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Major depressive disorder (MDD) has previously been linked to structural changes in several brain regions, partic-
ularly in themedial temporal lobes (Bellani, Baiano, Brambilla, 2010; Bellani, Baiano, Brambilla, 2011). This has been
determined using voxel-based morphometry, segmentation algorithms, and analysis of shape deformations (Bell-
McGinty et al., 2002; Bergouignan et al., 2009; Posener et al., 2003; Vasic et al., 2008; Zhao et al., 2008): these are
methods inwhich information related to the shape and the pose (the size, and anatomical position and orientation)
of structures is lost. Here, we incorporate information about shape and pose to measure structural deformation in
adolescents and young adults with and without depression (as measured using the Beck Depression Inventory
and Diagnostic and Statistical Manual of Mental Disorders criteria). As a hypothesis-generating study, a significance
level of p b 0.05, uncorrected for multiple comparisons, was used, so that subtle morphological differences in brain
structures between adolescent depressed individuals and control participants could be identified. We focus on
changes in cortical and subcortical temporal structures, and use a multi-object statistical pose and shape model to
analyze imaging data from 16 females (aged 16–21) and 3 males (aged 18) with early-onset MDD, and 25 female
and 1 male normal control participants, drawn from the same age range. The hippocampus, parahippocampal
gyrus, putamen, and superior, inferior andmiddle temporal gyri in both hemispheres of the brainwere automatical-
ly segmented using the LONI Probabilistic Brain Atlas (Shattuck et al., 2008) in MNI space. Points on the surface of
each structure in the atlas were extracted and warped to each participant3s structural MRI. These surface points
were analyzed to extract the pose and shape features. Pose differences were detected between the two groups, par-
ticularly in the left and right putamina, right hippocampus, and left and right inferior temporal gyri. Shape differ-
ences were detected between the two groups, particularly in the left hippocampus and in the left and right
parahippocampal gyri. Furthermore, pose measures were significantly correlated with BDI score across the whole
(clinical and control) sample. Since the clinical participantswere experiencing their veryfirst episodes ofMDD,mor-
phological alteration in the medial temporal lobe appears to be an early sign of MDD, and is unlikely to result from
treatment with antidepressants. Pose and shape measures of morphology, which are not usually analyzed in
neuromorphometric studies, appear to be sensitive to depressive symptomatology.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Depression directly affects more than 10% of the population at some
point in their lives (World Health Organization, 2004), and is a leading
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cause of disability, with significant social, health and economic impacts
(Olesen et al., 2012). Major Depressive Disorder (MDD) has a typical
onset in adolescence and young adulthood, and prevalence rates
of MDD by late adolescence equal those in adulthood (Kessler and
Walters, 1998). MDD that starts in adolescence is associated with a
large number of negative outcomes, including lower educational and
occupational attainment, poor physical health, and poor interpersonal
functioning (Kandel and Davies, 1986). These outcomes persist into
adulthood and predict significant risk for a lifelong pattern of illness
(Birmaher et al., 1999). Given the enormous personal and societal
costs associated with MDD, studies aimed at uncovering the pathology
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of the disorder in its earliest stages are crucial to informing effective pre-
vention and intervention efforts.

Our understanding of the changes in brain neuroanatomy that are
associated with MDD have benefited greatly from important advances
in Magnetic Resonance Imaging (MRI) technology in the past two de-
cades. Using structural MRI techniques in adult samples, differences in
volume and shape have been found between depressed and non-
depressed groups in temporal (e.g., superior temporal gyrus (STG), hip-
pocampus, amygdala), frontal (e.g., anterior cingulate cortex (ACC)),
and orbitofrontal regions (see Lorenzetti et al., 2009) for a review of
the structural MRI findings associated with MDD in adulthood). These
studies, conducted in adults, are likely to reflect the pathophysiology
of MDD, as well as secondary changes due to longstanding behavioral
alteration, and iatrogenic changes (as a result of pharmacological and
other therapies).

