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Abstract: Chronic excessive alcohol consumption is associated with multiple liver defects, such as
steatosis and cirrhosis, mainly attributable to excessive reactive oxygen species (ROS) production.
Barley sprouts (Hordeum vulgare L.) contain high levels of polyphenols that may serve as potential
antioxidants. This study aimed to investigate whether barley sprouts extract powder (BSE) relieves
alcohol-induced oxidative stress and related hepatic damages in habitual alcohol drinkers with
fatty liver. In a 12-week randomized controlled trial with two arms (placebo or 480 mg/day BSE;
), we measured clinical markers and metabolites at the baseline and endpoint to understand the
complex molecular mechanisms. BSE supplementation reduced the magnitude of ROS generation
and lipid peroxidation and improved the glutathione antioxidant system. Subsequent metabolomic
analysis identified alterations in glutathione metabolism, amino acid metabolism, and fatty acid
synthesis pathways, confirming the role of BSE in glutathione-related lipid metabolism. Finally, the
unsupervised machine learning algorithm indicated that subjects with lower glutathione reductase at
the baseline were responders for liver fat content, and those with higher fatigue and lipid oxidation
were responders for γ-glutamyl transferase. These findings suggest that BSE administration may
protect against hepatic injury by reducing oxidative stress and changing the metabolism in habitual
alcohol drinkers with fatty liver.

Keywords: barley sprout; alcoholic fatty liver; oxidative stress

1. Introduction

Alcohol-related deaths account for 5.3% of all deaths worldwide [1]. Approximately
25% of deaths attributable to alcohol consumption are due to alcoholic liver disease [2].
Many factors are involved in the pathogenesis of alcoholic liver disease, including alcohol
metabolism-associated oxidative stress and abnormal glutathione (GSH) metabolism [3].
The liver is the primary site where alcohol is oxidized to acetaldehyde by alcohol de-
hydrogenase (ADH) in the cytosol, cytochrome P450 2E1 (CYP2E1) in the microsome,
and catalase (CAT) in the peroxisomes [4]. ADH-mediated alcohol metabolism generates
the reduced form of nicotinamide adenine dinucleotide, promoting steatosis by stimulat-
ing fatty acid synthesis. Moreover, increased expression of CYP2E1 generates excessive
reactive oxygen species (ROS) [5], leading to the peroxidation of membrane lipids and
proteins, inflammation, and insulin resistance, which may, in turn, favor the development
of hepatic steatosis [6–10]. Alcohol-induced excessive ROS generation may also enhance
γ-glutamyl transferase (GGT) release from the damaged hepatocellular membrane [11].
Thus, enhanced GGT release has been widely accepted as an indicator of alcohol-induced
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hepatocyte injury [12]. Although the underlying mechanisms remain unclear, the link
between alcoholic fatty liver, oxidative stress, and hepatic enzymes’ breakdown has been
proposed in animals and humans [13,14].

Barley (Hordeum vulgare L.) has been cultivated as a food crop since ancient times.
Recently, barley sprouts, the young leaves of barley harvested around 10 days after seed-
ing, have begun to receive much attention as a possible food supplement due to its
beneficial effects on oxidative stress, in vitro and in vivo [15], as well as on atheroscle-
rosis [16] and depression [17]. Barley sprouts are characterized by a high level of saponarin
(apigenin-6-C-glucosyl-7-O-glucoside), a potent antioxidant in the flavonoid family [18].
Saponarin exerted antioxidant effects against cocaine or paracetamol-induced hepatotoxic-
ity in rats [19,20]. In another animal study, Lee et al. [21] reported the protective effect of
barley sprouts against alcohol-induced liver injury. However, barley sprouts’ protective
effect against alcoholic liver injury has not been elucidated in humans.

Therefore, in this study, we hypothesized that barley sprouts might help relieve
alcohol-induced oxidative stress and related liver cell damage. To test this hypothesis, we
measured the effects of barley sprouts versus a placebo on antioxidant capacities, liver
enzymes, and liver fat content in habitual alcohol drinkers with fatty liver in a randomized,
controlled clinical trial. Furthermore, we performed gas chromatography coupled to time-
of-flight mass spectrometry (GC-TOF-MS) for the untargeted metabolomics in plasma to
explore the underlying mechanisms.

