilar artery 
smooth muscle cells (Sharma et al., 2012). Rat models have 
also suggested endothelin-1 inhibition as a potential mecha-
nism for magnesium’s vasodilatory properties (Kemp et al., 
1999) and highlighted that vasoconstriction of penetrating 
arterioles accompanies hypomagnesemia (Murata et al., 
2011). 

Magnesium’s role as an essential cofactor in hemosta-
sis—particularly in tissue factor-induced coagulation—is 
heterogeneous and affects multiple factors in the coagula-
tion cascade. Magnesium has been shown to enhance tissue 
factor-induced coagulation by augmenting the binding of 
Ca2+ to factor IX, stabilizing the conformation of Ca2+-factor 
IX complex, and potentiating the activation of factor IX by 
factor XIa (Sekiya et al., 1995). Additionally, magnesium 
was also shown to enhance coagulation by strengthening 
the interaction between tissue factor and the γ-carboxyglu-
tamate-rich domain of factor X (Gajsiewicz et al., 2015). 
However, other in vitro studies utilizing factor IX-deficient 
plasma also demonstrated shorter tissue factor-induced co-
agulation times after magnesium infusion, suggesting that 
magnesium may also exert its coagulation effects indepen-
dent of the traditional coagulation pathway (van den Besse-
laar, 2002). 

Several mechanisms help explain the role of magnesium 
in preserving BBB. First, magnesium is a known antagonist 
of N-methyl-D-aspartate receptors, which has a well-defined 
role in BBB disruption in rat models of traumatic brain inju-
ry (McIntosh et al., 1990; Imer et al., 2009). Second, the use 
of neurokinin-1 antagonists has been shown to potentiate 

the therapeutic effects of magnesium therapy in rat models 
of traumatic brain injury (Ameliorate et al., 2017). Third, 
rat models have shown that magnesium is a potential inhib-
itor of oxidized low-density lipoproteins, which facilitate 
BBB disruption through nicotinamide adenine dinucleotide 
phosphate activation (Schreurs and Cipolla, 2014). And 
fourth, in vitro studies have shown magnesium enhanced 
BBB properties through improved expression of low-density 
lipoprotein receptor-related protein and phosphatidylinosi-
tol binding clathrin assembly protein (Zhu et al., 2018).

However, the transport of magnesium into cerebrospinal 
fluid (CSF) spaces after neurological injury remains unclear. 
Although studies have not shown significant differences in 
magnesium CSF concentrations among controls and pa-
tients treated for neurological diseases (Kapaki et al., 1989), 
the validity of the patients’ neurological disease may been 
suspect without confirmed central nervous system lesions. 
Subsequent studies have not yielded definitive results. Al-
though one study that evaluated induced hypermagnesemia 
after neurological injury only documented marginal increas-
es in CSF magnesium concentrations (McKee et al., 2005), 
other studies have shown that magnesium CSF concentra-
tions can vary in ischemic stroke patients with significantly 
lower concentrations noted in those who have higher mor-
tality (Bayir et al., 2009). The mechanism that results in dif-
fering levels of CSF magnesium concentration in individuals 
remains unknown. 

Experimental and Epidemiological Studies 
Highlighting Potential Therapeutic Roles for 
Magnesium
These three properties of magnesium demonstrated in an-
imal and in vitro models—vasodilation, hemostasis, and 
BBB preservation—highlight potentially useful therapeutic 
roles for magnesium in ICH. However, with the exception 
of studies evaluating magnesium’s vasodilatory properties, 
large-scale epidemiological studies evaluating the role of 
magnesium in hemostasis and BBB permeability are lacking.

