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Abstract: Based on the extended STIRPAT model, this paper examines social and economic factors
regarding PM2.5 concentration intensity in 255 Chinese cities from 2007 to 2016, and includes quan-
tile regressions to analyze the different effects of these factors among cities of various sizes. The
results indicate that: (1) during 2007–2016, urban PM2.5 concentration exhibited declining trends in
fluctuations concerning the development of the urban economy, accompanied by uncertainty under
different city types; (2) population size has a significant effect on propelling PM2.5 concentration;
(3) the effect of structure reformation on PM2.5 concentration is evident among cities with different
populations and levels of economic development; and (4) foreign investment and scientific technology
can significantly reduce PM2.5 emission concentration in cities. Accordingly, local governments not
only endeavor to further control population size, but should implement a recycling economy, and
devise a viable urban industrial structure. The city governance policies for PM2.5 concentration reduc-
tion require re-classification according to different population scales. Cities with large populations
(i.e., over 10 million) should consider reducing their energy consumption. Medium population-sized
cities (between 1 million and 10 million) should indeed implement effective population (density)
control policies, while cities with small populations (less than 1 million) should focus on promoting
sustainable urban development to stop environmental pollution from secondary industry sources.

Keywords: PM2.5; influencing factors; STIRPAT model; quantile regression

1. Introduction

With the rapid changes occurring in industrialization and urbanization, China’s eco-
nomic development has been expanding in recent decades. Consequently, massive haze
pollution has been generated from such rapid economic development and it can no longer
be ignored. In response to the frequent and widespread haze pollution problem, the Chinese
government is now paying much greater attention to it. The Action Plan for the Prevention
and Control of Air Pollution was issued in 2013, aiming to reduce the concentration of fine
particles. PM2.5 is one of the most widespread pollutants among fine particles. The Ministry
of Environmental Protection adopted the Ambient Air Quality Standards (GB3095-2012) in
2012. It stipulates the annual average concentration limit of PM2.5, with the primary limit
standard of 15 µg/m3 and the secondary limit standard of 35 µg/m3. As seen in Figure 1,
the proportion of PM2.5 annual average concentration below the secondary concentration
limit experienced an increase from 26.27% in 2007 to 36.86% in 2012, followed by a sharp
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decline from 31.32% in 2013, and a steady increase up to 47.06% in 2016. The proportion
of PM2.5 annual average concentration is higher than 55 µg/m3 but did decline gradually
to 36.86% in 2007, then 18.43% in 2016 after a slight rebound in 2010 (31.76%) and 2013
(33.21%). The national average of PM2.5 concentration was 47 µg/m3 in 2016, with a 29%
decrease compared to 2013.
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Figure 1. The trend regarding PM2.5 concentration in China’s 255 cities, 2007–2016 (µg/m3).

Most current studies in China have stated the main pollutants of air pollution such
as: carbon dioxide (CO2), nitrogen oxide (NOX), sulfur dioxide (SO2) and fine particulate
matter (PM2.5) [1–4]. Dong et al. examined key impact factors, specifically the CO2
emissions of 128 countries from 1990 to 2014. The results indicate that causality varies
among the variables across regions [5]. Diao et al. studied the industrial NOx emissions
in China’s provinces, and pointed out that the government must develop appropriate
regulatory policies to combat regional pollution [6]. Miao et al. focused on the key factors of
dust and SO2 emissions and found that pollutant emissions are correlated across regions [7].
Yang and Shan also investigated regional industrial SO2 emissions in the Jiangsu Province
and its south, middle and north regions during 2004–2016 [8]. Meanwhile Weng et al.
explored the urban environmental effect driven by multi-factors, such as industrial SO2,
wastewater and dust emission intensity in prefecture-level cities [9]. PM2.5 is one of the
main particulate matters found in haze, which is evidenced as the main contributor of air
pollution [10]. Wang et al. and Chen et al. also pointed out that PM2.5 can in fact seriously
affect ambient air quality [11,12].

Most Chinese scholars utilize certain variables to measure population density [13],
urbanization [14] and FDI [15] when discussing the driving factor of PM2.5 concentration
at the city level. Furthermore, energy-related indicators also play an important role in
PM2.5 concentration but the effects are rarely examined due to the lack of data captured
and in cities [16], which has led to the omitted variable bias. This study uses electricity
consumption to measure the level of energy consumption mainly based on the following
two considerations. Firstly, electricity consumption has been widely used by scholars as an
indicator since it highly correlates with urban energy consumption. Secondly, data accuracy
and availability of this indicator reduces the bias of omitted variables, thus improving the
reliability of results [17,18].

