
RESEARCH ARTICLE

Data fusion of body-worn accelerometers and

heart rate to predict VO2max during

submaximal running
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Abstract

Maximal oxygen uptake (VO2max) is often used to assess an individual’s cardiorespiratory

fitness. However, measuring this variable requires an athlete to perform a maximal exercise

test which may be impractical, since this test requires trained staff and specialized equip-

ment, and may be hard to incorporate regularly into training programs. The aim of this study

is to develop a new model for predicting VO2max by exploiting its relationship to heart rate

and accelerometer features extracted during submaximal running. To do so, we analyzed

data collected from 31 recreational runners (15 men and 16 women) aged 19-26 years who

performed a maximal incremental test on a treadmill. During this test, the subjects’ heart

rate and acceleration at three locations (the upper back, the lower back and the tibia) were

continuously measured. We extracted a wide variety of features from the measurements of

the warm-up and the first three stages of the test and employed a data-driven approach to

select the most relevant ones. Furthermore, we evaluated the utility of combining different

types of features. Empirically, we found that combining heart rate and accelerometer fea-

tures resulted in the best model with a mean absolute error of 2.33 ml � kg−1 �min−1 and a

mean absolute percentage error of 4.92%. The model includes four features: gender, body

mass, the inverse of the average heart rate and the inverse of the variance of the total tibia

acceleration during the warm-up stage of the treadmill test. Our model provides a practical

tool for recreational runners in the same age range to estimate their VO2max from submaxi-

mal running on a treadmill. It requires two body-worn sensors: a heart rate monitor and an

accelerometer positioned on the tibia.

Introduction

In endurance sports such as distance running and cycling, there is a large interest among

coaches and sports scientists to monitor the cardiorespiratory fitness of athletes for both inter-

and intra-athlete comparison. This is often measured in terms of the maximal oxygen uptake
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(VO2max), which is defined as the maximal rate at which an individual can consume oxygen

during exercise. VO2max is one of the primary determinants of endurance performance [1],

alongside the fractional utilization of VO2max (lactate threshold), and economy of movement

[2].

Typically, VO2max is measured by performing a maximal incremental running test on a

treadmill. However, VO2max testing is often too expensive for non-elite athletes, since maximal

exercise tests must be administered by trained staff in a lab set-up with specialized equipment.

According to the ACSM guidelines on exercise testing [3], the staff should be capable of recog-

nizing contraindications to performing maximal exercise tests and to interpret an electrocar-

diogram (ECG) as the participants exercise until volitional exhaustion. Moreover, for athletes

who follow a training program, it may be hard to incorporate maximal tests regularly into

their training plan, as these may interfere with the planned training sessions.

These limitations have motivated the development of models that can predict VO2max from

submaximal exercise. An extensive overview by Abut et al. [4] compares various maximal, sub-

maximal, and non-exercise models. We focus on the latter two since we are predicting VO2max

from submaximal exercise. Typically, the models are constructed by viewing this as a regres-

sion problem. Thus the two key design choices are selecting the model class, and defining the

relevant predictor variables. In terms of model class, most approaches use linear regression but

some studies have considered support vector regression and artificial neural networks. The

predictor variables (“features”) used in existing models fall in two categories: non-exercise fea-

tures and features collected during submaximal exercise.

In Abut et al.’s overview, all models included non-exercise features such as gender, age,

body mass, height, and BMI. Some studies also considered features based on questionnaire

responses such as the perceived functional ability [5–8] (i.e., a person’s self-reported ability to

walk, jog or run at a comfortable pace for 1 mile (1.609 km) and for 3 miles (4.828 km)), and

physical activity rating [9] (i.e., a person’s self-rated physical activity level during the past 6

months).

Several studies have also included features collected during submaximal exercise [10–15]

by measuring the average heart rate during walking or running, or the heart rate at the end of

exercising for a set time or distance. Furthermore, these are often augmented with features

such as the time needed to cover a set distance, the distance covered in a fixed time period

[11–13], or features extracted from accelerometer signals [14, 15]. Weyand et al. [14] consid-

ered the average heart rate (HR) and the inverse of the foot-ground contact time (t� 1
c ) as mea-

sured by a specifically designed, non-commercial, foot-based accelerometer during running.

Tönis et al. [15] considered heart rate and the “level of activity” during walking at two different

velocities. The level of activity was defined as the sum of the integrals of the absolute value of

the acceleration for the three accelerometer axes. Other studies have used the relation between

heart rate and features derived from accelerometer data by monitoring subjects in free-living

conditions. The accelerometer features in these studies included total acceleration [16], accel-

erometer counts [17, 18], step counts [19, 20], and walking speed derived from the acceleration

signals [21].

