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ABSTRACT

RNA splicing, and variations in this process re-
ferred to as alternative splicing, are critical aspects
of gene regulation in eukaryotes. From environmen-
tal responses in plants to being a primary link be-
tween genetic variation and disease in humans, splic-
ing differences confer extensive phenotypic changes
across diverse organisms (1–3). Regulation of splic-
ing occurs through differential selection of splice
sites in a splicing reaction, which results in varia-
tion in the abundance of isoforms and/or splicing
events. However, genomic determinants that influ-
ence splice-site selection remain largely unknown.
While traditional approaches for analyzing splicing
rely on quantifying variant transcripts (i.e. isoforms)
or splicing events (i.e. intron retention, exon skip-
ping etc.) (4), recent approaches focus on analyzing
complex/mutually exclusive splicing patterns (5–8).
However, none of these approaches explicitly mea-
sure individual splice-site usage, which can pro-
vide valuable information about splice-site choice
and its regulation. Here, we present a simple ap-
proach to quantify the empirical usage of individ-
ual splice sites reflecting their strength, which deter-
mines their selection in a splicing reaction. Splice-
site strength/usage, as a quantitative phenotype, al-
lows us to directly link genetic variation with usage
of individual splice-sites. We demonstrate the power
of this approach in defining the genomic determi-
nants of splice-site choice through GWAS. Our pilot
analysis with more than a thousand splice sites hints
that sequence divergence in cis rather than trans is
associated with variations in splicing among acces-
sions of Arabidopsis thaliana. This approach allows
deciphering principles of splicing and has broad im-
plications from agriculture to medicine.

INTRODUCTION

During mRNA formation, certain sections of the tran-
scribed RNA (introns) are removed with joining of the ad-
jacent regions (exons) in a process known as splicing. Splic-
ing is a fundamental process in eukaryotic gene regulation
(9–11). Introns removed during the splicing typically har-
bor canonical sequences at the 5′ beginning (GU) and the 3′
end (AG), which facilitate their identification as splice sites
(12–14). Selection of splice sites determines the products of
splicing. Differential selection of splice sites gives rise to Al-
ternative Splicing (AS), conferring both proteome diversity
and phenotypic plasticity (9,15). Changes in splicing can
modulate a range of phenotypes across diverse organisms
such as sex-determination in flies, stress response in plants
and genetic diseases in humans (1,3,9,15–17).

The pattern of splice site selection governs the type of
mRNA transcripts produced (18,19). Splice-sites are recog-
nized by a large protein complex, the spliceosome, which
contains splicing factors that identify the splice-sites and
form the splicing complex (13). Maniatis and Reed defined
‘the affinity of a splice site for splicing factors and/or the
ability of a splice site to participate in splicing complex for-
mation’ as splice-site strength (20). The difference in splice-
site strengths determines which of the competing splice-sites
participate in a splicing reaction. Therefore, if one has to
understand the regulation of splicing, there is a need to
measure the strength of individual splice sites. While there
has been efforts to develop tools to ‘predict’ the affinity of
splice sites based on sequence features as proxy for splice-
site strength, e.g. MaxEnt Score, COSSMO, SpliceAI (21–
23), there has not been a systematic effort to explicitly ‘mea-
sure’ the ‘ability’ of any given splice site to be utilized; the
empirically observed splice-site usage, which is a direct mea-
sure of its strength.

Current bioinformatic approaches to analyze splic-
ing involve exploration of the transcriptome from high-
throughput short-read RNA-seq data (5,24). One approach
is to measure the abundance of various isoforms (25,26).
However, variation in isoforms can occur due to differen-
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tial splicing, alternative transcriptional start sites as well
as alternative polyadenylation. In addition, this approach
also suffers from the absence of accurate descriptions of all
potential isoforms. Another approach measures the cover-
age of exons and introns (27,28) or the relative abundance
of mutually exclusive splicing patterns. These are measured
either through the lens of descriptive categories (i.e. exon
skipping, intron retention, often assuming that these events
cannot co-occur) (29,30) or more recently as local splic-
ing variations (8), intron clusters (6) or splice graphs (7).
We reason that regulatory decisions on splicing occur at
the level of individual splice sites rather than at the level of
the products of these decisions, namely transcript isoforms
or splicing events. However, to date, bioinformatic tools to
specifically quantify the observed strength/usage of individ-
ual splice sites have been lacking.