Rat models have shown that magnesium infusion can 
inhibit endothelin-1 and preferentially vasodilate coronary 
and cerebral vascular beds (Kemp et al., 1999). Whether this 
preferential vasodilation leads to concomitant reduction and 
injury to the kidneys and organs supplied by the mesentery 
is unclear. Rat models have also shown that the vasodilation 
induced by magnesium infusion may also apply to smaller 
cerebral penetrating arteries through mechanisms inde-
pendent of nitric oxide, endothelin-1, and thromboxane A2 
(Murata et al., 2016). A dog model of cerebral vasoconstric-
tion showed magnesium infusion into CSF spaces leading 
to relaxation of cerebral vessels (Mori et al., 2011). Human 
epidemiological studies have demonstrated that chronic 
magnesium deficiency can lead to prolonged hypertension 
through activation of the sympathetic system and increased 
aldosterone production and release (Quinn and Williams, 
1988; Chakraborti et al., 2002).
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Magnesium therapy has been shown in experimental stud-
ies to reverse coagulopathy in hemorrhagic animal models. 
In a rat model of hemorrhagic shock, infusion of a sodium 
chloride adenocaine/Mg2+ infusion resulted in full reversal 
of activated partial thromboplastin time, and prothrombin 
time, and improved hemodynamics. However, a synergistic 
effect of adenocaine and magnesium was noted as either 
therapies given in isolation did not have similar efficacy 
(Letson et al., 2012). Rat hemorrhagic models utilizing ro-
tational thromboelastrometry also further substantiated the 
role of adenocaine/magnesium therapy for correcting coag-
ulopathy (Letson and Dobson, 2015).

Several studies have demonstrated magnesium’s role 
in preserving BBB permeability and reducing PHE. Rat 
models of traumatic brain injury showed that magnesium 
therapy significantly lowered BBB permeability and PHE 
when compared with controls (Esen et al., 2003; Imer et al., 
2009). A rat model of placental ischemia, which mimicked 
pre-eclampsia, demonstrated that MgSO4 infusion resulted 
in decreased cerebral edema, presumably through decreased 
disruption of BBB, which was extrapolated by CSF to serum 
albumin and protein ratios (Zhang and Warrington, 2016). 

Magnesium Use in Intracerebral Hemorrhage
Two studies—the intravenous magnesium efficacy in stroke 
trial (IMAGES) and the field administration of stroke ther-
apy-magnesium trial (FAST-MAG)—were designed to eval-
uate the use of magnesium therapy in patients with acute 
ischemic stroke. As magnesium was administered prior to 
confirmation with imaging, a sub-group of patients with 
ICHs also received this high-dose magnesium therapy. 

IMAGES was the first multi-center double-blind ran-
domized control trial that evaluated magnesium therapy 
in patients with acute ischemic stroke. The study enrolled 
2589 patients with a median treatment time of 7.4 hours 
after symptom onset. Patients received 4 g MgSO4 bolus fol-
lowed by a maintenance dose 16.15 g given over 24 hours. 
Although the study targeted acute ischemic stroke, 168 
patients with primary ICH were also enrolled, 87 of whom 
received MgSO4. Primary outcome was based on a dichoto-
mized composite score of death and disability (represented 
by modified Rankin score [mRS] > 1 and Barthel Index < 
95) at 90 days. Although magnesium therapy favored re-
duction of death and disability in the ICH subgroup, this 
relationship was not statistically significant (odds ratio [OR], 
0.84; 95% confidence interval [CI] 0.41–1.74; P = 0.90). Safe-
ty analysis for the trial revealed no significant difference in 
adverse events between the magnesium and placebo groups 
(P = 0.25) (Muir et al., 2004).

FAST-MAG was the second multi-center placebo-con-
trolled randomized control trial that modified the protocol 
used in IMAGES by evaluating magnesium therapy for acute 
ischemic stroke in a prehospital setting. The study enrolled 
1700 patients. Magnesium administration and dosing was 
identical to IMAGES; however, pre-hospital administration 

resulted in an ultra-early median treatment time of 45 min-
utes after symptom onset (Saver et al., 2015). Of the patients 
enrolled, 387 patients (195 from the magnesium group 
vs. 192 from the placebo group) were found to have ICH. 
Although formal post hoc analysis of clinical outcome dif-
ferences between magnesium and placebo groups have yet 
to be published, one subsequent post hoc study of this ICH 
sub-group evaluating blood pressure changes showed no 
difference in the percentage of patients who received MgSO4 
in the favorable and poor outcome groups (56.0% vs. 46.7%; 
P < 0.09) (Chung et al., 2018). The overall rates of adverse 
events did not differ between the magnesium and placebo 
groups (P = 0.67) (Saver et al., 2015).