The existing approaches for predicting VO2max have several limitations. Many of the mod-

els [5–8] rely on subjective features collected from questionnaires, and an individual’s poor or

misleading answers may unduly affect the results. Including features derived from heart rate

and accelerometer sensors overcomes this drawback, as these sensors are considered to be

objective methods for monitoring physical activity [22, 23]. They have been used in previous

studies based on submaximal running for several minutes [14], walking for a fixed duration

[15], and free-living conditions where participants wore sensors throughout the day without
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adhering to a specific protocol [16–21]. Besides using objective measurements, these methods

also allow estimating VO2max from daily activities. While most of these studies rely on data

measured during a full day, or even multiple days, those by Weyand et al. [14] and Tönis et al.

[15] only need several minutes of exercise. We argue that a short protocol offers the advantage

of making it easier to incorporate VO2max estimation into exercise routines, since it only

requires an individual to wear the sensors for a short amount of time instead of a full day.

However, both of these studies have their limitations as well. Tönis et al. did not verify their

model’s predictions using subjects’ true VO2max. Instead, they checked how well their model’s

predictions correlated with a subject’s estimated VO2max as determined by a submaximal walk-

ing test [24]. Therefore, it is unclear how accurate their model is in practice. Weyand et al.’s

model relies on using a specialized foot-based accelerometer to measure foot-ground contact

time. This requires buying a specialized sensor with a high sampling rate, which recreational

athletes may not want to do. Both Weyand et al. and Tönis et al. only included one or two

hand-selected features in their model. Particularly when confronted with multi-sensor data, it

is difficult for a domain expert to hand select all the relevant features that should be included

in a model.

To address these limitations, this study considers descriptive features along with a large set

of features constructed from heart rate and accelerometer measurements collected during sub-

maximal running on a treadmill. Then, it employs a data-driven approach to select a small

number of the most predictive features to include in a linear regression model for predicting

VO2max. Furthermore, we evaluate how the performance is affected by combining heart rate

features and accelerometer features compared to using these features separately.

Data collection

Subjects

A sample of convenience including 31 recreational runners (15 men and 16 women aged 19-26

years) volunteered to participate in this study. Subjects were recruited during March 2016 via

local advertisements and flyers, and were invited to participate via e-mail correspondence if

they met the inclusion-exclusion criteria of the study. Only subjects who had been running

regularly and had prior experience with treadmill running were eligible to be included in the

study. All subjects had no self-reported history of metabolic, neurological, pulmonary, or car-

diovascular disease or surgery to the back or lower limbs. Furthermore, all were symptom-free

of any lower extremity injury for at least six months prior to the study. All runners provided

written informed consent prior to participation in accordance with the Declaration of Helsinki.

The local ethics committee of Stellenbosch University approved the study (#SU-HSD-002032).

20 of the initial 31 who participated in the first VO2max test volunteered to participate in a

second VO2max test after undergoing a supervised eight-week training intervention designed

to improve the aerobic capacity of running. During this intervention, there were seven drop-

outs (five due to running-related injury and two due to lack of training adherence). Thus a

total of 13 subjects (four men and nine women) were able to perform a second VO2max test

post intervention. In our analysis, we included the first test of all participants, as well as the sec-

ond one if it was performed. As a runner’s VO2max can change as a result of training activities,

we tried to incorporate this type of variability in our dataset by including both tests.

Protocol

Each subject performed one or two maximal incremental running tests to exhaustion on a

motorized treadmill (Saturn h/p/cosmos, Nussdorf-Traunstein, Germany). If two tests were

performed, the second one always took place at least seven weeks after the first test. An

VO2max prediction using data fusion
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example of the protocol is shown in Fig 1. The test began with a four minute warm-up, at a

running speed of 8 km � hr−1 for women and 9 km � hr−1 for men. After the warm-up, the test

proceeded with four minute stages, each of which was followed by one minute of rest, until

volitional exhaustion. The first stage employed the same running speed used during the warm-

up, and each new stage saw the treadmill speed increase discontinuously in increments of 1.5

km � hr−1. The treadmill gradient was fixed at 1% throughout the submaximal assessments to

reflect the energetic cost of outdoor running [25]. Participants could run in their own relatively

new (within three months of use) conventional shod running shoes. All tests were performed

under similar laboratory conditions (20-25˚C, 50-60% relative humidity, and an altitude of

130m). Participants were fitted with an adjustable safety harness during the entire treadmill

test. Each subject reported a rating of perceived exertion score [26] immediately after each

stage. Runners were considered to have achieved VO2max when at least two of the following

criteria were fulfilled:

1. a plateau in the oxygen uptake (VO2) as defined by an increase of less than 1.5 ml � kg−1 �

min−1 in two consecutive stages;

2. a respiratory exchange ratio (RER) > 1.15;

3. a maximal heart rate value (HRmax)> 95% of the age-predicted maximum (220 − age);

4. a rating of perceived exertion (RPE)� 19 on the 6-20 Borg scale.