Here, we describe our idea of analyzing splicing from first
principles, keeping individual splice-sites and their usage at
the center of splicing decisions. We present SpliSER (Splice-
site Strength Estimate from RNA-seq), a bioinformatic tool
to derive a quantitative measure of the utilization of indi-
vidual splice sites from short-read RNA-seq data, while the
idea can be easily applicable to long-read sequences as well.
Splice-site Strength Estimates (SSE) increase the power to
analyze regulation of splicing variation across the genome
at a fine-scale resolution. We show an implementation of
SpliSER to carry out GWAS analysis that allows us to
detect SpliSE-QTLs, using the SSE as a quantitative phe-
notype. As a proof-of-principle, using a pilot dataset with
1430 sites that represent genes known to undergo alteran-
tive splicing and nonsense mediated mRNA decay (31,32),
we map and show that cis-regulatory variation and compe-
tition between splice-sites are among key genomic determi-
nants of variation in splicing in these genes among natu-
ral accessions of Arabidopsis thaliana. We also present diff-
SpliSER, which allows detecting differentially used splice-
sites across the genome between samples, which increases
the power to detect differential splicing in comparison to ex-
isting cutting-edge methods. Our strategy provides a power-
ful approach to decipher genomic determinants of splicing
and is widely applicable across diverse organisms.

MATERIALS AND METHODS

Plant material/DNA/RNA Analyses

Seeds of the 1001 genome project accessions were obtained
from European Arabidopsis Stock Centre. DNA and RNA
extractions were done as described previously (33). For gene
expression studies DNAse I (Roche)-treated 1μg of total
RNA was used for cDNA synthesis using the First strand
cDNA synthesis kit (Roche) and the resulting cDNA was
diluted and used for RT-PCR experiments. Primers used in
RT-PCR analysis are given in Supplementary Table S5.

Splice-site usage/strength estimation

SpliSER requires a BAM file of mapped RNA-seq reads
and BED file that contains a list of splice junctions detected
in the alignment (such as those produced during mapping
by TopHat2 (34) or HISAT2 (35), or directly from a BAM
file using Regtools (36). First, SpliSER uses the junctions

BED file of each RNA-seq sample to define a list of splice
sites observed in all samples; the read count of each junction
is concurrently added to the �-read count for each of the
two sites forming the junction. The list of ‘partners’ (sites
with which a given site has been observed to form a junc-
tion) is also recorded for each splice site. Second, SpliSER
uses Samtools (37) view command to retrieve reads whose
mapping covers each nucleotide either side of the splice-site,
the CIGAR string of these reads are then traversed to iden-
tify reads which map on either side of the splice site; these
are counted as �1-reads for each site. Third, SpliSER iden-
tifies reads with an intron spanning across the splice site, or
otherwise showing non-usage of the site along with usage
of a competitor; these are counted as �2-reads. Thus Splice-
site Strength Estimate is defined as

SSE = α

α + β1 + β2

In each sample, for each splice site; SpliSER filters those
with too few reads (sum of �, �1, and �2: default 10). These
parameters could be adjusted to increase the sample size
and we found that decreasing the sum count to as low as
3 still provided similar signals in SpliSE-QTL analysis.

We also provide a slight variation of this approach, which
may be useful in certain situations. In this variant approach,
we split the reads that provide information about competi-
tive splicing into two types based on whether the evidence
is direct or indirect. Reads that provide direct evidence for
non-usage are referred to as (�2-SIMPLE) or reads that de-
fine competitive splicing without read coverage of the tar-
get site (�2-CRYPTIC). While considering the total number of
�2 reads, we apply weightings on the �2-CRYPTIC reads. Here
SSE is defined as

SSE = α

α + β1 + β2 SI MPLE + ∑m
x=1

[(
α(Px)

α
β2 CRYPTIC (Px)

)]

where β2-CRYPTIC(Px) is the β2 read counts coming from
partner Px, and m the number of partners. We believe that
this version may not be required for most practical pur-
poses. Nevertheless, given that we may not have considered
all exhaustive possibilities, we provide this version as well as
an option for those who may be interested.