To date, a small handful of studies have also investigated pediatric
and adolescent-onset MDD and have reported structural differences
from healthy controls in similar regions, including the hippocampus
(MacMaster and Kusumakar, 2004), amygdala (Rosso et al., 2005), stri-
atum and caudate nucleus (Matsuo et al., 2008; Shad, Muddasani, Rao,
2012), superior and middle temporal gyri (Shad, Muddasani, Rao,
2012), and subgenual prefrontal cortex (Botteron et al., 2002). A com-
pelling recent study by (Chen, Hamilton, Gotlib, 2010) even found
volumetric differences in the left hippocampus in clinically non-
depressed young girls at high risk for depression (due to a maternal de-
pression history), in comparisonwith girls who did not have amaternal
depression history. However, other studies of early-onset depression
have failed to find volumetric differences between depressed and
healthy control groups in critical brain regions, including the prefrontal
cortex (e.g., (Nolan et al., 2002)), hippocampus (Rosso et al., 2005), and
amygdala (MacMaster and Kusumakar, 2004).

One potential reason for the failure to find consistent evidence ofmor-
phological differences in critical cortico-limbic circuits in early-onset
MDD may be that such differences are subtle. Since the extent of hippo-
campal volume loss has been found to correlate significantly with the
number of depressive episodes (i.e., time spent depressed) in adults
with depression (Milne, MacQueen, Hall, 2012; Sheline et al., 1999), dif-
ferences between depressed and non-depressed groups are likely to be
larger in older samples of adults with recurrent depression than in youn-
ger individuals in the earliest stages of the illness. Hippocampal volume
loss has also been associated with traumatic life events, which can be ex-
pected to accumulate with age (e.g., Childress et al., 2013; Vythilingam
et al., 2004). More sensitive methods than have been used to date may
be required to detect subtle differences in brain morphology associated
with depression in its earliest stages, and in its youngest sufferers.

Previous methods used for investigating the morphological differ-
ences between individuals with depression and healthy controls can
be categorized into three main types: 1) volume analysis; 2) analysis
of local composition of tissue; and 3) analysis of shape and volume.
The most common approach is hippocampal volume analysis using
manual or automated segmentation (Bell-McGinty et al., 2002;
Bergouignan et al., 2009; Vasic et al., 2008). In such analyzes the volume
of the hippocampal region is measured after isolating it from the rest of
the brain. Using thismethod, several groups have observed smaller hip-
pocampal volumes in adults with MDD (Bremner et al., 2000; Caetano
et al., 2004; Frodl et al., 2002; MacQueen et al., 2003; Neumeister
et al., 2005; Saylam et al., 2006) whereas other groups have reported
no differences or even larger hippocampal volumes (Hastings et al.,
2004; Monkul et al., 2007; Rusch et al., 2001; Vythilingam et al., 2004).

Voxel-based morphometry (VBM) (Ashburner and Friston, 2000;
Good et al., 2001) which examines voxelwise differences in gray- and
white-matter volumes and concentrations throughout the brain, has
demonstrated reduced gray matter intensity in the hippocampus of
MDD subjects (Bergouignan et al., 2009; Chen et al., 2007; Shah et al.,
1998; Vasic et al., 2008). A limitation of VBM is that each individual3s
brain data is normalized using non-linear deformation fields to a
reference template. Through that process, crucial idiographic informa-
tion such as the shape of brain structures and their position, orientation
and size (pose), both relative to other structures and in absolute terms,
is lost (Ashburner and Friston, 2000). This information may be critical
for capturing group differences, particularly when such differences are
subtle.

Alternatives to VBM approaches include Deformation Based Mor-
phometry (DBM) (Bookstein, 1996) and Tensor Based Morphometry
(TBM) (Chung et al., 2001), which are widely used to study the brains
of people with schizophrenia, autism, dyslexia and Turner3s syndrome
(Frackowiak et al., 2004). Unlike VBM, which analyzes images after
the deformation fields have been applied in order tomap any individual
brain into a standard reference, these approaches take the deformation
fields themselves as the dependent variable. Neither of these ap-
proaches has yet been attempted to study structural changes in depres-
sion. However, shape-analysis methods that are related to DBM/TBM
have been employed in two separate studies to examine hippocampal
differences in depression. These studies have focused on separate anal-
ysis of both shape and volume of the hippocampus using high-
dimensional mapping (Posener et al., 2003) or spherical harmonic
basis functions (Zhao et al., 2008). These studies with adult and elderly
depressed participants reveal significant differences in hippocampal
shape, but no volumetric differences. In these analyses, contribution to
morphology made by the shape and pose of the hippocampal region
and the surrounding regions was largely ignored.