2. Materials and Methods
2.1. Study Materials

The test and placebo materials were provided by Novarex, Inc. (Cheongju, Korea).
Briefly, dried barley sprouts were extracted with 30% aqueous food-grade ethanol at 20 ◦C,
filtered, and centrifuged. The supernatant was concentrated to 35◦ Brix and then spray-
dried with dextrin to obtain the barley sprouts extract powder (BSE). We first analyzed the
BSE using UHPLC-LTQ-Orbitrap-MS/MS and identified a total of 31 chemical fingerprints
(Figure 1), including 17 polyphenols, 4 polyamines, and 10 lipids (Supplementary Table S1).
Then, the BSE was standardized with saponarin at a concentration of 15 mg/g using a
high-performance liquid chromatography (HPLC) apparatus equipped with a UV detector
(1260 Infinity, Agilent Technologies, Palo Alto, CA, USA) and a Capcell Pak C18 column
(250 mm × 4.6 mm, 5 µm; Shiseido, Tokyo, Japan). The 68.57% BSE, 22.43% maltodextrin,
7% caramel color, 1% silicon dioxide, and 1% magnesium stearate mixture was packed in a
capsule to provide 240 mg as BSE. For the placebo capsule, BSE was replaced by weight
with dextrin.

2.2. Subjects

Subjects were recruited from Ajou University Medical Center (Suwon, Korea). The
inclusion criteria were as follows: (1) habitual alcohol consumption over the previous year
(more than 140 g/week for males and 70 g/week for females); (2) aspartate aminotrans-
ferase (AST) greater than 40 U/L for males and 32 U/L for females, a ratio of AST to alanine
aminotransferase (ALT) greater than 1, or GGT greater than 61 U/L for males and 36 U/L
for females; and (3) the presence of fatty liver diagnosed by ultrasonography. The exclusion
criteria were as follows: (1) alcohol overuse (more than 420 g/week); (2) one of more of AST,
ALT, GGT, and total bilirubin levels more than three times over the standard upper limit;
(3) presence or history of disease (liver diseases, including viral hepatitis; primary biliary
cirrhosis; liver disease induced by drug or operation; inherited liver disease; infectious
disease, including tuberculosis; severe cardiovascular disease; digestive system disease,
including inflammatory bowel disease; renal disease; thyroid disease; autoimmune disease;
malignant tumor; multisystem failure; serious mental illness; and HIV-positive); (4) liver or
bone marrow transplantation; (5) continuous consumption of sprout products within the
preceding 2 weeks; (6) taking medication, oriental medicine, and/or dietary supplements
that may affect liver function and antioxidant/anti-inflammatory properties within the
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preceding 1 month; (7) hypersensitivity to barley sprout or any ingredients in the study
product; (8) participation in another clinical trial within the preceding 1 month; and (9)
pregnancy or lactation.
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All subjects gave their informed consent for inclusion before they participated in
the study. The study protocol was reviewed and approved by the Institutional Review
Board (IRB) of Ajou Medical Center (No. AJIRB-BMR-GEN-16-499), and the study was
conducted following the Declaration of Helsinki. The study protocol was also registered
on the International Clinical Trials Registry Platform of the WHO on March 20, 2017, with
the following identification number: KCT0002891.

2.3. Study Design

The study was designed as a randomized, double-blinded, paralleled, placebo-controlled
trial. After screening and obtaining written informed consent, a total of 76 eligible sub-
jects were randomly assigned either the placebo or BSE for 12 weeks. Randomization
was performed using computer-generated random numbers, and the group allocation
was blinded for both the investigators and participants. The safe daily intake was esti-
mated to be 480 mg/day of BSE using the result obtained from a previous study of mice
(100 mg/kg BW/day) [21] and a conversion factor of 0.08, according to the US FDA guid-
ance on determining the estimated maximum recommended starting dose for initial clinical
trials in adult healthy volunteers [22]. The subjects were advised to take two capsules
daily with enough water. During the trial, subjects were instructed to maintain their usual
diet and lifestyle but refrain from eating or drinking sprout foods and beverages. Dietary
intakes, recommended food scores (RFSs), responses to the International Physical Activity
Questionnaire (IPAQ), and fatigue severity score (FSS) were recorded at baseline and weeks
6 and 12. Fasting blood and urine samples were collected at baseline and week 12 to
determine the biochemical parameters and metabolites.