SpliSE-QTL analysis

For the SpliSE-QTL analysis, 6853 RNA-seq samples were
downloaded from SRA, effectively representing 666 acces-
sions (PRJNA319904). Each sample was aligned to the
TAIR10 reference genome using Tophat (v2.1.1; paramters
–minIntronLength 20, –maxIntronLength 6000, -p 6) (34).
The resulting BAM files were indexed and sorted using
Samtools sort v1.7 (37). The sorted BAM files and BED
files for each sample were passed to SpliSER with a mini-
mum of 10 evidencing reads required for a site to be called,
and using a table adapted from the TAIR10 genes.gff3 an-
notation file to identify gene boundaries. The Splice-site
Strength Estimate of each site in each of the 50 NMD tar-
get genes was quantified. The SSE phenotypes were fur-
ther filtered using the following criteria: (i) an accession
was only considered for further analysis for a given site if
it had three or more individual RNA-seq samples underly-
ing its average splicing efficiency value, and (ii) a site was
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only considered for further analysis if it contained 100 or
more such accessions. We calculated the broad-sense heri-
tability (H2) and variance (�2) of each splice site. Heritabil-
ity was calculated as the sum of squares between genotypes
divided by the total sum of squares (SS group/SS total) ex-
tracted from the results of a one-way ANOVA with Geno-
type as a factor. GWAS experiments were performed using
the easyGWAS (38) and/or GWAPP (39) web portal using
the EMMAX/AMM algorithm with a minimum minor al-
lele frequency of 5%, with no transformation of phenotypes.
To assess the relationship between heritability/variance and
the ability to detect GWAS signals, we initially carried out
GWAS with all 1430 phenotypes containing 100 or more
accessions. Our findings suggested that most of the signals
were detected among splice-sites with higher levels of heri-
table phenotypic variation. When variance is low, it resulted
in spurious signals throughout the genome. Therefore, each
of the mannhattan plots were individually inspected, be-
fore deciding on whether a GWAS signal that shows sta-
tistical significance is trustable. In subsequent iterations,
only sites that were in the upper quartile of heritability and
variance were taken for analysis. In total 186 phenotypes
were analyzed through GWAS that ultimately resulted in
47 associations for 19 of the 50 analyzed genes (Figure 4,
Supplementary Figure S3, Supplementary Table S1). All
of these 47 were tested both through EMMAX algorithm
or through AMM algorithm and both methods provided
consistent signals. In instances where multiple SNPs that
were in LD were giving same P-value of highest associa-
tion, the closest SNP to the splice-site is presented in the
Table.

eQTL analysis

eQTL analysis was carried out using published expression
levels (40) for the RNA-Seq data using the same panel of
accessions that contributed to the splicing-QTL for each of
the phenotypes, using the same GWAS options described
above. The data were then summarized at the gene level and
if any one of the panel of accessions gave an eQTL signal,
it was considered to be a positive overlapping QTL. This
analysis resulted in two genes (FLM and At4g35875) having
overlapping eQTL and SpliSE-QTL signals.

diffSpliSER analysis

Taking the output of SpliSER, we remove all sites con-
taining an NA in any sample generated by insufficient
read coverage; then filter all sites whose mean SSE (av-
erage of all samples) is <0.05 or >0.95, blind to exper-
imental grouping. We utilized the EdgeR package (41),
testing for significant changes in splice site strength us-
ing a generalized linear model (glmLRT() function, de-
fault parameters) with a contrast corresponding to the
difference between the � and � (�1 + �2) read counts,
between two samples [i.e. (alpha.group1-beta.group1)-
(alpha.group2-beta.group2)]. Differentially Spliced sites
were called as those with an FDR-corrected P-value <0.05,
and an absolute change in averaged SSE ≥0.1 between con-
ditions

Yan et al. comparison

The six RNA-seq samples described in Yan et al. (42) were
aligned to the TAIR10 reference genome using TopHat2
v2.0.10 (34) (parameters -i 20 -I 6000 -g 10 -r 0 –mate-std-
dev 50 –coverage-search, and indexed using Samtools v1.2
(37). Each resulting BAM and junction BED file were pro-
cessed with SpliSER (command: process, parameters –m
6000) using an annotation file derived from the TAIR10
genes.gff3 file. The resulting SpliSER.bed files were then
combined (command: combine; parameters -1 Chr1) and
output (command: output; parameters –t diffSpliSER, -r
10). Differentially spliced sites were detected using the diff-
SpliSER R script. For comparison with MAJIQ: BAM files
were processed with MAJIQ v2.1 (8). For each gene, we as-
sessed probability of deltaPSI being above 0.1, taking all
LSVs with probability >0.95 to be evidence of differential
splicing. For Salmon analysis: FASTA files were processed
using the Salmon v1.4.0 quant command, using a FASTA
file containing TAIR10 cDNAs.