All tests were terminated by volitional exhaustion, and all subjects achieved VO2max by the set

criteria. Specifically, all subjects met the first and second criteria (VO2 plateau; RER> 1.15),

while three subjects failed to meet the third criterion (one with a faulty HR reading and two

with a HRmax of 90% and 92% respectively), and two failed to meet the fourth criterion (RPE

of 18 and 18.5 respectively).

For the analysis, six treadmill tests were excluded from the dataset. The heart rate measure-

ments of four tests showed an irregular pattern that was probably caused by a poorly con-

nected heart rate strap. In two other tests, the accelerometer data failed to record. Table 1

shows the descriptive characteristics of the participants for the remaining treadmill tests.

Measurements

In this section, we describe the data measured during the treadmill tests that will be used to cal-

culate VO2max and the features for the prediction models.

Fig 1. Example of the protocol for a male runner reaching stage 6.

https://doi.org/10.1371/journal.pone.0199509.g001
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Oxygen uptake. The pulmonary gas exchange was recorded throughout the incremental

test using a breath-by-breath metabolic analyzer (Cosmed Quark CPET, Rome, Italy). The gas

analyzers were calibrated before each session to 16% O2, 4% CO2 balance N2 and the turbine

flow meter was calibrated with a 3L calibration syringe before each test. Oxygen uptake (VO2)

was calculated from the O2 measurements divided by body mass. For each treadmill test, the

maximal oxygen uptake (VO2max) of the runner was calculated as the maximum value of the

rolling average of the VO2 signal with a window length of 30 seconds.

Heart rate. During each treadmill test, the subject’s heart rate (HR) was sampled

breath-by-breath according to the gas exchange using a heart rate monitor (Cosmed Quark

CPET, Rome, Italy). The samples were then averaged every 10 seconds. As the averaged sig-

nal was often still noisy, small fluctuations and sudden peaks were removed by smoothing

the signal using a median filter, where each measurement xt was replaced by the median of

{xt−3, . . ., xt, . . ., xt+3}.

Acceleration. Acceleration was measured using wearable inertial measurement units

(Shimmer3 wireless IMU, sampling rate 1024Hz, range ±16g, Dublin, Ireland) at four loca-

tions: upper back, lower back, and left and right tibia, as shown in Fig 2. The upper back accel-

erometer was aligned between the shoulder blades at the level of the C7-T2 spinal processes.

The lower back accelerometer was aligned between the posterior superior iliac spines at the

level of the L3-L5 spinal processes, and the tibial accelerometers were aligned on the antero-

medial aspect of the distal tibia, 8cm above the medial malleolus. In two tests, one of the tibia

accelerometers fell off. Therefore only data from one tibia accelerometer is used. The right one

is used in the one trial where the left one fell off, and the left one is used for the remaining 40

trials.

The accelerometer measurements were sampled at 1024 Hz. To remove noise, the accelera-

tion signals were filtered using a low-pass filter with a cut-off frequency of 50 Hz, which is

high enough to capture characteristics of running patterns. To make sure that the axes of the

accelerometers were rotated correctly, the Moe-Nilssen tilt correction method [27] was used to

align the axes with the anterior-posterior, mediolateral, and vertical direction of the runners.

This method also subtracts the static gravity component (1g) from the vertical acceleration.

Experiments

We perform two experiments on the data collected during the treadmill test. In the first experi-

ment, we explore a data-driven approach to find a good feature set by comparing different

combinations of descriptive, heart rate and accelerometer features. The best combination

found in this experiment will serve as our final model. In the second experiment, we replicate

Weyand et al.’s model [14] using the sensors available in our study and compare its perfor-

mance to our best model.

Table 1. Descriptive characteristics of the subjects. Notation: mean ± SD.