2.4. Liver Fat Content by Magnetic Resonance Imaging (MRI)

Liver fat content was measured by MRI using a 3.0-T MRI system (GE Healthcare,
Milwaukee, WI, USA). MRI proton density fat fraction (PDFF) estimates were measured
with confounder-corrected chemical shift-encoded (CSE) MRI techniques to avoid the
effects of variations in field strength. Quantitative CSE-magnetic resonance (MR) images
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were acquired with a multi-echo, three-dimensional, spoiled gradient-echo sequence, to
generate confounder-corrected PDFF maps over the entire liver. The acquisition parameters
at 3 T generally included a repetition time (TR) of 8.6 ms; 6 echoes (initial echo time
[TE] = 1.2 ms; ∆TE = 1.0 ms) acquired in two interleaved echo trains of 3 echoes per TR;
44 × 44 cm field of vision (FOV); 256 × 160 matrix; 8-mm slice thickness; 32 slices; 3◦ flip
angle; and ±111-kHz receiver bandwidth. The PDFF MR images were calibrated to allow
the direct region of interest (ROI) placement to derive an estimate of the PDFF, expressed
as an absolute percentage (0–100%).

2.5. Biochemical Measurements

ALT, AST, and GGT were measured using an automatic analyzer (Cobas 8000 c702 an-
alyzer, Roche Diagnostics, Mannerheim, Germany). Plasma oxidized low-density lipopro-
tein (ox-LDL) was measured using a sandwich enzyme-linked immunosorbent assay kit
according to the manufacturer’s instruction (Mercodia, Uppsala, Sweden). Commercially
available colorimetric assay kits were used to assess erythrocyte superoxide dismutase
(SOD), CAT, GSH, glutathione peroxidase (GPx), glutathione reductase (GR) (all from
Cayman, Ann Arbor, MI, USA), and glutathione-S-transferase (GST) (Abcam, Cambridge,
UK). The plasma ROS level was determined by chemiluminescence from luminol (5-
amino-2,3-dihydro-1,4-phthalazinedione; Sigma-Aldrich, St. Louis, MO, USA) using a
chemiluminescence Fluoroskan Ascent FL (Thermo Fisher Scientific, Vantaa, Finland) at
37 ◦C [23]. After adjusting for background levels, the ROS area under the curve (AUC) was
calculated by the trapezoidal rule.

For the determination of oxidative damage, malondialdehyde (MDA) was quantified
in urine using an HPLC instrument equipped with a fluorescence detector (Shiseido, Tokyo,
Japan) and a Capcell Pak C18 column (250 mm × 4.6 mm, 5 µm; Shiseido) [24]. The mobile
phase was 50 mM phosphate buffer:methanol buffer (7:3, v/v, pH 6.8) at an isocratic flow
rate of 1 mL/min. A standard curve was constructed using 1,1,3,3-tetra ethoxy propane
solutions for calibrating the peak of the MDA–TBA adduct.

2.6. Metabolomics Analysis

A chemical fingerprint of the BSE was analyzed by ultrahigh-performance liquid
chromatography linear trap quadrupole orbitrap tandem mass spectrometry (UHPLC-
LTQ-Orbitrap-MS/MS) equipped with Vanquish binary pump H system (Thermo Fisher
Scientific, Waltham, MA, USA) and a Phenomenex Kinetex C18 column (100 mm × 2.1 mm,
1.7 µm; Torrance, CA, USA) [25]. The final concentration was 1000 ppm. The mobile phase
consisted of 0.1% formic acid (solvent A) and acetonitrile containing 0.1% formic acid
(solvent B). The gradient was 5% solvent B for 1 min, and linearly increased from 5% to
100% over 9 min, and then decreased to 5% for 2 min. Mass spectra were acquired over the
range of 100–1500 m/z in the electrospray ionization (ESI) modes. The mass spectrometer
was operated under the following conditions: source voltage 5 kV, capillary voltage 45 kV,
capillary temperature 275 ◦C, and source temperature 80 ◦C.