Multi-object analysis enables the simultaneous statistical analysis of
multiple brain structures, possibly allowing for the identification of sub-
tle morphological differences across multiple brain regions, between
groups. Multi-object methods were originally designed to characterize
the shape of a population of geometric entities (Cerrolaza, Villanueva,
Cabeza, 2012; Duta and Sonka, 1998; Lu et al., 2007; Tsai et al., 2003),
and have since been applied to the analysis of brain MRI images to dis-
criminate between healthy and clinical populations (e.g., pediatric au-
tism; Gorczowski et al., 2010), but has not yet been employed in the
context of major depressive disorder.

In the current study, we report the first use of a multi-object statisti-
cal pose and shape model to simultaneously analyze several temporal-
lobe structures that have been implicated inMDD. Given thatMDD is as-
sociated with morphological changes in several brain structures, pose
and shape analysis of these brain structures simultaneously may be
more sensitive to subtle group differences than is independent analysis
of those structures, since simultaneous analysis includes information
not just about the pose of brain structures, but about their pose relative
to each other. In the current paperwefirst present themethod, and then
use it to identify temporal-lobe structures of interest and to characterize
the relationship between the pose and shape of these structures and the
symptomatology of early-onset MDD, when morphological differences
between healthy and clinical groups are expected to bemild, and subtle.
Use of a young sample at the earliest stage of their depressive illness has
important implications for understanding the neurostructural corre-
lates of the etiology of MDD.

2. Materials and methods

2.1. Participants

Nineteen depressed subjects (age: 18.1 ± 1.1, 3 males, all right-
handed) who met the DSM-IV-TR (Diagnostic and Statistical Manual
of Mental Disorders; American Psychiatric Association, 2000) criteria
for a current episode of MDD were recruited through referrals from
community mental health clinics. Twenty-six healthy participants
(age: 17.96 ± 0.2, 1 male, all right-handed) with no psychiatric history
were recruited through community advertisement. Participants were
excluded if they met the current or lifetime criteria for bipolar disorder,
a psychotic disorder, attention-deficit/hyperactivity disorder, a develop-
mental disability (e.g., autism spectrum disorder), or a medical disorder
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that could cause depression (e.g., hypothyroidism). All participants
were medication-free prior to the study. This study was cleared by
the Queen3s University Health Sciences Research Ethics Board, and
written informed consent was obtained from all participants and
by a parent or guardian for participants under 18 years. All partici-
pants were compensated $10 for their time and were given a picture
of their brain to keep.

2.2. Clinical examination

All participants in the depressed group were diagnosed based on
a structured diagnostic interview administered by an advanced
doctoral student in clinical psychology (the Child and Adolescent
version of the Schedule for Affective Disorders and Schizophrenia;
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Fig. 2. Segmented structures in both hemispheres of the brain which are used for multi-object statistical analysis. Surface points of putamen (blue), hippocampus (green), parahippocampal
gyrus (red), and ITG (cyan). MTG (yellow), and STG (magenta) in both hemispheres of the brain are shown in (a) anterior to posterior view, and (b) posterior to anterior view. Structures in
left hemisphere of the brain are shown in (c).

148 M. Ramezani et al. / NeuroImage: Clinical 6 (2014) 145–155
ensure that they understood the questions. We chose not to include the
Hamilton Depression Rating Scale and to focus exclusively on the
BDI as an index of depression severity for the primary reason that
there is evidence that the Hamilton possesses a poor psychometric
profile (Bagby et al., 2004).

The MRI data were acquired using a 3.0 Tesla Siemens Trio MRI
scanner with a 12-channel head coil in the MRI facility at Queen3s
University, Kingston, Canada. A whole-brain 3D MPRAGE T1-weighted
anatomical image was acquired for each participant (voxel resolution
of 1.0 × 1.0 × 1.0 mm3, flip angle α = 9°, TR = 1760 ms, and TE =
2.6 ms). The subjects filled out the BDI immediately after being in the
scanner.

