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ABSTRACT

Structural variation (SV) plays a fundamental role
in genome evolution and can underlie inherited or
acquired diseases such as cancer. Long-read se-
quencing technologies have led to improvements in
the characterization of structural variants (SVs), al-
though paired-end sequencing offers better scalabil-
ity. Here, we present dysgu, which calls SVs or in-
dels using paired-end or long reads. Dysgu detects
signals from alignment gaps, discordant and supple-
mentary mappings, and generates consensus con-
tigs, before classifying events using machine learn-
ing. Additional SVs are identified by remapping of
anomalous sequences. Dysgu outperforms existing
state-of-the-art tools using paired-end or long-reads,
offering high sensitivity and precision whilst being
among the fastest tools to run. We find that combin-
ing low coverage paired-end and long-reads is com-
petitive in terms of performance with long-reads at
higher coverage values.

INTRODUCTION

Analysis of structural variants (SVs) with whole genome or
targeted enrichment sequencing is used in the clinic for di-
agnosing acquired or inherited genetic diseases (1) and for
investigating mechanisms of genomic complexity in cancer
and other pathologies (2–6). Sequencing using short paired-
end reads (PE) is well established for genomic analysis due
to mature workflows and low sequencing costs, although in-
creasingly, long-read (LR) sequencing technologies are be-
ing utilized for these purposes. These LR sequencing plat-
forms permit much longer read-lengths which can poten-
tially lead to improvements in mapping to repetitive or com-
plex regions of the reference genome, and advantages for
detecting SVs. However, the better scalability of paired-end
technologies, with further improvements in development
(7), means that SV calling with shorter reads is likely to re-
main an area of interest.

SVs are usually defined as genomic rearrangement events
over an arbitrary size of 50 bp, falling into categories such
as deletions (DEL), insertions (INS), duplications (DUP),
inversions (INV) or translocations (TRA) (1). SVs below
this threshold are often termed indels, although these can
sometimes result from more complex events such as dupli-
cation, inversion or translocation. These labels are useful in
conceptualizing simple genome rearrangements in terms of
the reference genome structure, although complex SVs oc-
curring in the germline or during cancer progression, can
complicate interpretation.

SVs can be detected in sequencing data using a variety of
methods. For PE data, single alignments only span relatively
small within-read SVs (indels) due to limited read-length, so
information of SVs must be gleaned from assessing discor-
dant mappings, changes in read-depth and the occurrence
of split-reads which straddle breaksites (8). Recent meth-
ods also employ de novo assembly of SV-derived reads and
further rounds of SV discovery through re-mapping of de-
rived contigs to the reference genome (9,10). Alignment free
methods are also possible, by analysing differences in k-mer
content between a sample and reference (11). For LR se-
quences, SVs up to several kb can be detected within align-
ments due to the long read-lengths involved, and split-reads,
changes in read depth and assembly of SV-reads can be uti-
lized (8,12). Additionally, SVs can also be jointly discovered
using LR and PE data by de novo assembly (13).

A large number of bioinformatics tools have been de-
veloped for detecting SVs using PE or LR data, although
recent benchmarking studies highlight that existing algo-
rithms are often limited in their ability to detect all classes
and sizes of SVs, and there is still considerable room for im-
provement (14–16). The approach of quality filtering of pu-
tative SVs also differs widely between tools. In the simplest
case variants are filtered based on the weight of evidence
or number of supporting reads, although choosing suitable
thresholds can be difficult and higher read-depths have also
been associated with false positives (15). Statistical meth-
ods for quality scoring have been employed, for example
the PE caller Manta employs Bayesian inference using read
fragments supporting an allele to estimate a likelihood, fol-
lowed by manual filtering (9). The LR caller nanovar utilizes
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a neural network classifier trained on simulated datasets,
where 14 input features of each putative SV are used to
classify events (17). To build on these advances, we consid-
ered that performance may be enhanced from training us-
ing non-simulated datasets. Additionally, we identified that
there is an unmet need for an SV caller capable of analysing
both PE and LR datasets.

Here, we present our SV calling software dysgu, which
can rapidly call SVs from PE or LR data, across all size
categories. Conceptually, dysgu identifies SVs from align-
ment cigar information as well as discordant and split-read
mappings. Dysgu employs a fast consensus sequence algo-
rithm, inspired by the positional de Brujin graph, followed
by remapping of anomalous sequences to discover addi-
tional small SVs. A machine learning classifier is then em-
ployed to generate a useful quality score which can be used
to prioritize variants.

MATERIALS AND METHODS

Overview

Dysgu has been designed to work with aligned reads in
BAM or CRAM formats, and can analyse PE reads with
lengths in the range 100–250 bp, or single-end LR such as
PacBio Sequel II (HiFi), or Oxford Nanopore Technologies
(ONT). By default, events with a minimum size of ≥30 bp
are reported. Depending on the sequencing platform, dysgu
offers pre-set options which apply recommended settings
and a specific machine learning model (e.g. use ‘–mode pe’
or ‘––mode pacbio’ for PE or PacBio settings, respectively).

Dysgu provides a ‘run’ command which will produce a
vcf file for a single input file, which is recommended for
PE reads. However, depending on read-type the stages of
the pipeline can differ. For PE reads (and optionally long
reads), dysgu first partitions SV candidate reads into a tem-
porary bam file (compression level set to zero by default),
which is achieved using the ‘fetch’ command. Dysgu will
then apply the ‘call’ command to SV candidate reads and
produce an output. Depending on the length of input reads,
the ‘fetch’ command may be redundant, as for very long
reads such as ONT, a large proportion of reads harbour
multiple SV candidates, which effectively leads to the input
file being duplicated. Therefore the ‘fetch’ command is not
needed for some LR datasets, and the ‘call’ command is rec-
ommended instead.

Identifying SV candidate reads

For PE reads, library insert metrics are collected from the
input file by scanning the first 200 × 103 reads. If the ‘fetch’
command is utilized, single reads, or all alignments from a
read-pair, that are deemed to be candidates, are partitioned
into a temporary file. However, if the ‘fetch’ command is not
run, then input reads are simply marked as SV candidates.
A read is defined as a candidate if a read is found with either,
map-quality ≥1, a soft-clip ≥15 bp (PE only), a discordant
insert size or read orientation (PE only), a supplementary
mapping, an alignment gap ≥30, or a mate on another chro-
mosome. A discordant insert size is defined as insert si ze ≥
insert median + (5.insert stdev). Reads in high coverage
regions of the genome are also not analysed by default,

defined as regions with a mean depth ≥200 (‘–mode pe’)
or ≥150 (‘––mode pacbio’ or ‘––mode nanopore’).

Genome coverage

Dysgu collects several quality control metrics for use as
features in the machine learning model. Genome coverage
is calculated according to (18), except coverage is binned
into 10 bp non-overlapping segments. The genome cover-
age tracks are saved in the temp folder during execution.

Alignment clustering

Reads are initially clustered using an edge-coloured undi-
rected graph G. Nodes in the graph represent SV-signatures
and correspond to events listed in the cigar field of an
alignment, or the properties of a read. SV-signatures are
enumerated as either ‘discordant’, ‘split’, ‘deletion’, ‘inser-
tion’ or ‘breakend’, and are associated with a ‘genomic-
start’ and ‘genomic-end’ position. ‘Breakend’ types indi-
cate a read that has a normal mapping orientation and no
supplementary mappings, but has a soft-clipped sequence,
which potentially corresponds to an unmapped breakpoint.
Edges correspond to either ‘white edges’ that link together
all alignments in a template with the same query name, or
‘black’ edges that are added between nodes that share a
compatible SV signature.

Clustering is split into two phases. Initially, genomic
reads are converted into a series of SV-signatures, with each
item corresponding to a separate candidate event. For ex-
ample, a deletion identified in the alignment cigar, a discor-
dant read, or a read with an unmapped soft-clipped are con-
verted into SV-signatures as nodes in G.

The local genomic region is then searched for events with
a compatible signature. We use a red-black tree to search for
items with a similar ‘genomic end’ position before check-
ing if the ‘genomic start’ position is also similar. A search
depth of 4 is used to search forwards and backwards in the
data structure for other nodes. We find that using the ‘ge-
nomic end’ position permits a shallow search depth as dat-
apoints are often sparser at the distant ‘genomic end’ posi-
tion. Edges are not permitted between ‘deletion’ or ‘inser-
tion’ types, although edges between other types are allowed.

When searching for other nodes to add ‘black’ edges be-
tween, nodes that are closer in the genome to the query
are preferred, so if multiple candidates are found, edges
are only formed between nodes passing a more stringent
threshold. SV-signatures are checked to make sure that
they have a reciprocal overlap of 0.1, and a separation
distance between ‘genomic start’ and ‘genomic end’ posi-
tions below a clustering threshold. For PE reads, the clus-
tering threshold is lt; insert median + (5.insert stdev) bp,
while for PacBio the threshold is lt; 35 bp, and ONT
lt; 100 bp. If another SV-signature is found with a ‘ge-
nomic start’ lt; 35 bp, these nodes pass the more strin-
gent threshold, and a ‘black’ edge is added to the graph.
For single-end reads or ‘split’ reads, if any of these con-
ditions fail we also check the span position distance (19)
between signatures. Span position distance between sig-
natures S1and S2is defined as SPD = SD(S1 + S2) +
PD(S1+ S2)

N where SD is the span distance between signatures
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SD = |(E1− B1)−(E2− B2)|
max(E1− B1, E2− B2) , and PD is the position distance

min(|B1 − B2|, |E1 − E2|, | B1+ E1
2 − B2+ E2

2 |). N is a nor-
malization constant which is set at 100 for PE reads, 600
for PacBio and 900 for ONT reads. For all read types the
SPD threshold used is tlt; 0.3. For PE reads that do not
have a ‘split’ SV signature, we use a modified formula, only
adding ‘black’ edges between nodes if PD

max(E1− B1, E2− B2) lt; t
and SDlt; t.