Scholars have used different research methods, such as exploratory spatial data analy-
sis (ESDA) [19], factor analysis [20], the Stochastic Impacts by Regression on Population,
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Affluence and Technology (STIRPAT) model [21], GeogDetector [22,23] and spatial econo-
metric model to explore the main factors affecting PM2.5 concentration [4]. Zhang et al.
used spatial regression to mainly discuss the direct and indirect influences which several
factors make on PM2.5 concentration. The study finds that environmental regulations
not only have a direct impact on haze pollution, but also affect haze pollution indirectly
through coal consumption, as it relates to foreign direct investment (FDI), and industrial
structure and technological innovation [24]. Lu et al. employed both linear regression and
grey system correlation analysis methods to analyze the spatial and temporal patterns,
variation trends and the main factors influencing PM2.5 concentration in China from 1998
to 2014. The results conclude that high PM2.5 concentration in the northwest of China
were mainly caused by natural factors (sand and dust), while in the eastern region mainly
resulted from human activities. Low PM2.5 concentration areas were mainly located in
the less developed regions [25]. Yang et al. applied the GeogDetector method to quantify
nonlinear associations between PM2.5 concentration and potential factors. Both natural and
socioeconomic factors and their interactive impacts on PM2.5 pollution are considered [22].
Wang et al. employed multi-temporal and statistical analysis to show the temporal and
spatial characteristics of PM2.5 concentration in 338 Chinese cities during 2014–2017, and
further used structural equation modeling (SEM) to quantify the socio-economic driving
factors of PM2.5 concentration changes. This concluded that urban population density
contributes most significantly [26]. Zhou et al. verified that population scale wields a
significantly positive effect on PM2.5 concentration in 199 cities of China [27].

Few scholars evaluated the determinants of PM2.5 concentration among various popu-
lation scales. The factors causing the problem of PM2.5 concentration vary in regions with
different population sizes. Although previous scholars studied PM2.5 concentration mainly
at the national level, it has gradually expanded to provide research into the regions and
regional or cross-regional levels, such as the Yangtze River Delta region, Beijing-Tianjin-
Hebei region and various provinces of China [28–30]. For instance, Luo et al. employed
an extended STIRPAT model to identify the socioeconomic determinants of PM2.5 con-
centration for 12 different regions in China, and ranked the influencing factors on PM2.5
concentration in descending order of importance [31]. Cheng et al. used the epsilon-based
measure (EBM) meta-frontier Malmquist model to measure the meta-frontier Malmquist
total factor productivity index (MMPI) in 10 city groups [32]. According to the above
studies, most research focused on the differentiated determinants of PM2.5 concentration in
various geographic regions.

To differentiate the diverse effects of population sizes on PM2.5 concentration, the
quantile regression method is implemented. The ordinary least squares (OLS) method only
analyzes the expected value of the effect of each explanatory variable. It cannot ascertain
the influence of each factor on the distribution patterns alone of PM2.5 concentration
and distinguish the different results from one factor using such varied types. Quantile
regression as proposed by Koenker and Bassett (1978), however, can perhaps solve this
problem [33]. The quantile regression method assumes the quantile of the conditional
distribution of the dependent variable as a linear function, and thus establishes a quantile
regression of the dependent variable. It can obtain the quantile effect of the independent
variable on the dependent variable, which gives a more detailed picture of the conditions of
distribution and a more comprehensive set of results. It can avoid the shortcomings of OLS
regression in analyzing the outliers and heteroskedasticity of the dependent variable [34,35].
Consequently, it is essential to consider population scale in our research by using the
quantile regression model.

The Environmental Kuznets Curve (EKC) theory is another important issue widely
discussed in current literatures. The inverted U-shaped curve relationship between the
level of environmental pollution and income level implies that environmental degradation
increases with output during the early stages of economic growth. However, it declines
with output after reaching a specified threshold. Some scholars further studied the EKC
hypothesis and found that haze pollution and economic development not only have an
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inverted U-shaped curve relationship [36,37], but also have a U-shaped [38], N-shaped
or inverted N-shaped relationship [39,40]. While some regions could not confirm the
EKC hypothesis [41,42]. Apergis et al. postulated that the EKC hypothesis holds in only
10 states, while the remaining 38 states do not find the EKC hypothesis, which should
prevent environmental degradation but not at the expense of economic growth [43]. Current
studies such as those above have analyzed the driving factor of PM2.5 concentration using
various models to support the existence of EKC in PM2.5 concentration. As referred to
previously, a few scholars have combined the influential elements on PM2.5 concentration
and the EKC of the economy and PM2.5 concentration, which is worth investigating further.

In summary, three aspects contribute to this research field. Firstly, instead of only
considering the geological differences, cities in China are categorized into four types to
explore the differentiated effect of variables on PM2.5 concentration classified by population
scale. Secondly, the urban scale and EKC effect are both taken into account. This paper
constructs the STIRPAT model of PM2.5 concentration in 255 cities and combines the EKC
hypothesis to measure the determinants of haze pollution more comprehensively. Thirdly,
total electricity consumption as a critical proxy of energy consumption is also involved in
the model to measure the influence of energy consumption on PM2.5 concentration, which
enriches the model with more variables.

The following is further discussed. Section 2 presents the methodology, variables and
data sources. Section 3 represents the results of the STIRPAT model and quantile regression.
Section 4 proposes further discussion. The corresponding conclusions are articulated in
Section 5.