2.3. Multi-object statistical analysis

Pose and shape analysis of multiple brain structures, shown sche-
matically in Fig. 1, involves three steps: a) preprocessing the MRI data
to extract surface points on brain structures of interest; b) finding
the pose and shape variations among these brain structures; and
c) Principal Component Analysis (PCA) on pose and shape variations
in the subject population.

2.3.1. Preprocessing
The structuralMRI data of the subjects were preprocessed using Sta-

tistical Parametric Mapping software (SPM8, Wellcome Department of
Cognitive Neurology, London, UK). Briefly, Grey Matter (GM), White
Matter (WM) and Cerebral Spinal Fluid (CSF) were segmented using
the automated segmentation processes in SPM. This resulted in a set
of three maps for GM, WM and CSF in native space for each subject, in
which each voxel was assigned a probability of being one of the three
tissue types.

The LONI Probabilistic Brain Atlas (LPBA40/SPM5) (Shattuck et al.,
2008) in MNI space was used to extract the left and right hippocampus,
parahippocampal gyrus, putamen, and superior, inferior and middle
temporal gyri from the brain of each participant (shown in Fig. 2);
these are structures that have been shown to be associated with MDD
in adulthood (Lorenzetti et al., 2009). The LONI atlas is constructed
using the MRI data of 40 healthy volunteers, and 56 structures were la-
beled manually. We used the maximum-probability values at each
voxel to segment the regions of interest in the atlas. To accomplish seg-
mentations in each of theparticipants,we used theDARTEL algorithm to
register the LONI atlas to each participant3s structural MRI, and extract-
ed surface points, V = {vn,l}n = 1…N,l = 1…L, indexing the coordinates of
the surface voxels on each of the selected brain structures (Ashburner,
2007)1. Here, vn,l consists of all surface points of the lth structure of sub-
ject n, L = 12 is the number of structures (six in each hemisphere), and
N=45 is the number of subjects in the training set. For each subject, the
surface boundary of each brain structure was used to compute the vol-
ume of that structure. Structure volumes were compared between the
MDD and control groups.

2.3.2. Pose and shape analysis
Since all surface points are extractedusing the atlas inMNI space, the

correspondences among the surface points (between homologous
points in different subjects) were known. We used those correspon-
dences to compute the linear (rigid plus scaling) deformation required
to warp each structure in each participant to the mean shape of each
structure calculated across participants, using the generalized Procrus-
tes analysis (Dryden andMardia, 1998). Pose variationswere calculated
using translation, rotation, and scaling values of these deformation
fields. Each transformation for a voxel, x, is defined as T(x) = sRx + d,
where R is a rotationmatrix, d is a translation vector, and s is a scale fac-
tor. These transformations form a Lie group, which is a Riemannian
manifold so conventional statistical analysis in Euclidean space is not
applicable. However, a logarithmic transform was used to put the
members of the Lie group into linear tangent space, appropriate for con-
ventional statistical analysis. The logarithm of the transformation is de-
fined as:

logðTÞ ¼
l −rz ry x
rz l −rx y

−ry rx l z
0 0 0 1

2
664

3
775 ð1Þ

where l = log(s), and (rx, ry,rz) is the rotation axis with angle θ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y þ r2z

q
. Thus, each transformation, Tn,l, which represents the

transformation from the lth structure in the mean shape to the corre-
sponding structure in the nth instance, was expressed as a vector with
seven variables: (rx,ry,rz,x,y,z,l)T.

For the purpose of statistical analysis, each transformation was nor-
malized using the mean transformation for each structure, Ml, and
mapped to the tangent space: up

n;l ¼ logðM−1
l Tn;lÞ (Bossa and Olmos,

2006; Pennec, 2006)2. The transformation vectors were concatenated

for each individual to form a 7L×1 vector: up
n ¼ ½up

n;1
T…up

n;L
T �T and the

matrix of all transformations for all individuals was created: Up ¼
½up

1… up
N �

T .
Shape variations are computed as the residual deformation required

tomap themean shape of each structure to the corresponding structure
for each subject, after the linear transformation for pose has been ap-
plied. Subsequently, similar to the pose variation extraction method
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Fig. 3.Distribution of BDI for the control and depressed groups. The central redmark is the
median, the edges of the blue box are the 25th and 75th percentiles, and the whiskers
show the extreme values of the volumes.
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described earlier, the distance vectors (deformations) were concatenat-

ed for each subject:us
n ¼ ½us

n;1
T…us

n;L
T �T and thematrix of all transforma-

tions for subjects was created: Us ¼ ½us
1… us

N �T .
2.3.3. Statistical analysis
A multi-object statistical pose and shape model (Bossa and Olmos,