If no edges are found for a PE read, a second phase of
clustering is used to try and find edges between reads that
share similar soft-clipped sequences. As pairwise sequence
comparison between neighbouring alignments is computa-
tionally costly, we devised a novel algorithm based on clus-
tering of the minimizer sketch of soft-clipped reads (20).
Minimizer sampling involves computing the list of mini-
mum kmers derived from consecutive windows over a se-
quence. We use a kmer length of 6 and a window length of
12. The minimum kmer is selected using a hash function and
computed in linear-time O(n) (see: https://people.cs.uct.ac.
za/~ksmith/articles/sliding window minimum.html). Addi-
tionally, in a modification of the minimizer sketching algo-
rithm, we compute only the unique set of minimum kmers
Sk for each soft-clipped portion of a read. Each kmer in
the set Sk is associated with a genomic position that corre-
sponds to the left-most or right-most base in the alignment
for left or right soft-clipped sequences, respectively.

Kmers are added to a hashmap M with the key given
by the kmer hash, and the value pair corresponding to a
set of tuples, of (genomic position, read name). Kmers that
are >150 bp from the query genomic position are dynami-
cally removed from the hashmap during processing.

For each incoming read, the kmer set Sk is first computed,
then for each kmer a corresponding set Z of reads and ge-
nomic positions is obtained by indexing M. The set Z con-
sists of a collection of local reads that share the same min-
imizer kmer as the query. Entries in Z are then compared
to the current genomic position and if the separation is < 7
bp, the number of found minimizers a is incremented. Ad-
ditionally, the number of minimizers shared between reads
with the same name b is counted. The total minimizer sup-
port is defined as ( a

2 + b) and a threshold of ≥ 2 is utilized.
Once the minimizer support threshold is exceeded, found
nodes are added to a set and returned.

Finally, ‘black’ edges are added to the graph between the
returned set of nodes and the query node. Utilizing the min-
imizer clustering algorithm, pairwise sequence alignment is
avoided, instead sequence matches between two sequences
can be inferred from computing a minimizer sketch and uti-
lizing hashmap queries.

Event partitioning

Once all alignments have been added into the main graph
G, the graph is simplified to a undirected quotient graph
Q = (Vq , Eq ) whose vertices consists of blocks or parti-
tions of vertices from the main graph G. The vertices (par-
titions) Vq are found by finding connected components in G
using ‘black’ edges only. Edges Eq are then defined between

partitions using ‘white’ edge information from G, thus link-
ing together read templates that map one or more SV.

Connected components in Q are processed together.
These components can be composed of one or more par-
titions, harbouring potentially multiple SV events. In the
simplest case, a component will consist of a single partition,
which is processed for one or more SV. Components with a
single edge are processed for a single SV only. For compo-
nents with multiple edges, each edge is processed for a sin-
gle SV, and additionally, each node partition is processed
as a single partition if the number of ‘black’ intra-partition
edges exceeds the number of ‘white’ out-edges, according to
the main graph G. Thus, all components of Q are processed
as a series of single-edges or single-partitions.

Single-edges in Q are assumed to represent a single SV,
with reads from the u partition corresponding to one break-
site and reads from the v partition corresponding to the
other. Single-partition nodes are assumed to map a single
SV if a spanning alignment is found (e.g. a deletion event
in the alignment cigar field). If no-spanning alignments are
found, reads in the single-partition are further clustered
using hierarchical clustering with the Nearest Point Algo-
rithm (21), using the genomic start and end points of reads
in the partition. This step helps disentangle SVs with large
overlaps and similar reference coordinates. Identified sub-
clusters are then processed for a single SV.

Consensus sequence generation

We generate consensus sequences at each breakpoint, from
which read properties can be derived, such as repeat score
or expanded polymer bases (see SV metrics section for fur-
ther details), and to determine soft-clipped sequences for
potentially remapping to the reference genome. We utilize a
novel algorithm that borrows concepts from the positional
de Brujin graph (22), and partial order alignment graphs
(POA) (23). In a positional de Brujin graph G, the vertex
set Vencodes each sequence kmer in addition to genomic
location, which helps leverage information provided by the
mapper and localizes assembly. Edges E are permitted be-
tween kmers adjacent in the reference genome, which gener-
ally leads to a directed acyclic graph. However, it is possible
that some bases do not have a genomic location, such as
insertions within a read, or soft-clipped sequence. In such
cases, genomic location can be inferred, for example using
the expected mapping position if the whole read was aligned
without gaps (10).

Partial order alignment graphs (23) are used to perform
multiple sequence alignments, with vertices representing
bases, and edges added between neighbouring bases in a se-
quence. Additional Sequences can be pairwise-aligned and
incorporated into a POA using dynamic programming, and
a consensus can be extracted by back-tracing through the
maximum weighted path (23).

In our algorithm, we also represent vertices as bases and
employ back-tracing through the longest path. However,
similar to a positional de Brujin graph, we take the ordering
of the graph from the genomic locations determined by the
mapper. Utilizing this approach gives an approximation of
a multiple sequence alignment between local genomic reads,

https://people.cs.uct.ac.za/~ksmith/articles/sliding_window_minimum.html
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and makes usage of information given by the mapper, whilst
being simple and efficient to compute.

Let vertices correspond to a tuple (bi , i, f, c) ∈ V, where
bi is the base aligned at genome position i , i is the genome
position, f is an offset describing the distance to the closest
aligned base, and c is a flag to indicate if the base is part of a
left or right soft-clip (or neither). For left soft-clipped bases
c = 1, right soft-clipped bases c = 2, whilst c = 0 oth-
erwise. Bases that are not aligned to the reference genome
may thus belong to three categories, when f > 0, for inser-
tions c = 0, for left soft-clips c = 1, and for right soft-clips
c = 2.

Edges are added between adjacent bases in a sequence
(u j , v j+1), and vertices are weighted according to the sum
of base qualities for a given node. Graph construction leads
to a directed acyclic graph, that is then topologically sorted
in linear time (24).

To read the consensus sequence, the graph is first tra-
versed using breadth-first search and for each vertex v, the
longest path ending at v is determined by choosing the high-
est scoring predecessor vertex and adding to the running
total. The consensus sequence is read by back-tracing from
the vertex with the highest score, and recursively selecting
the best predecessor node.

The worst-case time complexity for consensus sequence
generation is linear with the number of input sequence
bases. This follows, as graph construction, topological sort-
ing, breadth-first search and back-tracing all have worst
case complexities of O(V + E) time.

Consensus sequence quality trimming

For the described consensus sequence algorithm, problems
can arise at unmapped bases (e.g. soft-clipped sequences)
if the underlying reads have a high indel error rate. In this
situation, indels in unaligned bases cause neighbouring se-
quences to be shifted out of sync and can result in collapsing
of indel errors in the consensus sequence. To address this
problem, we trim soft-clipped sequences at bases with an
alternative high scoring path. For each node v on the con-
sensus path, with predecessor u and successor w also on the
consensus path, a path quality metric is calculated. Itotal is
defined as the total weight of all incoming edges to v. The
in-edge quality is defined as qin = I(u, v)

Itotal
, where I(u, v) is the

weight of the consensus path edge (u, v). Similarly, Ototal is
defined as the total weight of all outgoing edges from v. The
out-edge quality is defined as qout = O(v, w)

Ototal
, where O(v, w) is

the weight of (v, w). The path quality metric for v is defined
as Pq = min(qin, qout). Soft-clipped sequences are trimmed
at bases with a path quality metric < 0.5.

The soft clip weight (scw) parameter is defined for sub-
sequent filtering, as the total base quality of nodes in the
soft-clipped portion of the sequence divided by the length
of the soft-clip.

Re-mapping of contigs

After generating consensus sequences, if an end co-ordinate
could not be determined, an attempt is made to align
the soft-clipped sequence to the reference genome. Soft-
clipped sequences are remapped to a window ±500 bp from

the anchored breakpoint. We utilize edlib (25) (parame-
ters: mode = ‘HW’) to find an approximate location, be-
fore refining the alignment using Striped Smith-Watermen
(26) (parameters: match score = 2, mismatch score = −8,
gap open penalty = 6, gap extend penalty = 1) using the
scikit-bio library (found online at: http://scikit-bio.org/).
For deletion events, if less than 40% of the soft-clip could
be remapped and the alignment span is < 50 bp, the align-
ment is rejected. For insertion events, if >20 bp of sequence
could not be mapped the alignment is rejected.