Simulated RNA-seq data

Simulated 100bp paired-end reads were generated using
Polyester v1.2.6 (43). First, we identified genes with multi-
ple annotated isoforms (Arabidopsis: Araport11 release 49,
Human: GRCh38 release 102). To exclude isoforms that
differ due to non-splicing differences (e.g. alternative tran-
scriptional start sites and/or alternative polyadenylation)
we simulated reads for transcripts that began and ended at
the same position. There were instances where multiple dis-
tinct sets of transcripts met these criteria. For these genes
with multiple sets of such transcripts we took only the first
identified set. Reads were generated for each isoform of each
gene using the formula:

Isof orm Reads = x l
r n

to nearest integer

where x in the desired isoform coverage (we took 20 as low,
and 50 as high), l is the length of the isoform cDNA, r is
the length of simulated reads (200 for paired-end 100 bp
reads), and n is the number of isoforms for this gene. This
was designed to simulate each isoform being equally tran-
scribed, while maintaining similar coverage across genes.
We selected a subset of genes at random to be differen-
tially spliced which resulted in 1000/3379 genes in Ara-
bidopsis and 500/2023 genes in Humans. We further fil-
tered human data for genes with multiple annotations
which resulted in 433/1780 genes. We simulated differen-
tial splicing by increasing the expression of isoform (we
took 1.2-fold as low, 1.5-fold as moderate, and 1.7-fold as
high). To ensure that there was no bias due to changes
in gene expression, an equal decrease in isoform expres-
sion was evenly distributed among the remaining isoforms
for each gene. For Arabidopsis, reads were aligned to the
TAIR10 reference genome using STAR v2.5.2b (44) (–
outFilterMultimapNmax 1, minimum intron size 20, maxi-
mum intron size 6000). For Human data, reads were aligned
to the GRCh38 reference genome using STAR v2.5.2b
(44) (–outFilterMultimapNmax 1, minimum intron size 20,
maximum intron size 100 000). BAM files were then pro-
cessed with the Regtools (36) junction extract command
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Figure 1. Overview of Splice-site Strength Estimation and SpliSER. (A) For a given target splice site (large red arrow) Splice-site Strength Estimate (SSE)
is calculated as the proportion of reads showing of reads showing utilization of the splice site (�-reads; red rectangles) versus those showing non-utilization
(�1- and �2-reads; green and blue rectangles). �-reads (red) are split-reads with a gap in mapping which terminates at the target splice site, showing
utilization. The other splice site in this read is then considered a Partner of the target site. �1 reads (green) map either side of the target splice site but
show no gap in mapping at this position, showing the target site has not been utilized. �2-reads (blue) show known Partners of the given site utilizing
another splice site, which has therefore outcompeted the target site. �2 reads provide direct evidence of non-utilization of the target site. (B) Computational
workflow of SpliSER. First, mapped reads are processed with Regtools to generate a bed file containing each detected splice junction. These two files are
then provided as input to SpliSER, along with an optional annotation file defining gene boundaries.

to produce a splice junction BED file. For SpliSER anal-
ysis: these two sets of files were passed to SpliSER v0.1.5
and taken through the diffSpliSER pipeline. The highest
–log10 adjusted P-value (FDR) was taken as the score for
each gene assessed. For Salmon analysis: FASTA files were
processed using the Salmon v1.4.0 quant command, us-
ing the same FASTA file containing TAIR10 cDNAs from
which the reads were originally simulated. Differential tran-
script utilisation was identified using the DRIMseq pipeline
(45). For MAJIQ analysis: BAM files were processed with
MAJIQ v2.1 (8). For each gene, the score was taken to be
the highest probability of deltaPSI being above 0.2 among
all LSVs in that gene, extracted from the TSV file pro-
duced by deltaPSI Analysis. For rMATS analysis: BAM
files were processed with rMATS turbo v4.1.0 (29). We took
the scores for each gene to be the highest –log10 pvalue
(FDR) observed across all splicing events, for this we took
the JCEC (reads that span splicing junctions and reads on
target) files. We could not obtain P-values for 61% of the
simulated genes for the Arabidopsis data. We failed to cor-
rect this even with substantial modifications of the gtf file.
We did not encounter this problem with rMATS in the hu-
man data. Area under the curve (AUC) values were calcu-
lated using the precrec package in R; for the purposes of
this calculation, genes that were not assessed by a tool were
assumed to have been called non-differentially spliced.