2. Materials and Methods
2.1. Methodology

In 1971, Ehrlich and Holden first proposed the “I = PAT” model [44] to study the
relationship between population and environment. Dietz later proposed the Stochastic
Impacts by Regression on Population, Affluence and Technology (STIRPAT) model which
takes the general form:

I = αPb AcTd (1)

where I refers to environmental impact, P denotes population size, A represents affluence,
T denotes technology level and e denotes random disturbance term. Both sides of the
equation are taken logarithmically as:

ln(I) = α + bln(P) + clnA + dlnT + e (2)

To measure the influence of energy on urban PM2.5 concentration, an extended
STIRPAT-based model is implemented to empirically analyze the influencing factors of
PM2.5 concentration in 255 cities in China. The EKC curve between PM2.5 emission intensity
and economic development is also investigated. The equation in the form of logarithm is
as follows:

ln(PM2.5it)= α0+α1ln(PDit)+α2ln(GDPit)+α3ln(GDPit)
2

+α4ln(GDPit)
3+α5ln(SEit)+α6ln(TECit)+α7ln(FIit)+α8ln(PSPit)+µit

(3)

where i represents region, t stands for time, PM2.5 is PM2.5 concentration in region i at
time t, PD denotes population density, GDP denotes gross domestic product, SE refers to
science expenditure, TEC denotes total electricity consumption, FI indicates actual foreign
investment amount, PSP denotes the proportion of secondary industry in GDP and µit
denotes the disturbance term.

In order to investigate the influence of PM2.5 concentration in cities with different
population sizes at different quartiles, the following quantile regression model is developed.

Quantθ((ln (PM2.5it) )|X it)= βθXit (4)
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In Equation (4), Xit is the independent variable; βθ is the coefficient vector; and
Quantθ((ln (PM2.5it) )|X it) denotes the conditional quantile of PM2.5 concentration corre-
sponding to the quantile θ (0 < θ < 1) for a given X. The coefficient vector βθ corresponding
to θ is achieved by minimizing the absolute deviation (LAD):

βθ= argmin
{

∑i, t, (ln(PM2.5it))≥Xitβ θ|(ln (PM2.5it))− Xitβ|
}

+∑i, t, (ln(PM2.5it))<Xitβ(1− θ) |(ln (PM2.5it))− Xitθ|}
(5)

The bootstraps intensive algorithm technique is applied to estimate the quantile re-
gression coefficients βθ , which means that the confidence interval of the sample is obtained
by continuously having a put-back sampling process.

2.2. Variable and Data

Integrating domestic and foreign studies, PM2.5 concentration is adopted as the proxy
variable of air pollution, which can directly represent the extent of haze pollution. Six
explanatory variables are selected in this paper based on the STIRPAT model. The main
explanatory variables in STIRPAT model include: (1) Population density (PD) is the number
of people in per unit area. (2) Gross domestic product (GDP) measures the level of urban
output. This paper uses 2007 as the base period to do the treatment of the invariant price.
(3) Science expenditure (SE) represents the intensity of government R&D investment. The
control variables are selected according to the existing literature using extended STIRPAT
model. They include: (1) total electricity consumption (TEC) used to measure the degree
of energy consumption [45]; (2) actual foreign investment (FI) calculated to measure the
degree of openness to the world [46]; and (3) the share of secondary industry in GDP (PSP)
used to measure the effect of industrial structure on PM2.5 concentration [47].

In addition, two effects are considered in this paper due to the complexity of PM2.5
emission concentration impacts:

(1) Urban scale effect. Population is a crucial indicator of city characteristics, which
not only reflects the level of urban development, but also is one of the main factors af-
fecting PM2.5 concentration. Therefore, this paper adopts the variable of population as
the classification criterion and divides 255 cities into four categories of cities, i.e., four
groups of dummy variables, according to the Notice of the State Council on Adjusting
the Criteria of City Size Classification issued by the State Council in 2014. Of these, cities
with a population size of more than 10 million are Type I cities (Type I cities are the ref-
erence group), cities with populations between 5 million and 10 million are Type II cities,
cities with populations between 1 million and 5 million are Type III cities, and cities with
populations less than 1 million are Type IV cities. In the following analysis, the influence
of each four city categories on PM2.5 concentration will be reported. The definitions and
descriptive statistics of all the above variables are shown in Table 1.

Table 1. Data sources and definition of variables and descriptive statistics.

Variable Definition Units of
Measurement Mean Median Standard

Deviation Minimum Maximum

PM2.5
PM2.5 emissions

concentration µg/m3 45.71 43.02 18.09 8.70 104.30

PD Population density Per person/km2 459.15 393.21 332.59 4.82 2648.11

GDP Per capita gross domestic
product 10,000 Yuan 1786.00 991.03 2722.38 66.13 71,340.28

SE Scientific expenditures 10,000 Yuan 70,652.13 18,797.00 238,982.50 469 4,035,240.00

TEC Total electricity
consumption Billion kWh 156.41 102.59 175.52 2.25 1486.02

FI Foreign investment 10,000 Dollars 84,956.71 22,596 196,498.10 16.00 3,082,563.00

PSP Ratio of secondary industry
to GDP % 49.86 50.16 9.67 18.57 85.08
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(2) EKC effect. The EKC effect is taken into consideration to verify the relationship
between haze pollution and GDP. Before applying it, most studies based on a particular
sample of data do not examine the random characteristics of the data and determine their
suitability for the model. This brings about the deviation in the curve from the sample
points within the sample interval [47]. We also introduce the secondary and tertiary terms
of GDP into the model. The shape of the EKC curve is judged according to the coefficients
α2, α3 and α4 of Equation (3).