If no alignment is identified, dysgu can still call an unan-
chored insertion event at the identified break point, how-
ever, only events that have support > min support +4 and
a soft-clip length ≥18 bp. The min support parameter can
be user supplied and takes a value of 3 for PE data or 2 for
LR data.

Sequence repeat score

Dysgu calculates repetitiveness scores for aligned regions
of contigs as well as reference bases between deletions,
and soft-clipped sequences. To calculate this metric, the se-
quence of interest is broken into kmers of increasing lengths
from 2 – 6 bases. For each kmer of length k, a hashtable is
used to record the last seen position of each kmer. If a kmer
is seen more than once, the distance in bases to the last seen
position is retrieved d. The repeat score is then calculated as
a mean according to 1

n (
∑ kx

m ) where k is the kmer length,

and x and m have the form v.e− λ
k , where e is Euler’s num-

ber, λ is a decay constant set at 0.25, and v = k for the de-
nominator m, and v = d for x. For perfect tandem repeats
kx
m = 1, whilst sequencing errors, interspersed patterns or
random sequence lead to lower values.

Base quality score correlation at soft-clipped reads

For short-read input data we calculate a metric referred to
as ‘soft-clip quality correlation’ (SQC), which is aimed at
quantifying a sequence-specific error profile we observed in
Illumina data (27). During sequencing, it is though that cer-
tain genomic sequences can promote dephasing, that gives
rise to read base-qualities that correlate with the underlying
sequence, and can result in frequent mismatches in align-
ments at specific bases (27). In our data, we observed a
pattern consistent with this model but occurring at soft-
clipped reads. These sites were frequently identified adja-
cent to homopolymer sequences and displayed base-quality
scores that fluctuated with the underlying soft-clipped se-
quence. These soft-clip sequences often appeared to con-
tain many errors as neighbouring soft-clipped reads showed
many differences. Finally, these sites also frequently gave
rise to false-positive calls at one-end anchored SV calls. The
SQC metric was devised to quantify this phenomenon and
is utilized as a feature in machine learning classification.

For each query read from the putative SV, the quality
values of soft-clipped bases are added to a hashmap H,
with the relative genomic position pos as the key, and a
list Lpos of base-qualities as values. The relative genomic
position is taken as the position of the base if the whole
soft-clipped portion of the read was mapped to the genome.

http://scikit-bio.org/
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Once all reads have been added, the ‘local mean’ is calcu-
lated as the absolute difference from the mean of each list
dpos = |xj − μ| where xj is each item in Lpos and μ is the
mean of Lpos . The sum of all calculated values of dpos is
stored in a variable vlocal = ∑

dpos , and the global mean
across all dpos is calculated m = vlocal

n . Finally, for each list
in H, the sum of differences with the global mean is cal-
culated vglobal = ∑ |xj − m|. The SQC metric is calculated
as the ratio sqc = vlocal

vglobal
. When the positions of low-quality

bases are distributed randomly with genomic position sqc
values will be close to 1.0. However, when low quality bases
are clustered at certain positions, this results in smaller dif-
ferences in base qualities at the local scale, giving smaller
vlocal values and lower sqc values.

Fold change in coverage across SVs

We calculate the fold change in coverage (FCC) across pu-
tative SVs according to (28) with minor modifications. We
utilize a genomic bin size of 10 bp and analyse 1 kb sequence
flanking the left and right breaksites. The fold change in
coverage is calculated as the median coverage of the inte-
rior SV region divided by the median of the flanking se-
quence. The FCC metric was the most important feature
after SV length for classifying SVs by machine learning,
however we considered that this metric may not be suitable
for non-diploid samples, or complex clonal mixtures such
as those encountered during tumour sequencing, as lower
allelic fractions only give rise to small changes in FCC. For
this reason, we also provide an additional machine-learning
model for use with non-diploid or complex tumour SV dis-
covery.

Polymer repeats at breaksites

Dysgu searches for simple repeat patterns with a unit length
of 1–6 bp that directly overlap a break. These sites could
arise from the joining of directed repeats (e.g. deletion
event) or by the extension of the polymer at the break (e.g.
insertion), or perhaps a more complex event. The length of
the identified repeat sequence and the stride of the simple
repeat are also utilized as features in the machine learning
model.

For each base in the input sequence, a search is initiated
for a repeat pattern starting at that base. Repeat lengths l of
between 1–6 bp are tested in increasing length. To identify a
repeat pattern, successive kmers are tested for identity with
the starting kmer, using a step size of l. If a matching kmer
is found the count c is incremented. If >3 non-matching
kmers or >1 successive non-matching kmer is found the
search is stopped. If c ≥ 3 when the search is stopped, and
the spanning sequence identified is > 10 bp, the repeat se-
quence is set aside. Finally, if the repeat sequence overlaps
the breaksite then the SV event is annotated with the break-
site repeat and stride length.

SV event metrics

Dysgu annotates each putative SV event with a number of
metrics. In Table 1, we list metrics utilized in the diploid
paired-end model by decreasing feature importance.

Classifier training

To train a machine learning classifier for the different read-
types (PE, PacBio and ONT) we constructed several ‘gold-
sets’. Gold-sets consisted of manually curated SV loci or
SV loci found using other calling software. Primarily, gold-
sets were based on the well-studied HG001 sample (Female,
Western European ancestry). However, for PacBio data,
gold-sets were also derived from the HG005 sample (Male,
Chinese ancestry). The read data utilized in constructing the
gold-sets are listed in Table 2.

The overall strategy was to quantify dysgu performance
on smaller subsets of data, and then combine these smaller
benchmarks into a larger set for training. We employed this
strategy as it meant that manual curation of smaller sub-
sets was more feasible (as opposed to annotating events
genome wide), and also multiple methods for annotating
true-positive calls could be integrated into the training set,
e.g. relying on manual curation, labelling using a third party
SV caller, or utilizing previously publish call sets, or utiliz-
ing different DNA mappers.

Firstly, we constructed a gold-set based on PacBio Sequel
II reads. Nanovar was run on HG001 minimap2-aligned
reads and insertion calls from chr1 and chr10 in the size
range 30–500 bp were added to the set (n = 1808). The
choice of chromosome to utilize was arbitrary. We also
utilized a previously published list of deletion and insertion
calls made using pbsv (n = 27 662) on PacBio CCS data at
around 30× coverage (downloaded from GIAB ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio/analysis/
PacBio pbsv 05212019/HG005 GRCh38.pbsv.vcf.gz).

Next we added a collection of manually curated SV loci
that were identified by visually inspecting calls made by
dysgu using the Integrative Genomics Viewer (IGV) (29).
Multiple read-types were assessed, simultaneously viewing
alignments of PacBio Sequel II, PacBio CCS and ONT
reads. If the SV showed support in more than one technol-
ogy the SV loci was labelled as true. If a call made by dysgu
was plausible, but showed strong evidence of being below
the minimum size threshold < 30 bp, then the call was la-
belled as false. All deletion and insertion calls for chr1, 10
and 11 for HG001 minimap2-aligned reads were manually
labelled in this way (n = 2973). Additionally, large insertion
calls (‘large-INS’) made by dysgu (≥500 bp, whole genome)
using HG001 minimap2 and ngmlr aligned reads were also
assessed (n = 1661). Calls made by dysgu were then com-
pared to these smaller benchmark sets separately and la-
belled as true or false using SVBench (available online at
https://github.com/kcleal/svbench).

These smaller benchmarks were then concatenated be-
fore training a gradient boosting classifier using the light-
gbm package (30) (boosting type ‘dart’). Features were
first selected using recursive feature-selection with cross-
validation using scikit-learn (31). Hyperparameters were
tuned using grid search with cross-validation using Strat-
ified K-fold (n = 5) (31). The learning-rate, max-bin,
max-depth, n-estimators and number-of-leaves were opti-
mized in this way, whilst other parameters were left as
default.

Events labelled using the PacBio classifier with probabil-
ity ≥0.5 were then leveraged to help construct additional

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio/analysis/PacBio_pbsv_05212019/HG005_GRCh38.pbsv.vcf.gz
https://github.com/kcleal/svbench
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Table 1. Overview of the features used in machine learning classification

Abbreviation Long name Description

SVLEN SV length The length in base-pairs of the SV
FCC Fold change in coverage A measure of the change in sequencing coverage across the SV
SQR Soft-clip base quality

ratio
The quality ratio of soft clipped bases to aligned bases

SU Support The total evidence in terms of reads supporting the SV
RMS Re-mapping score The alignment score of the re-mapped soft-clipped sequence for one-end anchored SVs
CMP Compressibility The mean compressibility of both consensus sequences, defined as the compressed

sequence length divided by the length of the uncompressed sequence. Zlib is used as the
sequence compressor.

BCC Bad clip count The number of reads within 500 bp of breaksites that do not have a high quality soft-clip.
A sliding window of 10 bp is used to scan soft-clip sequences. If the average base quality
of the window is >10, a counter is incremented. If ≥15 windows are found above this
threshold, the read is deemed to have a high quality soft-clip.

NEIGH10 Neighbours within 10 kb The total number of neighbouring break points within 10 kb of each end of the SV.
REPSC Repeat score for

soft-clipped sequences
The mean repeat score for the soft-clipped portion of consensus contigs. See the ‘Repeat
score calculation’ section for details.