Men Women All

Number of subjects 12 16 28

Number of tests 16 25 41

Age (years) 22.06 ± 2.11 21.56 ± 0.70 21.76 ± 1.44

Height (m) 1.79 ± 0.07 1.68 ± 0.06 1.72 ± 0.08

Body mass (kg) 75.34 ± 11.23 61.55 ± 7.18 66.93 ± 11.22

BMI (kg �m−2) 23.46 ± 2.85 21.84 ± 2.38 22.47 ± 2.69

VO2max (ml � kg−1 �min−1) 51.55 ± 5.74 43.65 ± 4.90 46.73 ± 6.51

https://doi.org/10.1371/journal.pone.0199509.t001

VO2max prediction using data fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0199509 June 29, 2018 5 / 17

https://doi.org/10.1371/journal.pone.0199509.t001
https://doi.org/10.1371/journal.pone.0199509


Experiment 1: Our approach

Feature extraction. Three types of features are used in this study: descriptive features,

heart rate features and accelerometer features. Since the goal is to develop a model for predict-

ing VO2max from submaximal exercise, the latter two types of features are extracted from the

warm-up stage and the first three stages of the test only. The third stage was performed at 12

km � hr−1 for men and 11 km � hr−1 for women, and it was confirmed that it represented sub-

maximal running by the respiratory exchange ratio being < 1. Table 2 summarizes the fea-

tures, which are described in more detail next.

All models listed in the overview of Abut et al. [4] use (a subset of) gender, body mass,

length, BMI and age as descriptive features. This study considers two of these features: gender

(G: 0 = male, 1 = female) and body mass (BM) in kg, which are known to be relevant for pre-

dicting VO2max. Given the relatively small age range of the subjects (19-26 years) and that

VO2max decreases approximately 0.2-0.5 ml � kg−1 �min−1 per year [28], age is not considered.

From the heart rate measurements we calculate the average heart rate (HR) for each stage of

the test. Like Weyand et al. [14], we also calculate the inverse of the average heart rate because

of the inverse relation between heart rate and maximal oxygen uptake [29]. Because the heart

rate dropped during the rest periods, the average is computed only over the last minute of each

stage where the heart rate was more stable.

From the accelerometer data, the following five features are extracted from each stage: aver-

age (AVG), standard deviation (SD), variance (VAR), root mean square (RMS) and power (P).

RMS is often used in studies related to running gait analysis [30, 31]. The other features are

Fig 2. Locations of the accelerometers attached to the runners’ bodies. For each location, an example signal of the total acceleration over three seconds is shown.

Note that only one of the two tibia accelerometers is used in this study.

https://doi.org/10.1371/journal.pone.0199509.g002
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commonly used to describe movement patterns based on accelerometer measurements. Simi-

larly to the heart rate features, we also compute the inverse of each feature, since the acceler-

ometer features may have an inverse relation to VO2max as well. Each feature is calculated for

the anterior-posterior (x), mediolateral (y), vertical (z) and total (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
) acceleration

signals measured at the upper back, lower back and left tibia (or right tibia if the accelerometer

on the left tibia fell off). Because the treadmill accelerated and decelerated at the start and end

of each stage, the first and last ten seconds of each stage are discarded.

Prediction method. We employ a mixed-effects unpenalized linear regression model to

predict VO2max. We chose a linear model because it offers reasonable interpretability. This is

important for sports scientists, coaches and athletes who want to gain insight into which fea-

tures influence the prediction. Moreover, linear models tend to offer more robustness against

overfitting for small sample sizes, provided that a relatively small feature set is used, which we

ensure by performing feature selection as described in the following section.

Some subjects performed two trials (before and after an intervention) while others com-

pleted only one trial. To account for the potential correlation between repeated observations,

we use a mixed-effects model where the variable ‘Test’ (which has the value ‘pre’ or ‘post’

depending on whether the trial was performed before or after the intervention, respectively) is

a random effect for the intercept. We use the lme4 package [32] in R and specify the regression

formula as follows:

VO2max � 1þ ð1jTestÞ þ Gþ BMþ :::

where G, BM, . . . are the fixed-effect variables included in the model, which are selected using

the feature selection method described in the next section.

Feature selection. We combine the descriptive, heart rate and acceleration features (see

Table 2) into one feature set. However, given that the sample size is 41 data points, including

all 490 features in the model may result in overfitting. Therefore, we select a subset of the fea-

tures using a variant of greedy forward selection [33]. Greedy forward selection is a wrapper-

based approach that typically starts with an empty feature set. It then iteratively adds the single

best feature from a candidate set to the feature set until some stopping criterion is satisfied.

Here, instead of starting from an empty feature set, we begin with a feature set F that con-

tains the two descriptive features. All the heart rate and accelerometer features are added to the

Table 2. Overview of all features.