In order to explore the factors influencing PM2.5 concentration in cities in China,
255 sample cities were selected for the period 2007–2016. To ensure that the logarithm
value is positive, all ratios are calculated as percentages. The presence of large differences
among variables makes the use of logarithms rational. Data sources are as follows. The
PM2.5 concentration data of each prefecture-level city were obtained from the global raster
data based on satellite monitoring published by the Center for Socioeconomic Data and
Applications of Columbia University. Other data were obtained from China Urban Statisti-
cal Yearbook (2008–2017), China Environmental Statistical Yearbook (2008–2017) and the
provincial statistical yearbooks in (2008–2017).

3. Results
3.1. Stationarity Test

To avoid the problem of pseudo-regressions and invalid t-tests, the Levin–Lin–Chu
(LLC) test [48] and Fisher-ADF test [49] assess the stationarity of the variables (see Table 2).
Except lnPD for horizontal series, all the results in Table 2 passed the significance test with
a p-value less of than 0.01. Moreover, all variables for first-difference series are stationary at
the 1% significance level.

Table 2. Unit root tests of variables.

Unit Root Tests Variable LLC Fish-ADF

Horizontal Sequence

lnPM2.5 −15.4620 *** 13.4164 ***
lnPD −3.3360 *** −1.2033

lnGDP −49.3459 *** 47.0489 ***
lnSE −18.9008 *** 6.3799 ***

lnTEC −20.5336 *** 5.1772 ***
lnFI −12.8356 *** 5.6464 ***

lnPSP −3.7413 *** 2.9823 ***

First difference

lnPM2.5 −2.0958 *** 5.2782 ***
lnPD −15.2374 *** 9.6203 ***

lnGDP −38.8361 *** 16.4137 ***
lnSE −31.7062 *** 13.7043 ***

lnTEC −82.8749 *** 59.3129 ***
lnFI −60.2082 *** 30.7214 ***

lnPSP 4.9806 *** 9.6083 ***
Notes: ***, ** and * represent significance at the 1%, 5% and 10% levels, respectively.

According to the co-integration theory, if all variables are single integers of the same
order, co-integration relationships may exist between variables. Based on the Eangle and
Granger two-step method, the Kao co-integration test of homogeneity and Padroni co-
integration test of heterogeneity are used [50–52]. Table 3 shows the results of different
statistics in the Kao test and Pedroni test, which all passed the significance test with
p-value less than 0.01. Hence, long-term stable equilibrium relationships exist among PM2.5
concentration, foreign direct investment, electricity consumption, GDP, population density,
share of secondary industry and science expenditure. A mixed OLS regression is illustrated
in Table 2.
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Table 3. Co-integration tests of variables.

Test Method Statistics Statistics Value

Kao test ADF −18.9077 ***

Pedroni test
Panel PP −57.0751 ***

Panel ADF −42.8427 ***
Notes: ***, ** and * represent significance at the 1%, 5% and 10% levels, respectively.

3.2. Extended STIRPAT Model of 255 Cities

Based on the panel data of 255 cities in China from 2007–2016, a mixed OLS regression
is conducted. Both the random effect and the fixed effect are considered in panel data
analysis. A Hausman test is adopted for modeling selection (See in Table 4). The result of the
Hausman test shows significance, which shows evidence for the fixed effects model being
more applicable than the random effects model. In addition, the F-test results of the fixed
effects model demonstrate that the fixed effects model is better than the OLS regression,
strongly suggesting that it is more appropriate to use fixed effects in the econometric
regression.

Table 4. Regression results of factors influencing urban PM2.5 concentration.

Variable OLS Fixed Effects Random Effects

(1) (2) (3) (4)
lnPD 0.220 *** 0.172 *** 0.164 ***

(0.025) (0.048) (0.029)
lnGDP 0.523 ** 0.558 ** 0.563 **

(0.264) (0.226) (0.262)
(lnGDP)2 −0.075 ** −0.080 ** −0.081 **

(0.036) (0.036) (0.036)
(lnGDP)3 0.003 * 0.003 * 0.003 **

(0.0016) (0.002) (0.002)
lnSE −0.051 *** −0.048 *** −0.047 ***

(0.006) (0.004) (0.006)
lnTEC 0.013 0.011 * 0.011

(0.009) (0.006) (0.009)
lnFI 0.012 *** 0.011 *** 0.011 ***

(0.003) (0.001) (0.003)
lnPSP −0.059 ** −0.058 ** −0.060 **

(0.026) (0.026) (0.026)
Isize2 0.487 *** 0.491 ***

(0.013) (0.185)
Isize3 0.668 *** 0.678 ***

(0.045) (0.190)
Isize4 0.872 *** 0.886 ***

(0.064) (0.213)
cons 1.973 *** 1.622 ** 1.667 **

(0.656) (0.570) (0.670)

Hausman test 46.07 ***
(Prob > chi = 0.000)

The shape of EKC N-shaped
Notes: ***, ** and * represent significance at the 1%, 5% and 10% levels, respectively.