MCOV Maximum sequence
coverage within 10 kb

The maximum sequencing coverage within 10 kb of SV breaksites

SWC Soft-clip weight The average base quality weight of the soft-clipped portion of consensus contigs. See the
‘Consensus sequence generation’ section for more details.

RB Reference bases The total number of reference-aligned bases in consensus sequences
RAS Reverse soft-clip to

alignment score
The soft-clipped portion of a consensus contig is reverse complemented and aligned to
the reference-aligned portion of the contig. RAS is the score of any alignment found
using Striped Smith-Waterman using scikit-bio.

MAPQP Map quality primary The mean mapping score of primary alignments.
RR Reference repeat score For deletion events <150 bp, the repeat score for the deleted reference sequence is

calculated. See the ‘Repeat score calculation’ section for details.
COV Mean coverage within 10

kb
The mean sequencing coverage within 10 kb of both break sites.

FAS Forward soft-clip to
alignment score

The soft-clipped portion of a consensus contig is aligned to the reference-aligned portion
of the contig. FAS is the score of any alignment found using Striped Smith-Waterman
using scikit-bio.

SQC Soft-clip quality
correlation

See the section ‘Base quality score correlation at soft-clipped reads’

SVTYPE Structural variant type The major SV category, DEL – deletion, INS – insertion, INV – inversion, DUP –
duplication, TRA – translocation.

NP Normal pairs The total number of reads with a ‘normal’ mapping orientation and spacing determined
by the mapper

GC GC % The mean GQ percentage of consensus contigs
NEXP Number of expanded

repeat bases at break
See the ‘Repeat expansion at break sites’ section

REP Repeat score of aligned
bases

The mean repeat-score of reference-aligned sections of consensus contigs. See the ‘Repeat
score calculation’ section for details.

NMP Mean NM score or
alignments

Mean edit-distance of primary alignments supporting the variant, determined by the
mapper

BND Number of break-end
reads

The total number of reads with a breakend signature, arising when a PE read is mapped
in a normal orientation with no supplementary mappings, but also has a soft-clipped
sequence

MAS Maximum alignment
score

Maximum alignment score of supplementary reads supporting the variant

STRIDE - The unit size in bp of the polymer extension sequence at the break site
MS Minus strand The total number of reads found on the minus strand
NMB - Mean edit distance excluding gaps ≥30 bp
OL Overlap The overlap in bp of query alignments from each breaksite
RED Re-map edit distance The edit distance of the re-mapped soft-clip sequence
PS Plus strand The total number of reads found on the plus strand
NEIGH Neighbours The number of other putative breakpoints within 1 bp of the current SV
WR Within-read support The number of reads with an alignment gap supporting the SV
RPOLY Reference polymer Number of polymer bases identified in the reference-aligned portion of consensus contigs
CIPOS95 Confidence-interval The confidence-interval around the POS breaksite
MAPQS Map-quality

supplementary
The mean mapping quality of supplementary alignments

SC Soft-clips Number of reads with soft-clips supporting the variant
SR Split-reads Number of split-reads supporting the variant
BE Block edge Categorical variable indicating if the component of the quotient graph from which the

call was made, had an edge
NDC Number of double clips The number of reads that had left and right soft-clips
STL Short template length The number of reads that displayed an insert size blow the 0.05% percentile.
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Table 2. Overview of datasets used in model training

Sample Read type Alignment information Coverage Source

HG001 PacBio Sequel II 11 kb library GRCh37 minimap2 GRCh37
ngmlr

5–6 SRA accession SRR9001772

HG001 ONT GRCh37 minimap2 13 SRA accession SRR10965087
HG001 Illumina 148 bp x2 HiSeq 2500 GRCh37 bwa mem 40 20 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/

ftp/data/NA12878/
NIST NA12878 HG001 HiSeq 300x/
RMNISTHS 30xdownsample.bam

HG001 PacBio CCS GRCh37 minimap2 24 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/data/NA12878/
NA12878 PacBio MtSinai/
merged ec output primary.bam

HG005 PacBio Sequel II 11 kb library GRCh38 minimap2 5–6 SRA accession SRR9001776

gold-sets for PE and ONT read-types. For the PE gold-
set, deletion and insertion loci identified using the PacBio
model were taken as true-positive loci (chromosomes 1, 2,
10, 11, 12, n = 8258). Additionally, the ‘large-INS’ set de-
rived from PacBio reads was utilized. Finally, events called
by dysgu using PE reads (HG001, bwa mem) were manually
curated, corresponding to deletions (n = 5984 true) from
chromosomes 1–5 and 10–22, plus insertions (n = 2250 true)
from chromosomes 1–14. The choices of chromosomes were
arbitrary.

For the ONT gold-set, we utilized deletion and insertion
loci identified using the PacBio model (probability ≥ 0.5,
whole genome n = 25 072 true). To this, we used regions
identified by Nanovar (n = 23 581 true), and the ‘large-
INS’ manually curated set. Additionally, we added manu-
ally curated dysgu calls from ONT data from chr1 and chr10
(n = 4265).

Benchmark datasets

For the HG002 benchmark, variants were downloaded
from GIAB ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/analysis/NIST SVs Integration v0.6.
For HG001, variants were downloaded from GIAB
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/
svclassify Manuscript/Supplementary Information/
Personalis 1000 Genomes deduplicated deletions.bed.

The ‘syndip’ CHM1-CHM13 benchmarking analysis
files were downloaded from https://github.com/lh3/CHM-
eval/releases/download/v0.5/CHM-evalkit-20180222.tar.
Short read alignment files for this sample were down-
loaded from the Sequence Read Archive (SRA) accession
ERR1341796. PacBio (HiFi) data for CHM13 was down-
loaded from SRA from accession SRR11292120, and
PacBio data for CHM1 was downloaded from SRA acces-
sion SRR14407676. One million PacBio reads from each
of CHM13 and CHM1 were combined for analysis of the
‘syndip’ benchmark.

Data from the 1000 Genomes project was obtained
from ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
1000G 2504 high coverage/data, and reference call
sets were downloaded from ftp://ftp-trace.ncbi.nih.gov/
1000genomes/ftp/phase3/integrated sv map/ALL.wgs.
integrated sv map v2 GRCh38.20130502.svs.genotypes.
vcf.gz.

Structural variant simulation

SVs were simulated using Visor (32). Two haplotypes with
random SVs were created from the base human refer-
ence genome hg38. For each haplotype the command
used was ‘randomregion.r -n 20000 -l 50 –standarddev
1000 -v ‘deletion,insertion,tandem duplication,inversion’
-r ‘25:25:25:25 -d chrom.dim.tsv -x exclude.bed’. The
chrom.dim.tsv and exclude.bed file listed chromosome
lengths and centromere/telomere regions. Single nucleotide
mutations were randomly added to each haplotype using a
custom script with a rate of ∼1 mutation per 2 kb. 150 bp
paired end reads (n = 200 × 106) were sampled from each
haplotype using wgsim for a coverage of ∼38×. Simulated
reads were mapped to the base hg38 reference genome using
bwa mem (33). SV callers were run using default parame-
ters.

Benchmarking SV calls using svbench

We developed a python software library ‘svbench’ to facil-
itate rapid benchmarking of SV datasets, as well as to fa-
cilitate exploration and comparison of SV calls as an aide
during software development. Svbench performs a similar
role to other benchmarking programs such as truvari from
GIAB (34) (Supplemental Table S1.pdf), although as data
structures can be held in memory and explored interac-
tively, significant speedups can be obtained for benchmark-
ing which can be helpful during software development and
analysis.

Svbench also optionally adds a weighting to input SVs
that can be used to break ties between multiple query and
reference SVs. The weighting or ‘strata’ can be specified dur-
ing loading of SVs, and usually takes the value of a quality
metric set by the caller, or if this is absent, the variant sup-
port in terms of read evidence. Stratifying SV calls in this
way is also necessary to generate a precision-recall curve.

Another difference between svbench and truvari, is that
svbench can optionally classify duplicate true-positive calls,
which can arise when one reference SV in the sample gives
rise to multiple calls in the output. There are several ways
to classify duplicates, such as labelling all duplicates as
false-positives, true-positives, or ignoring them from preci-
sion calculation. By default, svbench utilizes the latter op-
tion. Although this can lead to optimistic precision and F1
scores, we consider this approach often leads to a clearer un-

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_300x/RMNISTHS_30xdownsample.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/merged_ec_output_primary.bam
ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Personalis_1000_Genomes_deduplicated_deletions.bed
https://github.com/lh3/CHM-eval/releases/download/v0.5/CHM-evalkit-20180222.tar
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/1000G_2504_high_coverage/data
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/integrated_sv_map/ALL.wgs.integrated_sv_map_v2_GRCh38.20130502.svs.genotypes.vcf.gz
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derstanding of the underlying performance of an SV caller.
For example, if duplicates are labelled as false-positives then
a caller that identifies the correct genomic loci but has a
high duplication rate is penalized, while a caller that identi-
fied incorrect loci but also has a low duplication rate could
end up with a similar overall precision and F1 score. Fur-
thermore, removing duplicates bioinformatically, might be
less of a challenge than removing genuine false positives, by
for example filtering SVs with low weight but found nearby
other SVs.