Plasma samples were centrifuged at 13,000 g at 4 ◦C for 10 min after mixing with
methanol at −20 ◦C for 1 h. The supernatant was filtered and dried using a speed vacuum
concentrator (Modulspin 31; Biotron, Incheon, Korea). The dried extract was oximated
with methoxyamine hydrochloride in pyridine at 30 ◦C for 90 min and derivatized with N-
methyl-N-trimethylsilyl-trifluoroacetamide at 37 ◦C for 30 min. The GC-TOF-MS analysis
was performed using an Agilent 7890 gas chromatography system (Agilent Technologies,
Palo Alto, CA, USA) coupled with an Agilent L-PAL3 autosampler and equipped with
a Pegasus High-Throughput-TOF-MS (LECO, St. Joseph, MI, USA) system. An Rtx-
5MS column (30 m × 0.25 mm, 0.25 µm; Restek, Bellefonte, PA, USA) was used with a
constant flow of 1.5 mL/min of helium as a carrier gas. Samples were injected into the gas
chromatograph with the splitless mode. The oven temperature was maintained at 75 ◦C for
2 min and then ramped at 15 ◦C/min to 300 ◦C and held for 3 min. The temperatures of
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the front inlet and transfer lines were 250 and 240 ◦C, respectively. The electron ionization
was carried out at −70 eV, and the fullscan data were acquired over a range of 50–1000 m/z.

2.7. Statistical Analysis

The sample size was estimated to be 38 subjects per group to provide an 80% power
of demonstrating a significant difference in the AST/ALT ratio based on the previous
study [26] and a drop-out rate of 25%. According to the intention-to-treat (ITT) principle, all
data were analyzed and tested for normal distribution graphically by evaluating quantile–
quantile plots. Potential outliers were identified as observations exceeding 1.5 times the
interquartile range. Differences in baseline characteristics between the two groups were
assessed using Student’s t-test for continuous variables and the Chi-square or Fisher’s
exact test for categorical variables. Between or within group differences were analyzed
using a linear mixed-effect model, considering a random effect (subject), a random error
(within-subject), and fixed effects (treatment, visit, and treatment × visit interaction). The
data are expressed as the least square (LS) means ± standard error (SE). The statistical
analyses were performed using the Statistical Analysis Systems package version 9.4 (SAS
Institute, Cary, NC, USA). Statistical significance was defined as a p-value < 0.05. Treatment–
subgroup interactions were analyzed by QUalitative INteraction Trees (QUINT) [27] using
the R statistical software version 3.6.3 with a QUINT package [28]. After dividing the
non-responder versus responder groups based on the selected modifiers, the differences
between them were further statistically compared using a linear mixed-effect model.

Multivariate statistical analysis for metabolomics was performed using SIMCA version
16.0.2 software (Umetrics, Inc., Ume, Sweden). We performed orthogonal partial least-
squares discriminant analysis (OPLS-DA) to extract the differential metabolites between the
BSE and placebo groups. Then, we ranked the relative contribution of the variables to the
OPLS-DA model by the variable importance in the projection (VIP) scores. Variables with
VIP scores > 1.0 was considered significant features. Differential metabolites were used to
investigate the metabolic pathways activated by BSE supplementation using the pathway
topology search tool in MetaboAnalyst 4.0 [29] and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. The false discovery rate (FDR) controlling procedure was
performed, and the calculated q-value was used to identify the perturbed pathways. The
pathways with q < 0.1 were considered significant. Differential metabolites were plotted in
a heatmap, and the Euclidean distance metric was used for hierarchical clustering using
MetaboAnalyst 4.0.