Column 3 in Table 4 shows the fixed effect of ordinary least squares regression. For
the main explanatory variables in the expanded STIRPAT model, lnPD (coefficient 0.172)
passes the significance test at the 1% level, which means that for every 1% rise in the
population density, PM2.5 concentration increases by 0.172%. The coefficients of lnGDP and
(lnGDP)3 are 0.558 and 0.003, respectively, statistically significant at the 5% and 10% levels.
Furthermore, the coefficient of (lnGDP)2 is −0.08 at the 10% significance level. It indicates
an inverted N-shaped relationship between PM2.5 concentration and GDP, confirming the
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existence of the Kuznets curve. Based on the trends of PM2.5 concentration in 255 cities
from 2007 to 2016, the inflection points of PM2.5 concentration in each city will occur
when economic progress is made. The coefficient of lnSE is −0.048 at the 1% significance
level, illustrating that the PM2.5 concentration will increase by 0.048% when the scientific
expenditure decreases by 1%. As for the control variables, the coefficients of lnTEC (0.011)
and lnFI (0.011) are, respectively, statistically significant at the 10%, and 1% levels, which
means that both total electricity consumption and foreign direct investment function to
promote PM2.5 concentration in 255 Chinese cities. The PM2.5 concentration rises by 0.011%
when total electricity consumption and actual use of foreign direct investment expands by
1%. On the contrary, lnPSP (coefficient −0.058) is negative at the 5% level, which shows
that the share of secondary production will lead to a decline in PM2.5 concentration.

3.3. Quantile Regression by Different Population Size

The estimated coefficients in the expanded STIRPAT model can reflect the overall
situation for all cities. Considering substantial city samples and long observation times in
this paper, the overall OLS regression is not able to reflect the heterogeneity of the influential
factors in various city categories based on population scale. A quantile regression is carried
out to distinguish the differential effects of influential indicators on the PM2.5 concentration
for cities by various population-size categories and different quantile of city-size categories
in every city size. The quantile regression model is an essential reference for the formulation
and piloting implement of PM2.5 concentration control policies in different cities. It is
regressed that based on the conditional quantile of the dependent variable, the conditional
quantile describes the variation of each indicator on PM2.5 concentration more accurately.
The 25%, 50% and 75% quantile represent the different PM2.5 concentration from low to
high in the same type cities. For example, the 25%, 50% and 75% quantile in type I mean
the lower, middle and higher PM2.5 concentration cities in this type, respectively.

Table 5 shows the results of the quantile regression in four city-size categories.
Figures 2–5 show the changes in the variables’ coefficients in four types of cities’ quantile
regressions. In Type I cities (population larger than 10 million), the coefficient of lnPD
(0.141) is only significant at 10% significance when tested by the 50% quantile regression.
This illustrates that population density worsens air pollution only for the middle PM2.5
concentration cities. lnGDP, (lnGDP)2 and (lnGDP)3 are significant at 25%, or 50% quantile
regression, the coefficients of which are positive, negative and positive at the 1% signifi-
cance level. It indicates an inverted N-type Kuznets curve in cities with low and medium
PM2.5 concentration. This is consistent with the national situation. The coefficients of lnTEC
are 0.557, 0.363 and 0.166, respectively, at 25%, 50% and 75% quantile regression. However,
only coefficients at 25%, or 50% quantile pass the 1% significance level. This indicates
that in Type I cities, the effect of energy consumption on air pollution is weakening as the
PM2.5 concentration rises. The coefficients of lnFI and lnPSP at 25% quantile regression
are 0.087 and −0.549, which pass the significance test at 10% and 1%, respectively. It
indicates that for every 1% increase in foreign direct investment, haze pollution is raised by
0.087%. Otherwise, PM2.5 concentration rather declines by 0.549% as the share of secondary
production advances every 1%.

Table 5. Quantile regression results of factors influencing urban PM2.5 concentration.

Variable Type I Type II Type III Type IV

(1) (2) (3) (4) (5)
QR_25
lnPD 0.064 0.353 *** 0.343 *** −1.184

(0.059) (0.072) (0.022) (2.066)
lnGDP 36.893 *** −0.508 3.766 ** −132.832

(12.299) (5.852) (1.806) (187.802)
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Table 5. Cont.