Conceptually, svbench loads input files (vcf, bed, bedpe
or csv format) into a ‘CallSet’ object. Internally, SV records
are held in a pandas dataframe (35), which support a rich set
of data wrangling capabilities, making common data opera-
tions straightforward such as filtering, splitting, combining,
grouping and plotting precision-recall curves.

To compare one dataset with another, i.e. a benchmark
dataset with a query dataset, both sets of SV loci are loaded
into an svbench CallSet object. The benchmark dataset is
then prepared by adding intervals (add intervals function)
around each breaksite, adding one interval for each start
and end coordinate. Intervals are held in a nested contain-
ment list using the ncls library (36). Utilizing an interval
at both start and end sites, rather than a single interval,
means translocations can be naturally compared, and for
large SVs, nesting of small SV intervals within larger SVs is
avoided which can reduce the search space when comparing
records.

Query SVs are then checked against prepared intervals.
If a benchmark record overlaps both the start and end of a
query SV, and the percent size similarity, reciprocal overlap
and svtype match criteria, then the records are considered
to match. Percent size is defined as min(si zere f , si zequer y)

max(si zere f , si zequer y) . Query
and benchmark records that pass provided thresholds are
then clustered on an undirected graph G, using the network
library (37,38).

Edges (u, v) ∈ G are added to the graph between bench-
mark vertices u and query vertices v with the edge weight
given by the ‘strata’, or weight property of the query
event, which is parsed during loading of the data. If a
query vertex v matches multiple benchmark vertices u, then
the chosen benchmark call u is determined by the clos-
est absolute genomic distance between u and v, defined as
|startquer y − startre f | + |endquer y − endre f |. Once all query
records have been added to the graph, connected compo-
nents are then processed. If a benchmark vertex has mul-
tiple edges, a highest scoring edge is selected as the true-
positive call, whilst other query vertices are labelled as du-
plicates. If duplicate classification is permitted then preci-
sion scores are calculated as precision = true posi tives

total−duplicates .
If duplicate classification is turned off then duplicates are
treated as false positives. Recall is assessed as recall =

true posi tives
true posi tives+ f alse negatives and F1 score is calculated as F1 =
2.

precision. recall
precision+recall .
We utilized svbench to assess performance of dysgu com-

pared to other SV callers. For benchmarking calls against
the HG002 benchmark (34), we filtered query calls by a
minimum size of 30 bp (whole genome benchmark), or 50
bp (Tier 1 benchmark). We utilized a reference interval size

of 1000 bp, and a percent size similarity threshold of 15%.
Deletion and insertion calls were analysed separately, filter-
ing both query and reference calls by svtype before compar-
ison. Additionally, only query calls on the ‘normal’ chromo-
somes were analysed {chr1..chrY}. To match the definition
of the GIAB benchmark, we converted DUP calls <500 bp
to insertions.

SV callers were applied to datasets using default set-
tings. Version numbers for tested callers were as follows:
dysgu v1.3.0, gatk v4.1.2.0, strelka v2.9.2, manta v1.6.0,
svim v2.0.0, sniffles v1.0.12, nanovar v1.4.0, delly v0.8.5.
Versions number of mappers were: minimap2 v2.17, ngmlr
v0.2.7, bwa v0.7.17. SV calls were also filtered by removing
calls without a ‘PASS’ in the filter field (if applicable). The
‘strata’ metric utilized for each of the SV callers was as fol-
lows: lumpy – ‘SU’, delly – ‘QUAL’, dysgu – ‘PROB’, manta
– ‘QUAL’, strelka – ‘QUAL’, gatk – ‘QUAL’, nanovar –
‘QUAL’, sniffles – ‘RE’, svim – ‘SUPPORT’. Events with
a minimum support <2 were filtered out.

RESULTS

Dysgu is a general purposede novo SV and indel caller
that can analyse PE or LR sequencing datasets (Figure 1).
SV-associated reads are first identified by assessing align-
ment gaps, split-read and discordant mappings, soft-clipped
reads and read-depth changes. SV signals are clustered on
a graph and contigs are generated for putative breakpoints
(Figure 1B–E). One-end anchored SVs––events with a sin-
gle soft-clipped sequence without a corresponding map-
ping, are re-aligned to the reference genome to identify ad-
ditional small SVs. Putative SV events are labelled with a
rich set of features describing sequencing or mapping error
metrics and supporting evidence. Events are further clas-
sified using a machine learning model to prioritise vari-
ants with higher probability (Figure 1F). Dysgu also sup-
ports merging of SVs across datasets and read types, re-
genotyping of samples, and working with capture data.

Testing datasets

To assess precision and recall statistics we utilized bench-
mark datasets provided by the Genome in a Bottle (GIAB)
consortium. Primarily, we assesses a germline call set de-
rived from the Ashkenazi son sample (HG002) that com-
bines five sequencing technologies and 68 call sets plus
manual curation into a high quality and comprehensive
benchmark (34). The HG002 benchmark is stratified into
high confidence regions (Tier 1), where precision and re-
call can be confidently determined, as well as less confi-
dent regions (Tier 2, followed by ‘all’ regions) which poten-
tially involve more complex genomic regions, or the com-
pleteness of the benchmark is uncertain. However, as only
SVs ≥50 bp appear in Tier 1 regions, we also analysed all
unfiltered SVs in the GIAB dataset which has a minimum
SV size threshold ≥20 bp, appreciating that the ‘All-regions’
benchmark shows lower completeness compared to Tier 1
regions.

In addition, we assessed recall on the HG001 cell line
that has corresponding deletion calls (≥50 bp) provided by
GIAB (39). As the machine-learning classifier that dysgu
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Figure 1. Overview of dysgu pipeline. Dysgu analyses long-read (top pane, A) or paired-end data (bottom pane, A), assessing alignment gaps, discordant
and split-reads, and soft-clipped alignments. An example deletion is shown for the different read types, with numbers representing SV signatures assessed
by dysgu. Candidate SV signatures are clustered by their proximity on the reference genome (span-position-distance based) and by using a minimizer
sketch of the soft-clipped portion of reads (B). SV evidence is clustered on a graph G, using black edges to link matching signatures from B, and grey edges
to link alignments from the same read (C). The top and bottom panes in (C) and (D) depict example graphs from analysing LR or PE data, respectively.
The graph G is simplified to a quotient graph Q, where nodes represent partitions of G that are linked by black edges, and edges in Q are induced by grey
edges between partitions. Connected components in Q are then further analysed. A fast consensus sequence algorithm is employed to generate break-site
sequences (E), which may be re-aligned to the reference genome to discover additional small SVs. Finally, up to 42 features are calculated for each candidate
SV, depending on read type and scored using a gradient boosting machine classifier (F). Output vcf files may then be optionally merged/unified with other
samples or read types.

employs was trained using calls derived from HG001 (see
Materials and Methods), we did not assess precision using
this dataset. For PE data we also assessed SV callers on the
‘syndip’ benchmark (40), and a subset of 10 samples from
the 1000 Genomes project (41).

Performance using paired-end short reads

Dysgu was tested on simulated data (Supplemen-
tal Fig S1.pdf), and on the HG002 benchmark at
coverages of 20× (Figure 2, Table 3, 2, Supplemen-
tal Table S2.pdf, Supplemental Table S3.pdf) and 40×
(Supplemental Fig S2.pdf, Supplemental Table S4.pdf -
Supplemental Table S6.pdf). Performance was compared
to the popular SV callers manta (9), delly (42), and lumpy
(43). We also compared indel calling performance with
strelka (44) and gatk down to a size of 30 bp. Strelka calls
indels up to 50 bp whilst gatk calls deletions and insertions
to around the insert size.

On simulated data, all SV callers performed well across
most SV classes except for novel sequence insertions (Sup-
plemental Fig S1.pdf). Dysgu was the only caller tested
that could reliably call this class of SV, calling 4483 true pos-
itives, whereas the next best caller delly called only 218 true
positives. Dysgu showed the highest F1 scores for deletions
and novel sequence insertions, whereas lumpy showed the
highest F1 scores for duplications and inversions.

To gauge performance on real data, Tier 1 SVs of the
HG002 benchmark (20× coverage) were assessed. Dysgu
called the largest number of true deletions and insertions
(n = 3913), with 727 more variants called than the next best
caller manta (n = 3186) (Table 3). Precision-recall curves
indicated that probability values estimated by dysgu us-
ing machine learning were useful for stratifying variants by

quality, with higher probability values correlating with pre-
cision (Figure 3A–D). Dysgu had the highest precision for
deletion calls (95.7%), as well as the highest recall for dele-
tions (62.2%) and insertions (23.7%). Manta showed the
highest precision for insertion variants (97.6% versus dysgu
95.1%) but had a lower recall (14.2%) than dysgu. As a per-
centage value, dysgu called 8.8% more deletions and 66%
more insertions than manta. Overall, dysgu showed higher
F1 scores than the next best caller, manta, with an F1 score
4.7% higher for deletions and 13.1% higher for insertions.
Dysgu also showed better genotype calling F1 scores com-
pared to manta, although this was due to higher recall with
manta showing the highest genotype calling precision (Ta-
ble S2).