Admission Magnesium Levels as Indicators of 
Neuroprotection in Intracerebral Hemorrhage  
To date, three retrospective studies have evaluated associa-
tions between admission magnesium serum concentrations 
and outcomes in patients with ICH. The earliest study to 
evaluate admission magnesium levels on outcome after 
spontaneous ICH was Behrouz et al. (2015). They studied 
128 patients, and hypomagnesemia was defined as < 1.7 mg/
dL. Clinical outcomes were defined by a dichotomized ICH 
score (Hemphill et al., 2001) (ICH score > 3 was defined 
as poor admission clinical outcome), hematoma volume 
as based on the ABC/2 method (Kothari et al., 1996), and 
poor outcome was based on a dichotomized mRS score at 
hospital discharge (mRS, 4–6). Hypomagnesemia was as-
sociated with worse admission ICH score (OR, 2.5; 95%CI, 
1.15–5.40; P = 0.03) and an increased systolic blood pres-
sure (197.2 ± 19.5 mmHg) compared with systolic blood 
pressure for normomagnesemic patients (173.9 ± 23.0 
mmHg) (P < 0.001). No statistical difference was noted in 
discharge mRS and admission hematoma volume between 
normal magnesium and hypomagnesemia groups (Behrouz 
et al., 2015).

Liotta et al. (2017) evaluated 290 patients with sponta-
neous ICH; however, they did not exclude patients with 
pre-existing coagulopathy from chronic anticoagulation 
use or later-onset patients (i.e., symptom-onset > 6 hours). 
Functional outcome was defined by mRS at 3 months. The 
authors found that lower admission magnesium concen-
trations were associated with larger admission hematoma 
volumes on univariate and parsimoniously adjusted mod-
els (P = 0.02), greater hematoma volume growth (P = 0.005), 
and worse functional outcome (OR, 0.14; 95%CI, 0.03–0.64; 
P = 0.011). The authors separately evaluated and found an 
association between hematoma growth and magnesium 
levels (P = 0.036) and between functional outcome and 
magnesium levels (P = 0.011). They postulated that these 
separate significant associations suggested a hemostatic 
role for magnesium (via attenuation of hematoma volume 
expansion) that improved clinical outcome after ICH (Li-
otta et al., 2017).

Finally, Goyal et al. (2018) evaluated magnesium con-
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centrations at admission and at 48 hours post-ICH onset in 
299 patients with spontaneous ICH. The authors excluded 
patients with ICHs attributed to coagulopathy. They found 
no associations between magnesium concentrations at 48 
hours and clinical outcome variables. However, multilinear 
regression analysis showed a significant inverse association 
between admission serum magnesium levels and admission 
hematoma volumes (regression coefficient, –0.020; 95%CI, 
–0.040 to –0.000; P = 0.049). Multilinear regression analysis 
also showed a significant inverse association between ad-
mission serum magnesium levels and admission ICH scores 
(regression coefficient, –0.053; 95%CI, –0.102 to –0.005; P 
= 0.032). Magnesium levels were not associated with func-
tional outcomes as quantified by dichotomized hospital dis-
charge mRS (Goyal et al., 2018).