RESULTS AND DISCUSSION

We developed the idea of quantifying the usage of a given
splice site earlier (46), which we now refer to as Splice-site
Strength Estimate (SSE). For any splice site (just for exam-
ple, let us consider it a splice donor site), there are three
types of reads that provide information about its usage (Fig-
ure 1A). First there are split reads that map perfectly with
a gap between splice site and its partner sites. We call these
reads as �-reads that provide evidence for the use of that
splice site (Figure 1A), independent of its partners (i.e. ac-
ceptor sites). Second, there are reads that cover the exon-
intron junction (�1 reads), which provide evidence of non-
usage of the target site (Figure 1A). We then use the his-
torical concept of ‘competing splice sites’ (20,47) to define
additional reads that provide evidence of non-usage. If two
donor sites partner with the same acceptor site, obviously
both events cannot occur in the same transcript and thus
the evidence for utilization of one site becomes the evidence
for the non-utilization of the other site. Reads that define
competitive splicing and provide direct evidence for non-
usage of the target site (�2 reads). Thus, SSE is derived as
the ratio of the evidence of utilization over the evidence of
total possible utilization (see Materials and Methods).

We further developed this concept into a bioinformatics
pipeline, which we call as SpliSER (Figure 1B). SpliSER
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Figure 2. SpliSER estimates SSEs accurately. (A) Gene model of FLM locus with splice site mutations across accessions. Heatmap shows SSEs for the
splice sites at the FLM locus in various genotypes, purple boxes indicate slice site mutations. (B) The splice variants observed in the RNA-seq data are
shown in the schematic. Dark red crosses indicate position of the splice site mutations. Experimental analysis with accessions harboring splice site mutation
at AG8 shows change in splicing pattern.

is annotation-independent yet allows the use of annotation
when available. SpliSER uses the list of junctions to iden-
tify the splice sites from the RNA-Seq data, it then lever-
ages the alignment file to assess all reads overlapping each
site; finally, it uses all of these metrics, applies filters (see
detailed methods) and produces the SSE for all splice sites
detected in the RNA-seq data. In any given experiment, the
user will process each RNA-seq sample, combine the sam-
ples together (to ensure that each site has a value for each
sample), then output this information in a format ready for
downstream analysis.

To assess the accuracy of the SSE, we exploited natu-
ral variation in Arabidopsis thaliana. We reasoned that if
our estimates are accurate and specific, for genotypes with
mutations in splice sites, the SSE would be close to 0 for
that site in that genotype and will differ from other sites
in the same gene, and with others genotypes for the same
site. Exploiting the 1001 genome project data (40,48), we
identified genotypes with splice-site mutations at FLOW-
ERING LOCUS M (FLM), a gene which is known to un-
dergo alternative splicing (49). After confirming the muta-
tions by Sanger sequencing, we downloaded the RNA-seq
data for these accessions from the 1001 genome project (40)
and ran SpliSER across the FLM locus. Consistent with
our predictions, we found the SSE of only mutated sites to
be close to 0 unlike other sites known to be spliced with
full efficiency (e.g. GT5, GT6, AG5, AG6). In addition, the
effect at a particular site was exclusive to accessions with

mutations, confirming the specificity of our estimates (Fig-
ure 2A). RT-PCR experiments confirmed alternative splic-
ing, consistent with our estimates (Figure 2B). Although to-
tal FLM expression level is substantially reduced in some
of these accessions (Supplementary Figure S1), we were
able to estimate SSE accurately, which indicates that we
could pick up splicing differences despite differences in gene
expression.

SSE is a quantitative measure that can be used as a phe-
notype in GWAS to identify potential regulatory variation.
To explore this possibility, we downloaded 6583 RNA-Seq
datasets representing 728 accessions from the 1001 genome
project (40). As a proof-of-principle pilot-study, here we
carried out SpliSE-QTL analysis for all splice sites across
50 genes that are known to undergo alternative splicing
and nonsense-mediated mRNA decay (31,32). SpliSE-QTL
analysis detected ∼2000 splice sites across these genes. As
expected, majority of the splice sites displayed minimal vari-
ation in SSE among accessions. However, there were sites
with higher variability (Supplementary Figure S2). To as-
sess the genetic contribution to this variation, we calcu-
lated heritability of the SSEs. The heritability varied sub-
stantially (Supplementary Figure S2) even for sites within a
gene (Supplementary Table S3), which indicated that there
are splice sites with genetically controlled variability in
SSEs. The heritability/variance pattern was similar for both
donor and acceptor sites. We focused on splice sites that
were: (i) in the upper quartile for heritability and variance