We also assessed the level of duplication, defined as the
ratio of duplicated true-positive calls relative to unique true-
positive calls. The problem of duplication arises when a sin-
gle SV event leads to multiple calls in the output file. Gen-
erally, all PE callers displayed a low level of duplication be-
low <1.5% (Table 3).

We also stratified variants by size using the All-regions
benchmark to investigate size constraints of SV calling (Ta-
ble 4, Supplemental Table S3.pdf). For deletions in the 30–
50 bp range, dysgu showed similar performance to gatk with
similar precision, recall and F1 scores. For insertions in the
30–50 bp range, dysgu showed higher precision (97.1%) and
recall (28.2%) than strelka and gatk.

For SVs ≥50 bp, dysgu showed a good balance of pre-
cision and recall across all size ranges with the highest F1
scores among callers (Table 4). For deletion SVs dysgu gen-
erally displayed the highest precision but showed a lower re-
call for large SVs. For example, delly showed a higher recall
than dysgu for deletions ≥5000 bp (41.1% versus 33.1%),
but only had a precision of 36% versus dysgu 97%.
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Figure 2. Performance of dysgu using 20 × PE reads. Dysgu was compared to SV callers manta, delly and lumpy, and indel callers strelka and gatk,
using the HG002 benchmark. Precision-recall curves are shown for all genomic regions (A, B), as well as high-confidence Tier 1 regions (C, D). The
secondary y-axis indicates duplicate true-positives (TP) as a fraction of true-positive calls. Intersections and aggregates of intersections of SV calls for
the all-regions benchmark are displayed using an upset plot (E, F). To investigate combinations of SV callers, the union of true-positives between callers
(labelled concordant), was plotted against the sum of false-positives (labelled non concordant) (G, H). The 5 and 10% non-concordance (NC) is also
illustrated as a solid or dashed line, respectively.

Table 3. Performance using PE 20× data on the HG002 ‘Tier 1 regions’ benchmark. The numbers of deletion (DEL) and insertion (INS) variants are
quantified. Duplication is defined as the ratio of duplicate true-positive calls to the number of true-positive calls. TP = true-positive, FP = false-positive.
Best scores are shaded blue

TP FP Precision Recall Duplication F1

DEL INS DEL INS DEL INS DEL INS DEL INS DEL INS

dysgu 2624 1289 117 66 0.957 0.951 0.622 0.237 0.000 0.009 0.754 0.379
manta 2411 775 163 12 0.937 0.985 0.572 0.142 0.000 0.008 0.710 0.249
delly 2178 58 429 0 0.835 1.000 0.517 0.011 0.001 0.000 0.638 0.021
lumpy 2037 256 0.888 0.483 0.001 0.626

For insertion SVs ≥50 bp, dysgu showed the highest re-
call, but manta displayed the best precision of 98.2%. Dysgu
was the best caller for identifying loci with large insertions
(≥500 bp) finding n = 426, versus manta n = 23 and gatk
n = 52. However, as dysgu utilizes insert size statistics to es-
timate large insertions length, calculated insertion sizes are
expected to be less accurate compared to de novo assembly-
based callers such as manta and gatk (data not shown).

At 40× coverage, all callers displayed improved recall and
F1 scores although at the expense of lower precision (Sup-
plemental Fig S2.pdf, Supplemental Table S4.pdf - Sup-
plemental Table S6.pdf). Interestingly, this phenomenon
was also reported in a recent benchmarking study suggest-

ing that at higher coverage values, absolute numbers of se-
quencing and mapping artifacts are more likely to be mis-
taken for SV events with low allelic fraction (14). Overall, at
40× coverage dysgu maintained a good balance of precision
and recall compared to other callers, in line with 20 × cover-
age, showing the highest F1 score for deletions and insertion
calls.

We next investigated the intersection of variant calls be-
tween tools, or the set of SVs shared between tools, and
displayed results using an upset plot (Figure 2E, F), which
quantifies the sizes of SV call sets, their intersections, and
aggregates of intersections (45). Assessing Tier 1 SVs in the
HG002 benchmark, dysgu showed the largest number of
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Figure 3. Performance of dysgu using PacBio reads. Precision-recall curves are shown for all genomic regions (A, B), as well as high-confidence Tier
1 regions (C, D). Analysis of SV intersections and aggregates of intersections for the all-regions benchmark are displayed using an upset plot (E, F).
Combinations of SV callers were assessed by plotting the union of true-positives (labelled concordant), against the sum of false-positives (labelled non
concordant) (G, H). The 5 and 10% non-concordance (NC) are shown as a solid or dashed line, respectively.

Table 4. SV calling stratified by size using PE 20× data on the HG002 the ‘All-regions’ benchmark. Best scores are shaded blue

Precision Recall F1

[30–50) [50–500)
[500–
5000) ≥5000 [30–50) [50–500)

[500–
5000) ≥5000 [30–50) [50–500)

[500–
5000) ≥5000

Deletions dysgu 0.969 0.969 0.979 0.970 0.358 0.232 0.370 0.331 0.522 0.374 0.537 0.494
manta 1.000 0.967 0.953 0.837 0.008 0.219 0.286 0.335 0.015 0.358 0.441 0.479
gatk 0.966 0.932 1.000 0.361 0.105 0.001 0.526 0.189 0.002

strelka 0.982 1.000 0.262 0.003 0.413 0.005
delly 0.974 0.906 0.766 0.360 0.242 0.164 0.377 0.411 0.388 0.277 0.505 0.384

lumpy 0.895 0.930 0.745 0.311 0.002 0.148 0.378 0.409 0.004 0.255 0.502 0.353
Insertions dysgu 0.971 0.935 0.988 1.000 0.282 0.153 0.119 0.119 0.437 0.263 0.213 0.212

manta 1.000 0.988 1.000 0.012 0.100 0.007 0.023 0.182 0.014
gatk 0.923 0.910 1.000 1.000 0.250 0.101 0.014 0.028 0.393 0.182 0.027 0.054

strelka 0.888 0.938 1.000 0.225 0.006 0.003 0.358 0.013 0.005
delly 0.991 1.000 0.057 0.006 0.108 0.012

unique calls (both deletions n = 154, and insertions n = 814)
followed by manta (n = 127 deletions, n = 290 insertions).
Including indel callers and analysing all SVs changed the
conclusion slightly. In this case, gatk found the most unique
deletions events (n = 1084, versus dysgu n = 766) and the
second highest number of unique insertion events (n = 944)
after dysgu (n = 2034).

Recent studies have investigated combining the output of
different SV callers to boost performance (46–48). To gauge
the performance of different combinations of callers we as-
sessed the union of true positive calls (labelled as concor-
dant) and compare with the sum of false positives (labelled
non-concordant) as a proxy for the false positive rate (Fig-
ure 2G, H). The best combination of callers using the All-
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regions benchmark appeared to be dysgu and gatk which
together found 8408 deletions and 6134 insertions.

We additionally tested the recall of tools against the
HG001 deletion call set, comparing unfiltered variants for
all callers. Dysgu demonstrated the highest recall (93.61%),
followed by manta (89.84%), delly (84.38%) and lumpy
(81.61%).

Additionally, dysgu was tested on the synthetic diploid
(‘syndip’) benchmark (40). This benchmark was previously
created by de novo assembly of two near haploid cell lines
(CHM1 and CHM13). SV callers were tested against dele-
tion and insertion reference calls and performance was
stratified by size (Supplemental Fig S3.pdf, Supplemen-
tal Table S7.pdf – Table S8.pdf). Performance of SV callers
were consistent with the HG002 benchmark, with dysgu
showing the highest F1 scores. Dysgu called about twice as
many true variants as the next most sensitive caller delly
(n = 12 229 for dysgu versus 6122 for delly), although
manta had the highest average precision (0.892 versus dysgu
0.883). For deletion calls ≥50 bp manta also showed good
performance, with F1 scores close to dysgu (Supplemen-
tal Table S8.pdf).

Finally, we also tested dysgu on ten randomly chosen
samples from the 1000 genomes project for which a refer-
ence set of large deletions (≥1000 bp in size) was available
(Supplemental Fig S4.pdf, Supplemental Table S9.pdf).
Dysgu demonstrated the highest precision and F1 scores
on every sample, although delly and lumpy showed better
recall than dysgu, with delly having an average recall of
52.3% versus dysgu 48.9%. However, delly only had a mean
precision of 23.7% vs 63.3% for dysgu. The next best caller
after dysgu was manta, with an F1 score on average 3.2%
lower than dysgu.

To summarise, using PE data, dysgu was generally the
most performant tool showing a good balance of precision
and recall across SV types and size ranges.

Performance using long reads

We tested dysgu against the HG002 benchmark using
PacBio HiFi reads at approximately 8× (Figure 3, Tables 5–
6, Supplemental Fig S5.pdf, Supplemental Table S10.pdf -
Supplemental Table S13.pdf) and 15× coverage (Supple-
mental Fig S6.pdf, Supplemental Table S14.pdf - Supple-
mental Table 19.pdf), and using Oxford nanopore reads
at 13× coverage (Supplemental Fig S7.pdf, Supplemen-
tal Table S20.pdf - Supplemental Table S27.pdf). Perfor-
mance was compared against recently published LR
callers nanovar (17), sniffles (49) and svim (19), using
reads aligned by minimap2 (50) (Figure 3, Tables 5 and
6), or ngmlr (49) (Supplemental Fig S5.pdf, Supplemen-
tal Table S10.pdf). Aligning reads using ngmlr tended to
give slightly higher precision among all SV callers although
F1 scores were also slightly reduced, particularly for inser-
tion variants (Supplemental Table S10.pdf).