2007) was generated for the selected brain structures. In order to ex-
tract major directions of the pose and shape variations across all sub-
jects, we constructed an orthonormal basis set that represented all
pose and shape variations using Principal Component Analysis (PCA).

PCA on pose was performed using Up=ApFpT. In this equation, Fp ¼
½fp1; …; fpN−1�7L�ðN−1Þ is the pose feature matrix, and fpi s are principal

components that are sorted in descending order of their variance. Ap ¼
½ap1; …; apN−1�N�ðN−1Þ is the corresponding weight matrix, generated

from the principal component weights. We focus our analysis on the
principal components associated with the pose that captures two stan-
dard deviations of variations in the data. Similarly, PCA was used to
identify an orthogonal vector set for shape, Fs ¼ ½f s1; …; f sN−1�, and the
corresponding weight matrix, As ¼ ½as1; …; asN−1�. We consider princi-
pal components that capture one standard deviation of shape variations
in the data. The primary difference between the number of principal
components we consider for pose and shape stems from the difference
in the dimensions of pose components (i.e., 7L, where L = 12 is the
number of structures in our study) and shape components, which is
the number of all surface points in each structure and is significantly
larger than L.
Table 1
Normalizedposeparameters of brain structures. Translation, rotation and scale parameters of
pose which are above a threshold of 1.0 are shown in bold in the table. L and R show the
assigned anatomical left and right hemispheres.

Structure Left or right
hemisphere

Translation Rotation Scale

Putamen L 1.16 1.93 1.81
R 0.66 0.28 2.32

Hippocampus L 1.13 −0.07 −0.14
R 1.50 −1.11 0.03

Parahippocampal gyrus L −0.31 −0.75 −0.41
R 0.54 −0.12 −0.79

Inferior temporal gyrus L −1.82 −1.58 −0.52
R −0.90 1.30 −0.40

Middle temporal gyrus L −0.73 −0.72 −0.28
R −0.70 0.81 −0.55

Superior temporal gyrus L −0.14 0.01 −0.27
R −0.36 0.03 −0.80
Our objectives were to 1) identify pose and shape features that
would differentiate the two groups; and 2) investigate the relation be-
tween these features and the clinical index of depression (i.e., BDI
scores).

To achieve the first objective, we first use a random-forest classifica-
tion (Breiman, 2001) approach to sort the selected principal compo-
nents. Random forests are a learning method for classification that use
multiple decision trees for training. The decision tree splits the weights
related to the considered principal components to maximize diversity
among the subjects (Coppersmith, Hong, Hosking, 1999). As a result, a
tree with nodes and leaves is constructed, where its top node shows
the weights with maximum separability. We perform unpaired two-
sample t-tests (assuming unequal variance in the two groups) only on
the top-node weights for pose and shape, i.e. one component for pose
and one component for shape. As this study was designed to be
hypothesis-generating and sensitive to morphological differences in
brain structures between adolescent depressed individuals and control
participants, a significance level of p b 0.05, uncorrected for multiple
comparisons, was used (Haynes et al., 2012; Rothman, 1990).

In order to visualize the significant pose component, associatedwith
the top node weights, the norms of the three pose parameters (three
translation, three rotation, and one scale variables) were computed.
Subsequently, the mean of each parameter was removed and the result
was divided by the standard deviation of the parameter. For the shape,
the mean of the significant shape principal component associated with
the top node weights was removed and the result was normalized
to the component3s standard deviation. The higher the absolute value
of the normalized pose or shape component, the more the contribution
of that member of the principal component to capture the differences
between the two groups.

To achieve the second objective, we calculate Spearman correlation
coefficients between the Beck Depression Inventory score and the top-
node pose and shape weights.