6 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2

A

B

C

Figure 3. SpliSE-QTL analysis detects experimentally viable associations for splice-site strength. (A) Gene model for At3G62190. Positions of two com-
peting splice acceptor sites and the associated SNP are shown. (B) GWAS analysis for SSE of both competing splice-sites identifies At3g62190 23022299
as the highest associated SNP in GWAS. The allelic effects on both sites are shown; in the presence of the alternate T allele, the relative strength of the site
23022036 (red) drops to zero. (C) Experimental verification of the SSE differences associated with 23022299-SNP. Common allele is shown in purple and
the alternative allele is shown in green. In the presence of the alternate allele, the top band (representing utilization of the site 23022036) is absent. Col and
Ler harbor common alleles at this SNP.

and (ii) with minimum 100 accessions. This filtering identi-
fied a total of 186 sites that were taken for GWAS.

We identified significant, reliable associations for 44 sites
that are spread over 19 of the 50 genes (∼38%) analyzed in
this pilot-study (Supplementary Table S1; Supplementary
Figure S3). To experimentally test the reliability of the ob-
served associations, we first analyzed splicing at At3g62190
in which two sites provided strong GWAS signals (Fig-
ure 3A and B). SSE of two splice acceptor sites (canonical
23022226 & alternative 23022036) mapped to the same SNP
(23022299). Common allele (G) at this SNP (23022299) in
the neighboring downstream intron was associated with re-
duced strength of the canonical site, and the minor allele (T)
substantially increased the efficiency at the canonical site
effectively competing out the alternative site (Figure 3B).
Thus, accessions that differed at this associated SNP dis-
played distinct splicing patterns (Figure 3C). We reasoned
that if the identified associations are genuine, we should ob-
serve predictable splicing patterns based on the genotype of
the associated SNP, even in accessions that were not part
of the GWAS panel. Consistent with our hypothesis, splic-

ing patterns conformed with predictions (Figure 3C). We
carried out similar analysis with other loci and found them
to conform to predictions (Supplementary Figures S4–S6),
which provided experimental support for the detected asso-
ciations.

Given that these genes are known to undergo AS-NMD
(31,32), changes in splice-site utilization might lead to tran-
scripts that are degraded. Analysis of RNA-seq in general
can only capture and quantify transcripts that remain in the
cell. Nevertheless, any effect on transcript stability includ-
ing AS-NMD would present as a corresponding decrease
in gene expression in the same RNA-seq data. However, if
changes in utilization of specific splice-sites is unrelated to
NMD, then it would represent a change only in splicing and
not in gene expression. To assess this, we carried out eQTL
analysis with the same set of accessions used to detect each
SpliSE-QTL. We failed to detect overlapping GWAS sig-
nals for expression in most cases, which indicates that ma-
jority of the detected SpliSE-QTLs are specific to splicing
rather than gene expression (Supplementary Table S2). We
did however observe overlapping eQTLs and SpliSE-QTLs
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Figure 4. SpliSE-QTL can detect causal variants and cis-regulatory variation is among the primary determinants of variation in splicing. (A) Manhattan
plots for the splice sites in which the GWAS identified mutations in the splice-site itself (At2g18300 7953317, At5g65050 25985653). See Supplementary
Figure S3 for additional Manhattan Plots. The splice-site strength conferred by the common (purple) and the alternate (green) alleles are shown. (B) Distri-
bution of distances of Top 25 highest associated SNPs for the splice-sites for which associations were detected on the same chromosome. (C) Distribution of
the distances of the Top 10 highest associated SNPs that fell within 2 kb of the splice site. Red arrows indicate the positions of Top SNPs across associations.

for two loci (FLM (At1g770880) & At4g357885)). These
results are consistent with the finding that FLM levels are
regulated via AS-NMD to regulate flowering and natural
variation at FLM modulates splice-site choice resulting in
changes in expression levels (46,50). While these two exam-
ples may potentially reflect an association with NMD, we
also cannot rule out the possibility that splicing and expres-
sion are correlated through some other mechanism at these
loci.