Potential Future Roles for Magnesium 
Therapy in Intracerebral Hemorrhage
Although both IMAGES and FAST-MAG did not show any 
improvement in clinical outcome after ICH with magnesium 
therapy, these studies were not designed for the pathophys-
iology of ICH. The duration of magnesium infusion over 
a 24-hour span may have potentially utilized magnesium’s 
vasodilatory properties to help lower blood pressure. How-
ever, although numerous studies have shown an association 
between higher admission blood pressures and attenuation 
of hematoma volume in ICH (Ohwaki et al., 2004), this has 
not translated into improved clinical outcomes (Anderson 
et al., 2013; Qureshi et al., 2016). Similarly, the hemostatic 
properties of magnesium may have also played a role with 
this limited duration of therapy. However, hemostatic inter-
vention in ICH has also not translated into improved clini-
cal outcome (Mayer et al., 2008).

Additionally, the short duration of magnesium therapy in 
these two trials may have limited any benefit for minimizing 
BBB disruption and reducing PHE, which is theorized to 
progress in the first 2–3 days and peak around day 14 (Ur-
day et al., 2015). With several smaller ICH studies targeting 
the secondary stage with longer duration of treatments and 
yielding promising results (Fu et al., 2014; Chang et al., 
2017b), it is possible that any future studies utilizing mag-
nesium as a therapeutic agent should also similarly have 
longer durations of therapy. Longer duration of therapy 
may allow magnesium to both incorporate properties use-
ful for primary stage hematoma volume attenuation, and 
more importantly, incorporate therapeutic mechanisms 
associated with minimizing secondary stage PHE and BBB 
disruption in ICH. 

Conclusion 
The physiological properties of magnesium in ICH are not 
as well understood as with ischemic stroke models. How-
ever, three key properties of magnesium—vasodilation, 
hemostasis, and reduction of PHE through BBB preserva-
tion—may make magnesium therapy a worthwhile future 

target for improving clinical outcome after ICH. Although 
two large randomized trials did not demonstrate efficacy of 
magnesium therapy in ICH, both trials were not designed 
to optimize therapeutic targets for ICH pathophysiology. 
In contrast, several recent large retrospective trials have 
demonstrated associations in ICH between low admission 
serum magnesium levels and clinical outcome, admission 
hematoma volume, and hematoma expansion. The results 
of these studies (Table 1) suggest that with a proper meth-
odology focused on ICH pathophysiology, magnesium may 
prove to have some clinical benefit in ICH.
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Table 1 Summary of clinical studies evaluating magnesium use in intracerebral hemorrhage

Study Sample size
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administered/ dosage Outcome measure Results and conclusion Limitations

Goyal et al. 
(2018)

299 Patients N/A • Hematoma volume at 
admission
• ICH score

• Lower admission magnesium 
levels associated with larger 
hematoma volume at admission
• Lower admission magnesium 
levels associated with worse ICH 
scores

• Retrospective design

Liotta et al. 
(2017)

290 Patients N/A • Hematoma volume at 
admission
• Functional outcome 
(mRS at 3 months)

• Lower admission magnesium 
levels associated with larger 
hematoma volume at admission
• Lower admission magnesium 
levels associated with poorer 
functional outcome

• Retrospective design
• No exclusion for 
patients with admission 
coagulopathy

Behrouz et al. 
(2015)

128 Patients N/A • ICH score
• Systolic blood 
pressure 

• Hypomagnesemia associated 
with worse ICH scores
• Hypomagnesemia associated 
with higher admission systolic 
blood pressures

Saver et al. 
(2015)

1700 Stroke patients
387 ICH patients

• Median 45 minutes 
after symptom onset
• 4 g bolus + 16 gram 
infusion over 24 hours

Functional outcome 
(dichotomized mRS, 
Barthel Index, NIHSS 
scores at 3 months)

No difference in functional 
outcome between treatment 
and placebo groups. Outcome 
analysis for magnesium and 
placebo groups for ICH are 
pending.

• Methodology designed 
for acute ischemic stroke
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2589 Stroke patients
168 ICH patients
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infusion over 24 hours

Death or disability at 
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No difference in death or 
disability between treatment and 
placebo groups 
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for acute ischemic stroke

ICH: Intracerebral hemorrhage; mRS: modified Rankin score; NIHSS: National Institutes of Health Stroke Scale; N/A: not available.
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