3. Results

3.1. Behavioral results

The groups were matched for age (p = 0.52). There were no socio-
economic status (SES) differences between the subjects in the two
groups (p = 0.93). The BDI differed significantly between the two
groups (p b .0001). Fig. 3 shows the boxplot of the BDI for the two
groups.

3.2. Volume analysis

We first assessed the volume differences between the MDD and
control groups for each structure. Unpaired two-sample t-tests (assum-
ing unequal variance in the two groups) with a significance level of
p b 0.05, uncorrected for multiple comparisons, was used to detect vol-
ume differences between the two groups. The volume of both the left
parahippocampal gyrus and the left superior temporal gyrus was signif-
icantly greater (p= 0.019 and p=0.034 respectively) in the depressed
than the control group.

3.3. Pose and shape analysis

The goal of ourmulti-object analysis was to investigate the pose and
shape differences in brain structures between the participants with
MDD and healthy controls. The first four principal components of pose
capture two standard deviations (95%) of the variation in pose, and
the first eight components of shape capture one standard deviation
(68%) of the variation in shape. The random-forest classification trees
for pose and shape were built on these components. Statistical analyses
using unpaired two-sample t-tests were performed on the top compo-
nent for each tree.
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The two groups differed significantly (p=0.031with corresponding
statistical power of 0.77 (Ellis, 2010) for the pose component, and p =
0.042with corresponding statistical power of 0.89 for the shape compo-
nent). Table 1 shows the normalized pose parameters across different
brain structures for the most significant pose component. The transla-
tion component differed significantly between the two groups in the
left putamen, left and right hippocampus, and left ITG. Rotation also dif-
fered between the groups in the left putamen, right hippocampus, and
left and right ITG, and scale differed between groups in the left and
right putamina. Fig. 4 shows the normalized shape component across
different structures in the brain. As can be seen in the figure, many re-
gions of all the structures examined show variations of the shape that
are more than 1.96 (two standard deviations away from the mean), in
both hemispheres.

To investigate the relation between the pose and shape weights that
were significantly different between the two groups and BDI scores,
Spearman correlation coefficients were calculated between the pose
and shape values and BDI. The significant pose component correlated
significantly with BDI (Spearman correlation: 0.38, p-value = 0.0086,
slope: −0.039, intercept: 0.39), but the significant shape component
did not (Spearman correlation: 0.15, p-value = 0.298, slope: −0.89,
intercept: 8.8). Fig. 5 shows the distributions of the pose scores
(a) and shape scores (b) across BDI. The fourmale subjects are identified
with a circle.
Fig. 5. Pose (a) and shape (b) scores that generated the significant difference between the
MDD subjects and controls across the beck Depression Inventory Index (BDI). Pose scores
are significantly correlated to the BDI (Spearman correlation: 0.38, p-value = 0.0086,
slope: −0.039, intercept: 0.39). Shape scores are not significantly correlated to the BDI
(Spearman correlation: 0.15, p-value = 0.298, slope: −0.89, intercept: 8.8). A circle has
been drawn around the data of male subjects.
4. Discussion

We conducted a statistical analysis of pose and shape information
from several brain regions in order to examine whether the brains of
individuals with early-onset MDD differ from those of healthy con-
trols. Indeed, despite a rather small number of participants, we
were able to observe statistically reliable differences in the medial
temporal lobe regions, and we also determined that some features
captured by the pose and shape analysis correlated with depressive
symptomatology as measured by the Beck Depression Inventory.
The sensitivity of this method may be related to its ability to capture
differences in the spatial relationships among structures, not simply
differences within an individual structure. A concern about the re-
sults is that we did not make any formal adjustments to correct for
multiple comparisons, which potentially introduced a risk of false-
positive results. Therefore, the p-values should be interpreted with
caution (Devonshire et al., 2012). As such, future studies with larger
samples are needed to further validate these results.

We observed volume differences, with a significance level of p b 0.05,
uncorrected for multiple comparisons, in the left parahippocampal
gyrus and the left superior temporal gyrus (STG) structures between
the depressed group and the control group. The STG volume and GM
density differences between the MDD and control subjects were
previously shown by Vythilingam et al. (2004) and Shah et al.
(2002). The individuals studied by these authors had been diagnosed
with MDD at least 2 years earlier— so a later stage of the illness than
the clinical group in the current study. Our results indicate that
differences in STG are present right from the earliest stages of the
disease.