Category # Features

Descriptive 2 Gender (0 = male, 1 = female) G

Body mass (kg) BM

Heart rate 8 Average HRð� 1Þ

i

Acceleration 480 Average HRð� 1Þ

l;d;i

Standard deviation SDð� 1Þ

l;d;i

Variance VAR ð� 1Þ

l;d;i

Root mean square RMSð� 1Þ

l;d;i

Power Pð� 1Þ

l;d;i

Notation: stage number i = 0, 1, 2, 3 (stage 0 is the warm-up stage); accelerometer location l = t, bl, bu (t = left or

right tibia, bl = lower back, bu = upper back); direction d = x, y, z, total (x = anterior-posterior, y = mediolateral, z =

vertical); the superscript (−1) means that both the feature and its inverse are computed.

https://doi.org/10.1371/journal.pone.0199509.t002
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set of candidate features C. In each iteration, we assess the quality of each feature f 2 C by

learning a linear regression model M0 using the feature set F0 = F [ {f} as input. We evaluate f’s
quality by using internal leave-one-subject-out cross-validation on the training data to calcu-

late M0’s adjusted explained variance (R2

adj):

R2
adj ¼ 1 �

n � 1

n � p � 1
� ð1 � R2Þ ¼ 1 �

n � 1

n � p � 1
�

PN
i¼1
ðŷ i � yiÞ

2

PN
i¼1
ðyi � �yÞ2

 !

where n is the number of instances used to train the model and p is the number of features.

We use R2

adj instead of R2 because it corrects for the fact that F0 has a different number of fea-

tures than F. In each iteration of the forward selection, the highest scoring feature fb is added

to F (i.e., F = F [ {fb}) and removed from C (i.e., C = C \ {fb}) provided that adding fb to F results

in an improvement of at least 0.05 in the R2

adj. We use this improvement threshold as an addi-

tional countermeasure against overfitting. The selection process is terminated when no feature

meets the improvement threshold.

Experimental set-up. We compare four different combinations of descriptive features,

heart rate features and accelerometer features:

F1: uses only the two descriptive features: gender and body mass;

F2: combines F1 with the heart rate features;

F3: combines F1 with the accelerometer features;

F4: combines F1 with both the heart rate and the accelerometer features.

Experiment 2: Replicating Weyand et al.’s model

Weyand et al. [14] proposed a model to predict VO2max based on the ratio t� 1
c =HR, where tc is

the foot-ground contact time and HR is the average heart rate as measured over several min-

utes of running. This study found that these variables show a linear and parallel increase as the

running speed increases, and that the ratio t� 1
c =HR is related to VO2max. In Weyand et al.’s

study, contact time was measured via an accelerometer placed on the foot. Next, we describe

how we compare to Weyand et al.’s model given that we do not have access to foot-based accel-

erometer data.

Feature extraction. We employ Gaudino et al.’s method [34] for calculating the contact

time from the vertical acceleration at the center of mass (COM). Since the lower back acceler-

ometer is positioned close to the COM during running, we use this accelerometer to estimate

contact time. The start and end of foot-ground contact is determined by detecting where the

signal crosses zero, as shown in Fig 3. To identify these points, the signal is first smoothed

using a 4th-order Butterworth low-pass filter with a cut-off frequency of 15Hz. For each of the

first three stages of the treadmill test, we estimate the contact time (ti
c) as the average over all

steps within stage i. We also compute the average heart rate (HRi) from the last minute of stage

i as previously described. We then calculate ðti
cÞ
� 1
=HRi for each stage and average the three val-

ues to obtain the value of the final ratio feature.

Some differences exist in the way we compute the ratio feature compared to Weyand et al.’s

study. First, we compute the average contact time for each stage (ti
c) using the complete stage.

In Weyand et al.’s study, ti
c is computed using� 20 consecutive steps at least 30 seconds into

the stage. Second, we calculate the average heart rate (HRi) using the last minute of the stage

whereas Weyand et al. compute HRi as the average of the heart rate values measured at 3.75,

4.75 and 5.25 minutes after the start of the stage. Because Weyand et al.’s protocol does not

VO2max prediction using data fusion
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have a warm-up stage while our protocol does, we omit the data from the warm-up stage in

this comparison.

Experimental set-up. Weyand et al. proposed two approaches based on the ratio t� 1
c =HR

combined with the gender of the subjects. The first learned separate linear regression models

for men and women, each of which used only t� 1
c =HR as input. The second learned a single lin-

ear regression model using both gender and t� 1
c =HR as inputs. We evaluate both approaches

and compare the results to our method. Note that we employ a fixed-effects linear model here

to keep the set-up similar to Weyand et al.’s study.

Evaluation

Given the small sample size, we use leave-one-subject-out cross-validation to evaluate the

models. In this cross-validation scheme, the data of one subject (one or two treadmill tests) are

used as test data while the data of the other subjects are used for selecting features and training

the model. This means that the features of the model are selected separately for each subset.

Hence, in the feature selection process, the R2

adj values to evaluate features are computed using

an inner cross-validation loop, while the models are evaluated using an outer cross-validation

loop.