Assessing Tier 1 SVs from the HG002 benchmark, dysgu
had the highest recall for deletions (92.4%) and insertions
(91.2%) and the highest precision for insertion calls (95.8%).
Dysgu also had the highest F1 score for deletions (0.945)
and insertions (0.934) but was closely followed by svim with

F1 scores of 0.935 and 0.928 for deletions and insertions,
respectively (Figure 3 and Table 5).

Expanding the testing set to all regions and a min-
imum size of 30 bp, svim showed the highest recall
(0.334 for deletions and 0.409 for insertions) (Supplemen-
tal Table S11.pdf). Dysgu and nanovar displayed similar
precision scores, but overall dysgu displayed the highest F1
scores (0.483 for deletions and 0.551 for insertions) (Sup-
plemental Table S11.pdf). Svim showed marginally lower
F1 scores (0.477 for deletions and 0.542 for insertions), al-
though we noticed that svim showed a higher level of du-
plication. Additionally, for some callers this problem was
more acute when analysing Oxford nanopore reads, with
for example, svim showing a duplication ratio of 0.58 for in-
sertion calls in Tier 1 regions (Supplemental Figure S8.pdf,
Supplemental Table S22.pdf). Among callers, dysgu gener-
ally showed a higher level of duplication than sniffles and
nanovar, although dysgu had a consistently higher recall.

Analysing the intersection of SVs, we found that most
callers seemed to identify similar sets of SVs indicating that
combining SV callers might only lead to small gains in sen-
sitivity (Figure 2E–H).

Similar to Illumina data, increasing the coverage of
PacBio HiFi data increased the recall of SV callers and F1
scores, but at the expense of reduced precision. At 15× cov-
erage, dysgu had the highest F1 scores for deletions and in-
sertions for Tier 1, whilst showing a low level of duplication
(Supplemental Table S14.pdf).

Sensitivity of SV detection was also assessed using the
HG001 deletion benchmark (≥50 bp in size). Using PacBio
reads at 5× coverage dysgu showed the highest recall
(77.35%) compared to other callers (nanovar 75.97, sniffles
70.52, svim 73.73%). Likewise, dysgu showed the highest
recall using 13× ONT reads (96.41%) compared to other
callers (nanovar 91.67, sniffles 95.89, svim 95.25%).

We further assessed dysgu on the syndip benchmark
by combining PacBio reads from CHM1 and CHM13
samples to a coverage of around 12× (Supplemen-
tal Fig S7.pdf, Supplemental Table S20.pdf – Supplemen-
tal Table S21.pdf). Results were consistent with the HG002
benchmark, with dysgu generally showing higher precision
and F1 scores compared to other callers, and svim demon-
strating a slight advantage for recall.

In summary, dysgu demonstrated a high level of perfor-
mance on LR datasets, with generally the best balance of
precision and recall across SV sizes and categories.

Combining short and long reads for improved performance

Dysgu supports merging of SVs from different runs us-
ing a ‘merge’ command making it trivial to integrate calls
from different sequencing technologies. After merging, ad-
ditional tags are added to the output file corresponding to
the maximum and mean probability across samples, with
the probability determined by the machine learning classi-
fier.

We used dysgu to assess different combinations of se-
quencing technology including PacBio (8× and 15×), ONT
(13×) and Illumina paired-end reads (20 × and 40×), by
filtering calls with a maximum model probability ≥0.5 for
PacBio, or ≥0.35 for ONT combinations (Table 7). Test-
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Table 5. Performance using PacBio Sequel II reads at 8 × coverage on HG002 Tier 1 regions. Duplication is defined as the ratio of duplicate true-positive
calls to the number of true-positive calls. TP = true-positive, FP = false-positive. Best scores are shaded blue

TP FP Precision Recall Duplication F1

DEL INS DEL INS DEL INS DEL INS DEL INS DEL INS

dysgu 3896 4962 132 218 0.967 0.958 0.924 0.912 0.014 0.040 0.945 0.934
nanovar 3593 4613 93 272 0.975 0.944 0.852 0.848 0.018 0.042 0.909 0.893
svim 3899 4965 224 292 0.946 0.945 0.925 0.912 0.014 0.048 0.935 0.928
sniffles 3251 4680 190 166 0.945 0.966 0.771 0.860 0.011 0.006 0.849 0.910

Table 6. Long-read performance as a function of SV size. PacBio Sequel II reads at 8× coverage was assessed using the HG002 ‘all-regions’ benchmark.
Best scores are shaded blue

Precision Recall F1

[30, 50) [50, 500)
[500,
5000) ≥5000 [30, 50) [50, 500)

[500,
5000) ≥5000 [30, 50) [50, 500)

[500,
5000) ≥5000

Deletions dysgu 0.938 0.938 0.900 0.921 0.549 0.501 0.467 0.360 0.693 0.654 0.615 0.518
nanovar 0.930 0.924 0.830 0.800 0.489 0.457 0.443 0.327 0.641 0.611 0.578 0.464

svim 0.881 0.806 0.767 0.856 0.560 0.512 0.487 0.339 0.685 0.626 0.596 0.486
sniffles 0.930 0.903 0.759 0.567 0.261 0.361 0.439 0.354 0.408 0.516 0.557 0.436

Insertions dysgu 0.834 0.866 0.941 0.929 0.580 0.600 0.561 0.360 0.685 0.709 0.703 0.519
nanovar 0.845 0.871 0.838 0.558 0.515 0.552 0.529 0.304 0.640 0.676 0.649 0.394

svim 0.782 0.773 0.890 0.929 0.589 0.608 0.573 0.364 0.672 0.681 0.697 0.523
sniffles 0.862 0.874 0.892 0.868 0.452 0.541 0.469 0.182 0.593 0.668 0.615 0.301

ing against the All-regions benchmark, the addition of Il-
lumina reads consistently led to performance improvements
when combined with PacBio or ONT, especially for deletion
calls (Table 7). The largest increases in recall were seen from
adding 40× Illumina calls, although 20× Illumina calls also
led to noticeable increases. For example, adding 40× Illu-
mina calls to 8× PacBio calls identified an additional 1286
deletions and 894 insertions for the All-regions benchmark,
or 150 deletions and 33 insertions for Tier 1 regions. F1
scores improved for the All-regions benchmark, increasing
by 3.4% for deletions and 2.1% for insertions. Surprisingly,
combining Illumina calls with PacBio 8×, appeared to be
similar in performance to PacBio calls at a higher coverage
value 15×.

However, Tier 1 regions generally did not show in-
creased F1 scores despite increased recall, which was caused
by an inflation of the false-positive rate (Supplemen-
tal Table S28.pdf). Additionally, we assessed Tier 1 + 2 re-
gions which include more complicated genomic loci than
Tier 1. Tier 1 + 2 regions also showed improved F1 scores,
with 8 × PacBio + 40× Illumina F1 scores increasing by
3.1 points for deletions and 1.5 for insertions (Supplemen-
tal Table S29.pdf). We speculate that Illumina data may en-
hance SV calling at complicated genomic regions that are
not trivial to map for LR mappers. Additionally, PE data
may help fill-in the gaps for LR datasets in regions of low
or zero coverage.

To understand how PE datasets might increase the per-
formance of SV calling when combined with LR datasets,
we assessed true-positive deletion calls made using PE data
that were absent from LR data and vice-versa (Supplemen-
tal Fig S9.pdf, Supplemental Fig S10.pdf). Around 72%
of PE calls not found in LR call sets appeared to result
from low or absent read support in the LR data. We esti-
mated only around 3.5% of PE calls would be detectable
in the in LR data by altering default runtime parameters

of dysgu, for example by lowing the map quality threshold
(Supplemental Fig S9.pdf). However, a further 24% of PE
calls showed ambiguous alignments in the LR dataset that
were inconsistent with the reference SV. A few examples are
shown in Supplemental Fig S10.pdf, showing single dele-
tion events that are mapped as multiple gaps on the refer-
ence. Using blat (51) to align the LR data sometimes recov-
ered the expected reference SV event, suggesting that using
a different aligner might help resolve mapping ambiguities.

These data indicate that PE data can improve SV calling
in combination with LR data mainly through evening-out
coverage of the genome, but also by providing an alterna-
tive interpretation at ambiguous or complex SV sites. Com-
bining sequencing technologies for improved SV discovery
has not received much attention, although with the increas-
ing prevalence of LR sequencing, and other non-standard
techniques such as linked-read or HiC, we suggest that this
would be an interesting avenue for future research.