Variable Type I Type II Type III Type IV

(lnGDP) 2 −4.319 *** −0.031 −0.524 * 24.446
(1.412) (0.772) (0.279) (34.582)

(lnGDP) 3 0.164 *** 0.004 0.025 * −1.499
(0.054) (0.034) (0.014) (2.124)

lnSE −0.035 0.091 *** −0.068 *** 0.050
(0.058) (0.031) (0.014) (0.459)

lnTEC 0.557 *** −0.032 −0.007 0.808
(0.112) (0.054) (0.018) (0.482)

lnFI 0.087 * 0.096 *** −0.019 ** 0.088
(0.050) (0.024) (0.008) (0.190)

lnPSP −0.549 *** −0.203 0.421 *** 0.637
(0.186) (0.160) (0.090) (0.599)

_cons −100.563 *** 4.447 −8.302 ** 243.430
(35.434) (14.793) (3.936) (342.007)

QR_50
lnPD 0.141 * 0.428 *** 0.333 *** −0.824

(0.078) (0.032) (0.013) (1.343)
lnGDP 32.408 *** 0.333 4.885 −113.113

(11.645) (3.207) (3.304) (108.114)
(lnGDP) 2 −3.818 *** −0.036 −0.705 20.916

(1.355) (0.427) (0.483) (19.736)
(lnGDP) 3 0.146 *** 0.001 0.034 −1.287

(0.052) (0.019) (0.023) (1.201)
lnSE 0.078 −0.033 −0.056 *** −0.007

(0.065) (0.028) (0.011) (0.295)
lnTEC 0.363 *** −0.005 −0.034 *** 0.295

(0.110) (0.023) (0.012) (0.289)
lnFI 0.068 −0.025 * −0.013 ** 0.070

(0.043) (0.014) (0.006) (0.152)
lnPSP −0.214 0.254 *** 0.319 *** 0.876 **

(0.153) (0.088) (0.057) (0.334)
_cons −88.946 *** 0.104 −9.985 206.373

(33.277) (7.979) (7.455) (198.116)

QR_75
lnPD −0.052 0.451 *** 0.289 *** −0.390

(0.130) (0.027) (0.021) (0.910)
lnGDP 20.410 −0.174 −0.567 −67.150

(12.892) (3.215) (3.391) (81.754)
(lnGDP) 2 −2.412 0.058 0.050 12.531

(1.515) (0.432) (0.498) (14.908)
(lnGDP) 3 0.092 −0.004 −0.000 −0.778

(1.515) (0.432) (0.498) (14.908)
lnSE 0.096 −0.057 *** −0.052 *** −0.093

(0.080) (0.017) (0.014) (0.209)
lnTEC 0.166 −0.014 −0.032 0.309

(0.188) (0.016) (0.021) (0.231)
lnFI 0.054 −0.056 *** −0.007 0.104

(0.043) (0.014) (0.009) (0.126)
lnPSP 0.111 0.234 ** 0.279 *** 0.939 ***

(0.197) (0.092) (0.057) (0.219)
_cons −54.477 1.314 3.475 120.487

(36.651) (7.956) (7.660) (149.651)

Notes: ***, ** and * represent significance at the 1%, 5% and 10% levels, respectively. 2 and 3 represent the quadratic
and cubic power of lnGDP respectively.
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Figure 2. Change in variables’ coefficients in Type I cities’ quantile regression. Notes: The thicker
dashed lines indicate the OLS regression estimates for the independent variables; the area which is
parallel with thinner dashed lines is the confidence interval (95% confidence level) for the regression
coefficients; The solid lines are the quantile regression coefficients of the respective variables, and
the shaded area is the confidence interval (95% confidence level) of the quantile regression analysis
estimates. The horizontal axis is the quantile of the dependent variable; the vertical axis is the
regression estimate of the independent variable.

In Type II cities (population size between 5 million and 10 million), lnPD passes the
significance test at 1% level, the coefficients of which are 0.353, 0.428 and 0.451 at 25%,
50% and 75% quantile regression, respectively. Such results illustrate that the enhanced
population density does accelerate PM2.5 concentration in Type II cities. For instance, the
higher the PM2.5 concentration is, the stronger the effect of population density on haze
pollution is. The coefficient of lnSE is significantly negative at 25% and 75% quantile,
which is 0.091 and −0.057, respectively. lnFI are significant at 25%, 50% and 75% quantile
regression. The coefficient at 25% quantile is positive (0.096), while the coefficients at 50%
and 75% quantile are both negative (−0.025 and −0.056, respectively). It indicates that in
Type II cities, the science expenditure and foreign direct investment will accelerate PM2.5
concentration at lower PM2.5 concentration cities, but hinder the PM2.5 concentration at
higher PM2.5 concentration cities. lnPSP are significant at 1% and 5% level, respectively,
the coefficients of which are −0.254 at 50% quantile and −0.234 at 75% quantile. These
results indicate that the share of secondary production will exert a negative influence on air
pollution at middle and higher PM2.5 concentration cities in Type II.
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In Type III cities (population between 1 million and 5 million), the coefficients of
lnPD all pass the significance test at the 1% level, which are 0.343, 0.333 and 0.289 at 25%,
50% and 75% quantile regression, respectively. These results illustrate that population
density will increase PM2.5 concentration in Type III cities. However, the higher the PM2.5
concentration is, the weaker the effect of population density on haze pollution. lnGDP,
(lnGDP)2 and (lnGDP)3 are significant at 25% quantile regression, and the coefficients of
which are 3.766, −0.524 and 0.025, in fact indicate the existence of a N-type Kuznets curve
in cities with lower PM2.5 concentration. The coefficients of lnSE are −0.068, −0.056 and
−0.052, which all pass the significance test at the 1% level. Expenditure on science will
encourage technological innovation, which helps to improve the end-treatment measures
and reduce polluting emissions and can to some extent improve air quality. Only lnTEC at
50% quantile regression passes the significance test in Type III. Total electricity consumption
can alleviate air pollution only at middle PM2.5 concentration cities. The coefficients of lnFI
are −0.019 and −0.013 at 25%, 50% quantile regression, respectively, which pass the 5%
significance level. PM2.5 concentration will abate by 0.019% when foreign direct investment
falls by 1% in cities with lower PM2.5 concentration. For middle PM2.5 concentration cities,
PM2.5 concentration drops by 0.013% when foreign direct investment decreases by 1%.
This indicates that in Type III cities, increases in foreign direct investment will restrict air
pollution. The coefficients of lnPSP are 0.421, 0.319 and 0.279, all passing the significance
test at the 1% level. The share of secondary production does exacerbate haze pollution, and
the influence will grow as the PM2.5 concentration becomes higher in Type III cities.
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In Type IV cities (population size less than 1 million), only the coefficient of lnPSP
(0.876) at 50% quantile is significant, which means that the secondary production will
exacerbate air pollution in cities with small population size.
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4. Discussion
4.1. The Discussion of Expanded STIRPAT Model Results