Fig 3. Calculation of contact time from the vertical lower back acceleration. The green and red dots indicate respectively starts and ends of foot-ground contact.

https://doi.org/10.1371/journal.pone.0199509.g003
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The predicted VO2max values are evaluated using the following metrics: the explained

variance (R2) of the model, the mean absolute error (MAE) and the root mean squared error

(RMSE) expressed in ml � kg−1 �min−1. We also report the mean absolute percentage error

(MAPE) and the root mean squared relative error (RMSRE). These evaluation metrics are

defined as follows:

R2 ¼ 1 �

PN
i¼1
ðŷ i � yiÞ

2

PN
i¼1
ðyi � �yÞ2

MAE ¼
1

N
�
XN

i¼1

jŷ i � yij

MAPE ¼
1

N
�
XN

i¼1

ŷ i � yi

yi

�
�
�
�

�
�
�
�

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN

i¼1

ðŷ i � yiÞ
2

s

RMSRE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN

i¼1

ŷ i � yi

yi

� �2
s

where y are the measured VO2max values (with average �y) and ŷ are the predicted values for

the N = 41 treadmill tests.

Results

Results for experiment 1: Data-driven model selection

Fig 4 shows how the predicted VO2max values fit the measured values for each of the four fea-

ture set combinations: F1, F2, F3 and F4. The VO2max values are predicted using leave-one-sub-

ject-out cross-validation, where in each fold we first select features using the training data, and

then learn a mixed-effects linear regression model using the same training data again. The sup-

porting tables (S1–S3 Tables) show the number of folds that each feature was selected in when

using feature sets F2, F3 and F4, respectively. Note that no feature selection is used for F1: gen-

der and body mass are always included.

Table 3 summarizes the results for each combination according to all five evaluation met-

rics. F4, the combination of descriptive features, heart rate and accelerometer features, results

Fig 4. Measured vs predicted VO2max values. D = descriptive features, HR = heart rate features, ACC = accelerometer

features. Points that are closer to the orange line, on which the measured VO2max equals the predicted VO2max,

correspond to more accurate predictions.

https://doi.org/10.1371/journal.pone.0199509.g004

VO2max prediction using data fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0199509 June 29, 2018 10 / 17

https://doi.org/10.1371/journal.pone.0199509.g004
https://doi.org/10.1371/journal.pone.0199509


in a mean absolute error of 2.33 ml � kg−1 �min−1. In percentage terms, the average prediction

error is 4.92%, meaning that the predicted VO2max is on average within 5% of the true VO2max

value. Additionally, this model has an explained variance (R2) of 0.781, which is better than all

other combinations. Regardless of the metric, the models are ranked in the same order: F4 >

F2 > F1 > F3. This shows that the accelerometer data improve the predictions, but only if used

in combination with the heart rate data.

Table 4 shows the fixed-effect coefficients for each of the four combinations, inferred using

the full dataset. In the best combination (F4) four features were selected: gender, body mass,

the inverse of the average heart rate during the warm-up stage (HR� 1

0
) and the inverse of the

variance of the total tibia acceleration during the warm-up stage (VAR � 1

t;total;0).

Results for experiment 2: Comparison to Weyand et al.

Table 5 shows the results for all five metrics for both models. The first method results in a

MAE of 3.65 ml � kg−1 �min−1 (or relative terms 7.96%) and an explained variance (R2) of

0.441. Like in Weyand et al.’s study, the second method performs better with a MAE of 3.58

ml � kg−1 �min−1 (or relative terms 7.81%) and an R2 value of 0.467. The model fit for the sec-

ond method is shown in Fig 5.

Discussion

Combining heart rate and accelerometer features

The results indicate that the data-driven approach employed in this study can be used to auto-

matically find relevant features to predict VO2max. The comparison of the different models in

Fig 4 shows that features derived from body-worn technology improve the predictions com-

pared to only considering descriptive features. The integration of physiological and bio-

mechanical systems further improves the model. While the related work by Weyand et al. [14]

Table 3. Comparison of the four combinations.

Combination R2 MAE MAPE RMSE RMSRE

F1 0.494 3.53 7.75% 4.63 10.33%

F2 0.692 2.98 6.51% 3.61 7.91%

F3 0.320 4.24 9.28% 5.363 11.87%

F4 0.781 2.33 4.92% 3.05 6.34%

R2 = explained variance, MA(P)E = mean absolute (percentage) error and RMS(R)E = root mean squared (relative) error. MAE and RMSE are expressed in ml � kg−1 �

min−1.

https://doi.org/10.1371/journal.pone.0199509.t003

Table 4. Predictor functions. Fixed-effect coefficients learned from the complete dataset.