The most significant component of the pose, highlighted in Table 1,
showed that the left and right putamina, the left and right hippocampi,
and the left and right inferior temporal gyri weremore affected byMDD.
The scale parameter of the right putamen is the only parameter that
showed at least two standard deviations of variation. The translation
Fig. 4. Shape principal component that was significantly different between the two groups. Th
Inferior and superior views of the (a, b) left putamen, (c, d) right putamen, (e, f) left hippocamp
gyrus, (m, n) left superior temporal gyrus, (o, p) right superior temporal gyrus, (q, r) left middle
(w, x) right inferior temporal gyrus. The color smoothly varies from black through red, orange,
the pictures shows the left side of the brain, right shows right side, top is the anterior and bott
mostly affected the left inferior temporal gyrus, and the rotationmostly
affected the left putamen.

Shape analysis revealed that all examined structures, including
the putamen, hippocampus, parahippocampal gyrus, and superior,
middle and inferior temporal gyri, differed between the two groups,
suggesting that multiobject shape analysis is a sensitive tool for the
e component is normalized by removing the mean and divided to its standard deviation.
us, (g, h) right hippocampus, (i, j) left parahippocampal gyrus, (k, l) right parahippocampal
temporal gyrus, (s, t) right middle temporal gyrus, (u, v) left inferior temporal gyrus, and

yellow andwhite, to show theminimum through maximum difference values. Left side of
om is the posterior.

image of Fig.�5
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examination of morphological differences in clinical samples.
Moreover, within the most significant component of the shape, we
identified regions that were at least two standard deviations away
from the mean of that component, highlighting regions that were
more affected by MDD.

Importantly, depressive symptomatology, as indexed by BDI scores,
correlated with the pose of the structures (Fig. 5(a)). While the volume
increase in the fusiform gyrus, cuneus and precuneus has been previ-
ously shown to have an association with the BDI increase in MDD
(Kroes et al., 2011), we are the first to show that pose variations of mul-
tiple structures are also affected by MDD, and correlate significantly
with BDI.

The significant brain structural abnormalities seen here in
early-onset depression are consistent with those observed in pre-
vious work (MacMaster et al., 2008; MacMaster and Kusumakar,
2004; MacMaster et al., 2014). However, MacMaster et al. only in-
vestigated volumetric differences between brain structures, after
isolating each structure from the rest of the brain. Here, we have
investigated the morphometric differences using simultaneous
pose and shape analysis of multiple structures. As a result, we
can capture differences due to the relationship among structures,
and also differentiate between pose and shape morphometric
differences.

The neural mechanisms underlying the observed morphometric
differences in MDD have received empirical attention. Depression is
associated with chronic dysregulation of the hypothalamic–pituitary–
adrenal (HPA) axis with the resulting chronic release of cortisol and
other neurotoxic stress hormones (Burke et al., 2005). Glucocorticoid
neurotoxicity has preferential effects on hippocampal neurogenesis
(e.g., De Vry et al., 2012; Sapolsky, 2000). Indeed, in both preclinical
and human clinical studies chronic stress and depression are associ-
ated with long-term changes in the hippocampus in the expression
of genes involved in synaptic plasticity, such as brain-derived neu-
rotrophic factor (BDNF; e.g., Law et al., 2009; Mondelli et al.,
2011). Our results extend the state of the literature by suggesting
that through the use of sensitive pose and shape analyses, the struc-
tural differences in MDD can be observed at the very initial stages of
the illness, suggesting that they do not just emerge over the recur-
rent and chronic pathology of the disorder. In addition, as all of
our depressed participants were medication naïve, the structural
differences are not due to any potential neurotoxic effects of chronic
anti-depressant usage. As such, they may emerge as a result of
premorbid epigenetic vulnerabilities. For example, hippocampal
volume differences have been shown in individuals with particular
polymorphisms of genes known to impart risk for depression, but
only in the context of environmental adversity, such as a history of
childhood trauma (e.g., Teicher, Anderson, Polcari, 2012), or mater-
nal depression (e.g., Chen, Hamilton, Gotlib, 2010). Future prospec-
tive, longitudinal studies that follow children at risk of depression as
a result of these vulnerabilities through to the onset of syndromal
MDD are required to clarify the precise etiological and pathological
mechanisms underlying the relation of hippocampal volume loss to
MDD.