Runtime

We tested runtime using an Intel(R) Xeon(R) CPU E5-2680
v3 @ 2.50GHz Linux machine with 256GB of system mem-
ory. For Ilumina data, dysgu was the fastest tool using a
single-core, analysing 40× coverage data in 57 min and us-
ing 5.6GB memory (Table 8), which was more than twice
as quick as the next fastest tool, delly. Manta was over 6
times slower than dysgu to run on a single core, but used
the least memory (0.244), and can also be run in parallel
efficiently (data not shown). However, dysgu trades speed
for temporary disk space by copying SV-associated reads
to an intermediate file for fast access and required 7.8GB
disk space using default parameters. As large intermediate
files can cause I/O problems in high performance comput-
ing environments, dysgu can be run without generating in-
termediate alignment files although runtime increased to
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Table 7. Performance of combinations of sequencing platforms using the HG002 ‘all-regions’ benchmark. pb = PacBio, ill = Illumina, ont = Oxford
Nanopore Technologies. Best scores are shaded blue

TP Precision Recall Duplication F1

DEL INS DEL INS DEL INS DEL INS DEL INS

pb 8x 12155 14690 0.936 0.878 0.325 0.402 0.029 0.097 0.483 0.551
pb 8x + ill 20x 12999 15226 0.929 0.873 0.348 0.416 0.051 0.118 0.506 0.564
pb 8x + ill 40x 13441 15584 0.920 0.868 0.360 0.426 0.064 0.131 0.517 0.572
pb 15x 12821 15599 0.939 0.868 0.343 0.427 0.029 0.111 0.502 0.572
pb 15x + ill 20x 13399 15956 0.930 0.863 0.358 0.436 0.052 0.133 0.518 0.580
pb 15x + ill 40x 13749 16189 0.922 0.857 0.368 0.443 0.066 0.147 0.526 0.584
ont 13x 13716 13531 0.891 0.880 0.367 0.370 0.041 0.028 0.520 0.521
ont 13x ill 20x 13261 14456 0.918 0.869 0.355 0.395 0.056 0.117 0.512 0.543
ont 13x ill 40x 13928 15031 0.902 0.855 0.373 0.411 0.072 0.158 0.527 0.555
ont 13x pb 8x 13758 15616 0.892 0.841 0.368 0.427 0.095 0.220 0.521 0.567

Table 8. Resource requirements of SV callers. Best scores are shaded
blue. Temporary hard-disk space requirements are only shown for dysgu.
Dysgu can be run in two different modes – the ‘run’ mode first separates
SV-associated reads into a temporary file for faster access before running
the ‘call’ program. For very long read data such as ONT, the ‘call’ program
is recommended

Reads Caller Min Mem (GB) Space (GB)

Illumina 40X dysgu ‘run’ 57.3 5.54 7.8
dysgu ‘call’ 97.8 5.39 0.6
Manta 365.1 0.24
delly 150.0 6.42
lumpy 211.5 12.00

PacBio 8X dysgu ‘run’ 7.5 0.35 4.3
dysgu ‘call’ 10.9 1.12 0.6
nanovar 46.5 17.15
svim 15.25 0.34
sniffles 19.5 0.71

ONT 13X dysgu ‘call’ 68.0 0.94 0.6
nanovar 83.4 17.58
svim 66.0 0.90
sniffles 68.0 2.01

around 98 min for this sample. We tested dysgu on addi-
tional samples with different coverage values (Supplemen-
tal Table S30.pdf). Resource requirements generally scaled
with coverage, although sample complexity appeared to
play a role.

For PacBio HiFi reads analysed on a single core, dysgu
was the fastest tool, analysing 8× coverage sample in <8
min and using 0.35GB memory, but used 4.3GB of tempo-
rary space. ONT reads at 13× coverage were analysed by
dysgu in 68 min using 0.94GB memory, which was slower
than the fastest caller svim (66 min and 0.9GB memory).

DISCUSSION

We developed dysgu to facilitate SV and indel discovery us-
ing PE or LR sequencing platforms in a computationally
efficient manner. Dysgu analyses several forms of evidence
to detect events including alignment gaps, discordant reads,
read-depth, soft-clipped and supplementary mappings. For
PE data, remapping of anomalous soft-clipped reads is also
utilized to identify additional small SVs. Putative events are
then labelled with a useful probability value using a gradient
boosting classifier (30).

Stratifying events by probability has several potential
benefits over manually filtering. For example, machine

learning classifiers can learn non-linear relationships be-
tween variables, and potentially capture large numbers of
interactions between variables that would be difficult to re-
produce through a manual approach. However, machine-
learning raises additional challenges such as feature engi-
neering, collation of appropriate training sets, and assessing
how well a model will generalize to new data.

Dysgu models SV events using a vector of up to 41 fea-
tures depending on read-type, with each feature designed to
quantify different aspects of an SV signature, or error pat-
terns of the respective read-type. The current list of features
is non-exhaustive and can potentially be expanded in future
releases to enhance calling performance.

Features incorporate more obvious signals such as read-
support and sequencing depth, as well as novel patterns
such as ‘soft-clip quality correlation’ (PE data only) and
repetitiveness scores (see Materials and Methods). To fa-
cilitate the calculation of features that capture sequence-
contextual information, we also developed a novel linear-
time consensus sequence algorithm, that is used to rapidly
collapse reads at each break site into consensus contigs for
further analysis. We trained our classifier using a large col-
lection of manually labelled SV loci and combined these
sites with loci identified by other SV callers. Manually la-
belling induces an obvious bias in the training set, where the
correctness is a matter of opinion of the human observer.
However, using a manual approach also allowed us to gen-
erate training sets with high completeness, which was not
the case when relying on third party SV callers. Construc-
tion of quality training sets is a perennial challenge in ma-
chine learning and we expect that improving the quality and
size of training sets will yield further performance improve-
ments for SV classification.

We validated performance using benchmark datasets
provided by GIAB (34,39), and provide a software li-
brary ‘svbench’ to facilitate benchmarking and exploration
of results. Primarily we assessed the HG002 benchmark,
analysing in detail high-confidence Tier 1 regions, as well
as all genomic regions. At Tier 1 regions we find that dysgu
outperforms existing tools for both PE reads (Table 3) or
third generation long-reads (Table 5) using the F1 metric for
comparisons. Tier 1 regions cover 2.51 Gbps of the genome
although more complicated regions and smaller indel SVs
(<50 bp) are absent. Analysis of all genomic regions largely
supported the conclusion that dysgu matches or outper-
forms existing tools, with dysgu often showing the best F1
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scores across read types (Supplemental Table S4.pdf, Sup-
plemental Table S11.pdf). Notably, svim showed higher F1
scores than dysgu in some benchmarks, although this was
at the expense of considerably lower precision values and
often increased duplication of true-positives.

Another novel feature of dysgu is that calls from separate
sequencing technologies can be merged using a single com-
mand. Particularly, we found that adding calls made using
Illumina data to either PacBio or ONT led to improved re-
call (Table 7). However, this appeared to occur mainly out-
side Tier 1 regions, suggesting Tier 1 regions are an ‘easy-
case’ for LR platforms. Nevertheless, for applications that
require higher recall, adding PE data to lower coverage LR
data is a cost-effective approach for SV discovery that dysgu
can support.

To improve dysgu performance in future releases there
are several avenues to explore. Dysgu relies on a several
heuristics such as span position distance, minimizer sup-
port and others that could potentially be optimized using
a large test set. As discussed, feature engineering and im-
proving training sets for machine learning are also likely
to be beneficial. Finally, incorporation of a de novo as-
sembly stage could also help better resolve multi allelic
sites and full-length insertion sequences in PE data, and
help resolve duplication of true-positve events. For LR
datasets, dysgu relies heavily on the DNA mapper to gen-
erate meaningful alignments, although at complex SV sites
problems can arise with ambiguous alignments (Supple-
mental Fig S10.pdf). De novo assembly, or re-alignment
procedures may additionally help resolve these issues.

In conclusion, dysgu is de novo SV caller that performs
favourably compared to existing tools using PE or LR
datasets. Dysgu is also computationally efficient to run, be-
ing the fasted tool using PE data, or second fastest using
LR data. We provide dysgu as an open-source package for
use in basic and applied research applications.

ABBREVIATIONS

SV structural variant, PE paired-end, LR long-read, DEL
deletion, DUP duplication, INV inversion, INS insertion,
TRA translocation, ONT Oxford Nanopore Technologies,
GIAB Genome In A Bottle consortium, SRA Sequencing
read Archive, POA partial order alignment.

DATA AVAILABILITY

Dysgu is released as free and open source under the
Massachusetts Institute of Technology (MIT) li-
cence. Source code and distributions can be down-
loaded at https://github.com/kcleal/dysgu. Data
used to train the classifier is available online at
https://zenodo.org/record/4761527. Svbench is also re-
leased under the MIT license and can be found at
https://github.com/kcleal/svbench. Analysis scripts used
to reproduce results found in this paper can be found
under https://github.com/kcleal/svbench. Illumina se-
quencing data for Ashkenazim HG002 (34) sample was
downloaded from GIAB (ftp://ftp-trace.ncbi.nlm.nih.gov/
giab/ftp/data/AshkenazimTrio/HG002 NA24385 son/
NIST HiSeq HG002 Homogeneity-10953946/

HG002Run01-11419412/HG002run1 S1.bam). Two
lanes of PacBio data were downloaded from SRA
(https://www.ncbi.nlm.nih.gov/sra) under accessions
SRR10188368 and SRR10188369. ONT data were down-
loaded from SRA under accession SRR11537600.
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