Combination Function

F1 79.64 − 13.04 × G − 0.3728 × BM

F2 43:77 � 9:741� G � 0:3182� BMþ 4381�HR� 1

0

F3 77.58 − 9.769 × G − 0.2676 × BM − 14.41 × RMSbl,y,1

F4 25:78 � 8:861� G � 0:2538� BMþ 5546�HR� 1

0
þ 4:879� VAR � 1

t;total;0

G = gender, BM = body mass, HR� 1

0
= inverse of the average heart rate of the warm-up stage, RMSbl,y,1 = root mean

squared acceleration of the mediolateral lower back acceleration in stage 1, VAR � 1

t;total;0 = inverse of the variance of the

total tibia acceleration in the warm-up stage.

https://doi.org/10.1371/journal.pone.0199509.t004
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and Tönis et al. [15] is based on the same idea, we show that considering a broader set of fea-

tures derived from accelerometer measurements may be beneficial for predicting VO2max.

The best prediction model found in this study is based on four features: gender, body mass,

the inverse of the average heart rate of the warm-up stage (HR� 1

0
) and the inverse of the variance

of the total tibia acceleration in the warm-up stage (VAR� 1

t;total;0). The first two features are

known to be related to VO2max and are used in most existing models. The third feature is the

inverse of the average heart rate and represents the inverse relation between heart rate and

VO2max [29]. The last feature is the inverse of the variance of the total tibia acceleration

(VAR� 1

t;total;0). To gain insight into how to interpret this feature, we compare the total tibia accel-

eration in the warm-up stage of two subjects with the same gender, a similar body mass and a

similar value for the HR� 1

0
feature. Fig 6 shows four seconds of each subject’s signals. The sub-

ject with the higher VO2max (subject 2) has a higher value of VAR� 1

t;total;0 which corresponds to a

lower variance of the total tibia acceleration signal. Since this signal includes the entire gait

cycle, the 3D accelerations generated during both the swing phase (i.e., movement) and the con-

tact phase (i.e., ground reaction forces) contribute to the value of the feature. As can be seen

from this comparison, the difference in the variance is mainly caused by the height of the peaks

Table 5. Comparison of the two methods of Weyand et al.

Method R2 MAE MAPE RMSE RMSRE

1 0.441 3.65 7.96% 4.86 10.89%

2 0.467 3.58 7.81% 4.74 10.63%

R2 = explained variance, MA(P)E = mean absolute (percentage) error and RMS(R)E = root mean squared (relative) error. MAE and RMSE are expressed in ml � kg−1 �

min−1.

https://doi.org/10.1371/journal.pone.0199509.t005

Fig 5. Evaluation of the second method of Weyand et al. using gender and t � 1
c =HR as features.

https://doi.org/10.1371/journal.pone.0199509.g005
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generated during the contact phase. The relation of this feature to running VO2max is interesting

as it has not been used before for the prediction of VO2max from submaximal running.

Replicating Weyand et al.’s model

Compared to Weyand et al.’s paper, we report a more comprehensive set of error metrics.

According to all five metrics, our learned model using F4 results in more accurate predictions

than using Weyand et al.’s model based on our available sensors. While our best model

obtained a better R2 than either of Weyand et al.’s models as reported in their paper, our repli-

cation did result in lower R2 values than was reported in the original paper. There are several

possible explanations for this. First, we use an accelerometer placed on the lower back instead

of on the foot to estimate contact time. Calculating the contact time using a lower back acceler-

ometer may be less accurate and hence these errors may negatively influence the predictions of

the model. Second, all subjects of the present study are recreational runners of 19-26 years old,

while some participants in Weyand et al.’s study [14] ran> 1 hour each day and the oldest

runner was 47 years old. These differences may affect the generalizability of the model to new

data. Third, our study used a different protocol. In Weyand et al.’s protocol [14], subjects ran

in bouts of 5.5 min, with rest intervals of 3-5 min. In contrast, the subjects in our protocol ran

in stages of 4 min with rest intervals of 1 min. These protocol differences affect heart rate due

to recovery and thus the predictions as well.