A concern about the method is the possible dependence on the
quality of the segmentation. In this work, the segmentation comes
from an atlas and the registration of the atlas to the brains of the in-
dividual participants. A potential alternative is to manually segment
the structures in individual brains prior to a group-wise registration.
In future studies, we can also use polyaffine transformations in a
logarithmic domain (Arsigny et al., 2009; Commowick et al., 2008),
instead of similarity transformations for registration of multiple struc-
tures. An affine transformation would further encompass anisotropic
scaling and shearing.

The current study investigated morphological variation in the
pose and the shape of the hippocampus and surrounding structures
in early-onset MDD compared to control participants. Although a
large number of previous studies have shown differences between
MDD subjects and controls (Bergouignan et al., 2009; Bremner
et al., 2000; Caetano et al., 2004; Chen et al., 2007; Frodl et al.,
2002; Neumeister et al., 2005; Saylam et al., 2006; Shah et al.,
1998; Vasic et al., 2008), ours is the first, to our knowledge, to
simultaneously analyze multiple structures, and to separate pose
and shape in morphological analysis. The value of the presented
method is that it identifies structures of interest and characterizes
types of differences (i.e., pose and shape) that can then be fed
back into models/theories on etiology. In other words, what is
more relevant than finding group differences is pinpointing the
effect of underlying mechanisms that lead to MDD on brain struc-
tures and their interrelationships. Future studies should consider
differences between MDD and control groups in other brain struc-
tures of relevance to MDD, and should also investigate whether
the present results generalize to adults with recurrent MDD, as
well as younger children with MDD. In addition, although current
results (Fig. 5(a) and (b)) did not reveal any differences in the
structures we examined between male and female individuals
withMDD, we had very few youngmen in our study. Further studies
with youngmen are needed to ensure that the results observed here
generalize across sexes.

Recently, a few studies have focused on the White Matter (WM)
integrity using Diffusion Tensor Imaging (DTI), to assess the structural
connectivity of the network between healthy controls and MDD
subjects. Korgaonkar et al. (2014) showed structural connectomic alter-
ations between nodes of the default mode network and the frontal-
thalamo-caudate regions in 95 MDD outpatients comparing to 102
matched control subjects. However, Choi et al. (2014) found no signifi-
cant differences in WM integrity disruption between 134 medication-
free MDD patients and 54 healthy controls. Future studies may use
multivariate approaches to include analysis of geometric changes
(pose and shape), tissue concentrations (WM and GM) and structural
connectome (DTI).

In summary, using multi-object statistical pose and shape analysis,
we demonstrated brainmorphological differences between adolescents
and young adults with early-onset MDD and healthy control subjects.
Relative pose information and shape information of multiple structures
in brain, which are usually disregarded, were shown to be important in
capturing the group differences. Within this framework, the shape de-
formations were analyzed separately from rigid transformations and
scale (i.e., the pose information). Therefore, we could identify the type
of morphological differences (pose and shape). Within the simulta-
neous analysis of multiple structures the relative differences among
structures were captured. The differences were more pronounced in
the moderate and severely depressed participants. Moreover, morpho-
logical features (pose) significantly correlatewith depressive symptoms
across both normal and depressed participants.
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Appendix A

Fig. 6 shows the distribution of the volume of each structure for the
depressed and control groups.



Fig. 6. Distribution of the volume of each structure between the two groups, (a) left putamen, (b) right putamen, (c) left hippocampus, (d) right hippocampus, (e) left parahippocampal
gyrus, (f) right parahippocampal gyrus, (g) left inferior temporal gyrus, (h) right inferior temporal gyrus, (i) left middle temporal gyrus, (j) right middle temporal gyrus, (k) left superior
temporal gyrus, and (l) right superior temporal gyrus. The central redmark is themedian, the edges of the blue box are the 25th and 75th percentiles, and thewhiskers show the extreme
values of the volumes.
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