Having confirmed the associations, we considered
whether our analysis has the ability to pick up causal
mutations. In the simplest case, a mutation of the canonical
GT or AG splice site sequence should have a direct impact
on the ability of the splice site to recruit spliceosomal
machinery and thus reduce the splice-site strength/usage.
We analyzed whether any of the detected associations
actually mapped to the splice-site sequence itself. Vari-
ation in SSE for two sites (At2g18300 7953316/17 and
At5g65050 25985653/54) mapped to the splice sites them-
selves (Figure 4a). While this is consistent with the idea that
mutations at the splice site would weaken the strength of a
splice site, it also argues for the potential of SpliSE-QTL
analysis to identify causal mutations underlying variation
in splicing.

Next, we analyzed the pattern of detected associations.
We noticed that most of the GWAS signals (43 out of 47)
were on the same chromosome as that of the splice site (Sup-
plementary Table S1). To assess patterns, we compiled the
distances of the associated SNPs (Top 25 SNPs for each
SSE phenotype) from the splice site (Supplementary Ta-

ble S1, Figure 4B). Distances clustered within 2Kb of the
splice site (Figure 4B). Most of the top-associated SNPs
(25 out of 43) fell within 2 kb either side of the splice site
(Figure 4C) and was consistent between both splice donor
and acceptor sites. In fact, for 26 out 43 associations, we
detected an associated SNP within 100 bp from the splice
site (Supplementary Table S1), all together suggestive of a
strong cis effect. We also noted several instances of com-
mon associated SNPs for multiple splice-sites (Supplemen-
tary Table S1), which suggested the influence of one splice-
site over the other through competition. These findings indi-
cate that in this dataset, cis rather than trans-sequence vari-
ation and competition between splice-sites are among the
primary drivers of variation in splicing.

A recent study (51) utilized the same RNA-Seq data from
the 1001 genome project and carried out isoform-based
splicing QTL analysis with sQTLseekeR (52) based Ul-
fasQTL (53). Given that this study (51) used the same data
as in our case, it provided an opportunity to directly com-
pare the methods for analyzing splicing-QTLs. Khokhar
et al. concluded from their analysis that majority of splic-
ing variation in Arabidopsis is due to trans rather than cis
QTL (51). Their finding contradicted earlier genetic stud-
ies (54). Our findings support the assertions from genetic
studies (54), which show that cis-regulatory variation as a
primary determinant of splicing differences. Therefore, we
compared the GWAS results obtained in this study with
ours for overlapping set of genes (Supplementary Table S4).
We observed that the isoform-based approach failed to de-
tect even a single SNP that we report for the same set of
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Figure 5. Performance of diffSpliSER. (A) The overlap of genes identified as differentially spliced by ASD, MAJIQ, Salmon and diffSpliSER from RNA-
seq of the Yan et al. study (B) DiffSpliSER analysis identified significant changes in splice sites (blue text, grey arrows) underlying three of the four
experimentally verified splicing events (purple) reported in the Yan et al. study. By contrast MAJIQ identified differential splicing at one of the four events
(burgundy lines). Pink stars indicate Salmon detected differential transcript usage for that gene. Bright red and green arrows after the site label indicate a
significant decrease or increase in SSE, respectively. (C) Receiver operating characteristic curves show performance of diffSpliSER, MAJIQ and rMATS
in detecting differential splicing spiked into 1000 out of 3474 genes in simulated RNAseq experiments. Simulated experiments had varying read coverage
(top to bottom) and simulated splicing changes had varying degrees of magnitude per experiment (left to right). Curves are truncated due to some genes
not being assessed by each tool, either filtered or not recognized. Area Under the Curve (AUC) values indicate performance of each tool.

genes (Supplementary Table S4). In addition, there was sub-
stantial noise in Khokhar et al’s GWAS study such that as-
sociations were found with SNPs scattered around the entire
genome, while we detected specific signals (Supplementary
Table S4, Supplementary Figure S7). Thus, in addition to
reducing noise, SpliSE-QTL analysis also provided specific
associations with splice-sites.

Having confirmed the utility of SpliSER, we also im-
plemented diffSpliSER, a method that would allow detec-
tion of differentially spliced sites across the genome between

samples. To assess the practical efficacy of this approach, we
applied SpliSER on a previously published RNA-Seq data
on quintuple mutants of the sc35-scl in Arabidopsis thaliana
(42). In this comparison, Yan et al., utilized ASD to de-
tect differential splicing and found 34 genes (FDR<0.05)
(42). We applied MAJIQ v2.1 (8), Salmon v1.4.0 (26) and
SpliSER v0.1.3 on the same data; representing a suite of ap-
proaches to differential splicing detection (Figure 5A). MA-
JIQ detected 48 genes of which 14 overlapped with ASD
(Hypergeometric probability P-value = 2.15e–31). Salmon
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Table 1. Comparison of strengths and limitations of assessed splicing mea-
surement tools

Leafcutter Salmon rMATS MAJIQ SpliSER

Differential splicing
– isoforms

No Yes No No No

Differential splicing
– patterns

Yes Yesb Yes Yes No

Differential splicing
– splice sites

No No No No Yes

Is it annotation
independent?