Practical use of the model

Two sensors are required in the final model: a heart rate monitor and an accelerometer

attached to the left or right tibia. While most runners currently use a sports watch equipped

Fig 6. Total tibia acceleration of two similar subjects. The two subjects have the same gender (G = 1 = female), a

similar body mass (BM = 71.8 kg for subject 1 and 68.5 kg for subject 2), and a similar inverse heart rate in the warm-

up stage (HR� 1

0
= 0.00559 for subject 1 and 0.00557 for subject 2). While the value of the VAR� 1

t;total;0 feature is low for

subject 1 (0.689), it is high for subject 2 (2.30). Consequently, subject 1 has a lower VO2max (33.14 ml � kg−1 �min−1)

than subject 2 (41.71 ml � kg−1 �min−1).

https://doi.org/10.1371/journal.pone.0199509.g006
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with a heart rate monitor, the use of the tibia accelerometer may be less practical. More

specifically, three aspects should be considered. First, the tibia accelerometer should be firmly

attached so that it does not fall off as occurred in one test in this study. A practical tool there-

fore needs a compact and lightweight device. Second, the accelerometer should be attached at

the correct position, which is the antero-medial aspect of the distal tibia. One possibility is to

embed the device in the clothing of the athlete. Third, commercially available accelerometers

typically have a lower sampling rate than 1024 Hz, which was used in this study. The sample

rate may affect the values of the features computed from the accelerometer signal, and hence

the predictions of the model. To check the robustness of the predictions to this factor, we cal-

culated the value of the tibia feature for each test example from a down-sampled acceleration

signal. We then evaluated the model, which was trained using the 1024 Hz data, for the down-

sampled data. Fig 7 shows the R2 when using F4 as a function of the sample rate. These results

show that using commercially available accelerometers, which can usually sample accelerations

at� 50 Hz, will not decrease the model’s explained variance.

Another practical aspect is the speed at which subjects need to run in order to compute the

features extracted from the sensors. Since this study’s goal was to develop a submaximal exer-

cise model, lower running speeds are preferred. Both the selected heart rate feature and the

accelerometer feature are computed during the warm-up phase, which means that an individu-

al’s VO2max could be predicted from only four minutes of running at a speed of 8 or 9 km �

hr−1. As this is a low exercise intensity, athletes could regularly estimate their VO2max to closely

monitor training adaptations.

A final practical consideration is that the model in this paper is based on running at fixed

velocities on a treadmill. As most acceleration-based features are speed dependent, our model

may not be applicable to data collected during outdoor running, where the running speed var-

ies. However, the same data-driven approach presented in this paper could be applied to data

from outdoor running to develop a model capable of predicting VO2max in that setting.

Generalizability

The use of leave-one-subject-out cross-validation means that the error estimates evaluate the

model’s ability to generalize to unseen individuals who have similar characteristics to the

Fig 7. Explained variance (R2) of F4 when down-sampling the tibia acceleration to different sample rates.

https://doi.org/10.1371/journal.pone.0199509.g007
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subjects in our data sample. However, an unseen individual may differ in two important ways

from the subjects in this study. First, all participants of this study were recreational runners. It

is unclear how well this model would translate to elite athletes who have higher VO2max values.

Additional research would be needed to ascertain if VO2max can be predicted accurately from

submaximal effort for elite athletes. Second, all participants were between 19 and 26 years old.

Given that VO2max decreases approximately 0.2-0.5 ml � kg−1 �min−1 per year [28], the quality

of the model’s predictions will likely be lower for younger or older individuals. If the age range

of a study’s participants is wider, then including age as a feature in the model may be valuable.

Conclusion and future work

In this study, we have shown that VO2max can be predicted from a combination of descriptive

features, heart rate features and accelerometer features derived from data collected during sub-

maximal running. We defined a large set of features based on the sensor data and employed

a data-driven approach to select a small subset of them to include in a mixed-effects linear

regression model. We evaluated the benefit of each category of features (descriptive, heart rate,

and accelerometer) and found that considering all three types resulted in the best performance.

The best model found in this paper had an explained variance of 0.781 and used four features:

two descriptive features (gender and body mass), one heart rate feature (HR� 1

0
) and one accel-

erometer feature (VAR � 1

t;total;0). This model can predict an individual’s VO2max from objective

variables calculated from running on a treadmill at only 8 or 9 km � hr−1 for four minutes.

There are two limitations to the model. First, as the participants in our study were recrea-

tional runners between 19 and 26 years of age, the model is likely not applicable for elite

runners and subjects outside of this age range. An interesting future direction would be

developing models to predict the VO2max from elite athletes, as well as considering subjects

with a wider range of ages. Second, our model is based on running activity on a treadmill.

In future work, it would be interesting to investigate predicting VO2max based on outdoor

running.
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Benedicte Vanwanseele, Jesse Davis.

Data curation: Kurt H. Schütte.
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Supervision: Tim Op De Beéck, Kurt H. Schütte, Wannes Meert, Benedicte Vanwanseele,

Jesse Davis.

Validation: Arne De Brabandere, Kurt H. Schütte, Wannes Meert, Jesse Davis.
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