On a national scale, population density exerts the greatest positive influence on PM2.5
concentration. During urbanization, having a much larger and concentrated population is
one of the important manifestations. The relationship between PM2.5 concentration and
population density is shown in Figure 6. Along with the increase in urban population
density, the GDP of cities also rises, which brings about the increment in PM2.5 concen-
tration. Cities with different urban population scales have significant diverse effects on
PM2.5 concentration. PM2.5 concentration in Type I (cities over 10 million people), Type
II (cities between 5 million and 10 million individuals) and Type III cities (cities between
1 million and 5 million people) are significantly higher compared to Type IV (cities less
than 1 million people) cities, as can be seen in Table 3.
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Social economic activities in cities with larger populations are more frequent, thus the
PM2.5 concentration are correspondently higher. The economic growth has an inverted N-
shaped EKC curve with air pollution, which indicates the following experiences in Chinses
cities. First, urban economic progress is accompanied by a reduction in haze pollution.
Then, the higher economic expansion jeopardizes the environment and increases emissions.
Finally, the air pollution gradually declines again when further economic development
is accomplished. Expenditure on science has a significant effect on PM2.5 concentration
reduction. Research into pollution reduction technology and on haze emission reductions
to improve industries can effectively mitigate urban PM2.5 concentration.

Meanwhile, the coefficient of lnTEC (0.011) means that electricity consumption surges
by every 1% when PM2.5 concentration rises by 0.011%, due to the high correlation between
society-wide electricity consumption and energy consumption. Foreign direct investment
exerts a significant positive effect on PM2.5 concentration, i.e., the PM2.5 concentration rises
by 0.011% when the actual utilization of foreign direct investment expands by 1%. This
shows that foreign direct investment will accelerate haze pollution emissions, indicating
that FDI inflow contributed to air pollution and the “pollution shelter” hypothesis was
established in China. From the perspective of industrial distribution in foreign direct invest-
ment in 2015, the secondary industry accounts for the most of it, mainly the manufacturing
(31.32%) and real estate (22.96%) industries. The unabated expansion of these industries
and their current polluting processes will certainly compromise the quality of urban air.

On the contrary, the ratio of secondary industry to the regional GDP has a signifi-
cant negative effect on PM2.5 concentration for the following reasons. At the outset, the
proportion of secondary industry is closely related to the level of urban economic develop-
ment. When cities’ secondary industry expands, urban economic development increases.
Secondly, as the latter increases (see Figure 2), cities with a comparatively high level of
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economic sophistication will gradually eliminate backward production methods and move
high-polluted and energy-consuming industries to less developed vicinities. Greener
and more intensive and sustainable industries will take their place. Thus, the pollution
generated by these cities will be transferred to underdeveloped areas.

4.2. The Differences between Driving Indicators on Cities according to Different Population Sizes

When it comes to the effect of two main variables (population density (lnPD) and
GDP (lnGDP, (lnGDP)2, (lnGDP)3)) on different population sizes, the population density
of Type I cities only influences PM2.5 concentration at the 50% quantile, indicating that
in megacities with more than 10 million people, the population density does not show a
significant effect on PM2.5 concentration. On the other hand, this indeed enhances PM2.5
concentration in Type II and III cities, for the reason that the regression coefficients of
population density are all significantly positive at 25%, 50% and 75% quantile in these two
types. In the middle-sized cities, the influx of residents accelerates urbanization and the
consumption of private cars and houses, resulting in the rise of PM2.5 concentration. The
coefficients of economic development are significant at the 25% and 50% quantile in Type I
cities. In Type I cities, there is an inverted N-type Kuznets curve in cities with lower and
medium PM2.5 concentration cities. In general, population density plays a more important
role on PM2.5 concentration in Type II and III cities, while economic development has a
more crucial effect on PM2.5 concentration in Type I cities comparatively.