Yes Yesa No No Yes

Is intron retention
considered?

No Yes Yes Yes Yes

GWAS for
splice-site usage

No No No No Yes

aRequires a reference set of transcript sequences.
bThere are supplementary tools available to derive event information from
transcript quantification.

detected 100 genes, of which seven overlapped with ASD
(P = 2.46e–11) and 3 with MAJIQ (P = 0.0006). How-
ever, Salmon’s differential isoform detection will also in-
clude isoform differences caused by differential transcrip-
tional start and/or alternative polyadenylation. In contrast
SpliSER detected a total of 1330 genes of which 27 over-
lapped with ASD (P = 2.73e30), 35 overlapped with MA-
JIQ (P = 1.30e–36) and 33 overlapped with Salmon (P
= 8.71e–20). Thus, SpliSER detected substantially higher
number of genes to be differentially spliced in comparison
with all programs. Overall, only two genes were detected by
all four programs, but SpliSER captured most of the genes
(27/34 of ASD; 35/48 of MAJIQ and 33/100 of Salmon).
Yan et al. also experimentally analyzed four genes falling
below the FDR <0.05 threshold, and SpliSER identified
underlying splice-sites in three of the experimentally an-
alyzed genes (Figure 5B). Thus, diffSpliSER analysis can
provide splice-site based details of real differential splicing.

Given that the number of genes picked up with SpliSER
was vastly higher than comparable programs, we consid-
ered the specificity and sensitivity using unbiased simulated
RNA-seq data in comparison to popular tools MAJIQ (8)
and rMATS v.4.1.0 (29). We also included Salmon (26),
which would provide a positive control given the perfect
match between source isoforms and annotated isoforms of
the simulated data (Figure 5C, Supplementary Table S6).
We did not include Leafcutter (6) since it does not model
intron retention, which is abundant in the Arabidopsis (55),
and also observed in other organisms including humans
(56). In our simulations, diffSpliSER performed as well
as other contemporary approaches to differential splicing
analysis, which indicates that the higher number of genes
that we detected to be differentially spliced, could not be
due to reduced sensitivity/specificity and most of these po-
tentially reflect true splicing differences. In addition, diffS-
pliSER provides quantitative comparisons at the splice-site
level between samples (Table 1).

Although SpliSER is developed using Arabidospis sys-
tem, there is nothing inherent in our approach that is spe-
cific to a species. We were able to run differential splic-
ing across a range of plants (e.g. Marchantia polymorpha,

Capsella rubella) and animals (Drosophila and mouse). To
assess the performance of SpliSER in human data, we car-
ried out similar simulations using human transcriptome (see
details in methods). Similar to the Arabidopsis simulations,
in human data as well SpliSER performed pretty similar to
other tools (Supplementary Figure S8, Supplementary Ta-
ble S6).

To the best of our knowledge, SpliSE-QTL is the only
approach that allows detecting genetic variation that is as-
sociated with changes in splicing of a specific individual
splice site. Our findings indicate that SpliSER provide re-
producible quantification of SSE and SpliSE-QTL analysis
has the potential to detect genomic determinants of vari-
ation in splicing. While our analysis is primarily based on
short read RNA seq data, in theory the same principles
could be applied to long-read data with minor changes. Fur-
ther, we believe that even with arbitrarily long reads; mea-
sures of splice site utilization, such as we have presented
here, will remain essential for analysis of splicing regula-
tion. Our findings in Arabidopsis suggest that cis-regulatory
changes and competition between splice-sites based on their
splice-site strength are among the key determinants of vari-
ation in splicing. While more work is needed to explain the
mechanisms for each of these associations, we have demon-
strated that these associated SNPs can be used as markers
for tagging-splicing patterns. Splice-tagging SNPs would be
of great use as markers having wide-ranging implications
from agriculture to human disease. Future GWAS stud-
ies across genomes would unravel both the complexity and
regulators of variation in splicing in an unprecedented fine
scale.
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