Considering the perspective of industrial structure and energy consumption, in Type
I cities, PM2.5 concentration is influenced more by energy consumption than other types
of cities. It is shown that the coefficients of total electricity consumption are significant
at the 25% and 50% quantile regression in Type I cities. Meanwhile, the coefficients of
total electricity consumption are not significant in Type II and illustrate being negative
for Type III. PM2.5 concentration enlarges as energy consumption increases in low and
medium emission cities in Type I cities. Meanwhile, the proportion of the secondary
industry can make a positive impact on PM2.5 concentration for Type II and III cities.
Secondary industry expands accompanied by a surge in resource consumption of cities
with permanent residents between 1 million to 10 million, which brings about the increment
of PM2.5 concentration. In Type IV cities, the coefficient of industrial structure in the
75% quantile is the only significant variable. Cities with comparatively higher emissions in
this type are influenced more by the secondary industry. Pollution will continue once the
related manufacturing develops for those cities with a small scale of population.

Furthermore, foreign direct investment and science expenditure have different effects
on PM2.5 concentration both in different types of cities and at different quantile regressions.
In Type I cities, the foreign direct investment only boosts the PM2.5 concentration forming
the 25% quantile at 10% significance level. As for Type II cities, the coefficients of foreign
direct investment are 0.096, −0.025 and −0.056 at 25%, 50% and 75% quartile, while
those of science expenditure are 0.091, −0.033 and−0.057 at 25%, 50% and 75% quartile.
As the PM2.5 concentration increases in Type II cities, the effect of both foreign direct
investment and science expenditure on PM2.5 concentration are moving from positive
to negative with less populated cities to higher PM2.5 concentration cities. Type II cities
with more than 5 million permanent residents tend to gradually transfer pollutants from
higher PM2.5 concentration cities to lower PM2.5 concentration cities. This indicates that
pollution is transferred to the lower PM2.5 concentration cities along with the transfer of
foreign investment in most Chinese cities. Concerning Type III cities, both foreign direct
investment and science expenditure have negative effects on PM2.5 concentration, but their
effectiveness is much slighter compared to the strong rise in PM2.5 concentration from
population density and the secondary industry. Foreign direct investment and science
expenditure are required for Type III cities which aim to improve production equipment
and processes, and abate pollutant emissions.
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5. Conclusions

This paper analyzes the driving factors of PM2.5 concentration in China’s 255 prefecture-
level cities from 2007 to 2016 based on the expanded STIRPAT model. The differences of
each influencing factor across city categories are compared, while the differences of various
influencing factors within each city category are compared using the quantile regression.

The main conclusions of this paper are as follows. On the whole, a inverted N-
shaped Kuznets curve between economic development and PM2.5 concentration exists
in China. The phenomena of “pollution shelter” have been revealed in 255 of China’s
cities, and the progress of technology will improve the air quality. Meanwhile, the effects
of driving factors on air pollution vary between cities with different population scales.
Population density plays a more dominant role in PM2.5 concentration in Type II and III
cities (medium population between 1 million and 10 million), and energy consumption
has a more crucial effect on PM2.5 concentration in Type I cities (large populations over
10 million) comparatively. The secondary industry will enhance the PM2.5 concentration in
most Type IV cities (small population less than 1 million).

The above research conclusion provides policy recommendations for air pollution
abatement in cities as follows. Firstly, policymakers should treat the relationship between
environmental emission reduction and economic development rationally. From a national
aspect, an EKC relationship exists between GDP and the environment; however, from the
perspective of cities of different sizes, the EKC curve does not really exist between GDP
and the environment. The relationship between economic development and air pollution
in megacities is in line with the law of the Kuznets curve, and at the peak of the haze
pollution. The medium and large population-sized cities coexist with the scale effect and
technology effect, and the peak of haze pollution is not yet ascertained. The pollution in
medium and large population-sized cities is influenced by changes in population size, so
medium cities are in fact considered as diseconomies of scale caused by the expansion of
population size when economic progress occurs. Consequently, policymakers should help
balance the population size of cities with economic development, and pay more attention
to the environment, technological improvement and better use of local natural resources.

Secondly, the proportion of the secondary industry has a great influence on urban
PM2.5 concentration, it is necessary to reasonably determine the scale of urban development
and city size, promote industrial transformation and upgrade small and medium-sized
cities synergistically in order to promote their functioning, state of industry and the en-
vironment, and promote the green economy and circular economy. Energy consumption
has a more significant impact on the air quality of megacities; thus, policymakers should
improve the concept of green consumption by enterprises and residents.

Thirdly, government should emphasize science and technology instead of focusing on
better targeted investment. This is especially the case when introducing green capital to
improve the situation of “pollution shelter” and increase investment in research on how to
reduce pollution and improve remediation strategies.
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