3. Results
3.1. Baseline Characteristics of Subjects

The CONSORT flow diagram is shown in Figure 2. Of the 116 subjects recruited,
76 eligible subjects were enrolled and randomized into either the BSE or placebo group.
Ten subjects (seven from the placebo and six from the BSE group) were discontinued due to
withdrawal of consent (n = 5), loss during follow-up (n = 2), violation of guidelines (n = 1),
or investigator’s opinion (n =2). There were no significant adverse effects of the BSE or
the placebo. Compliance was excellent (the placebo and BSE groups’ average compliance
ratios were 95.7 ± 1.1% and 94.4 ± 1.2%, respectively).
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Figure 2. Consolidated standards of reporting trials (CONSORT) diagram of the study. BSE, barley sprouts extract powder;
ITT, intention-to-treat.

The general characteristics of the subjects included in the ITT analysis are shown
in Table 1. The study groups were well matched, with no significant difference between
groups. Participants were mostly men with a mean age of 48.9 ± 1.0 years, representing
habitual alcohol drinkers (>260 g/week) with hepatic damage (ALT 40.6 ± 2.1 IU/L, AST
31.4 ± 1.3 U/L, GGT 96.6 ± 3.9 U/L, and fatty liver). Although the RFSs were statistically
significant (19.6 vs. 23.9), they were all classified as the low fruit/vegetable consumption
group [30].

Table 1. Baseline characteristics of the ITT subjects who participated in this study.

Variable Placebo (n = 38) BSE (n = 38) p-Value

Gender (male/female) 37/1 37/1 1.000
Age (years) 47.6 ± 1.5 50.3 ± 1.5 0.185
Alcohol amount (g/week) 294.3 ± 13.9 264.0 ± 12.9 0.115
Smoker (Y/N) 17/21 14/24 0.484
Smoking amount (cigarettes/day) 16.2 ± 2.5 14.1 ± 1.6 0.473
FSS (total score) 29.0 ± 1.6 30.2 ± 1.8 0.631
Physical activity (MET-min/wk) 2714 ± 612 1845 ± 340 0.220
RFS 19.6 ± 1.2 23.9 ± 1.5 0.028
BMI (kg/m2) 27.4 ± 0.4 27.6 ± 0.4 0.671
Liver fat content (%) 15.1 ± 1.5 15.1 ± 1.3 0.984
ALT (IU/L) 42.5 ± 3.2 38.6 ± 2.7 0.357
AST (IU/L) 31.6 ± 2.0 31.2 ± 1.7 0.857
GGT (U/L) 97.7 ± 5.3 95.5 ± 5.7 0.780

Values are presented as the means ± SE or n. Student’s t-test for continuous variables and chi-square or Fisher’s
exact test for categorical variables was used to compare the group differences. ITT, intention-to-treat; BSE, barley
sprouts extract powder; FSS, fatigue severity score; RFS, recommended food score; BMI, body mass index; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; and GGT, γ-glutamyl transpeptidase.

3.2. Alterations in Alcohol-Induced Oxidative Stress by BSE Supplementation

This study aims to determine the potential role of BSE in relieving alcohol-induced
oxidative stress in relation to liver cell damage. Therefore, we measured the oxidative stress
levels and antioxidant protective activities in erythrocytes at the baseline and endpoint
(Table 2). The oxidative stress level was assessed by determining ROS using luminol-
dependent chemiluminescence. There was a significant decrease in the ROS levels from
2254 ± 245 to 1457 ± 245 in the BSE group (p = 0.013) accompanied by no change in the
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placebo group, demonstrating marginally significant interactions between treatment and
visits (ß = −805, p = 0.072). Oxidant damage levels were assessed by determining urinary
MDA and plasma ox-LDL. Although the ox-LDL decreased remarkably in the BSE group,
there was almost no change in the placebo group. In contrast, urinary MDA decreased
remarkably from 2.43 ± 0.18 to 2.05 ± 0.19 in the BSE group, while it increased from
1.94 ± 0.18 to 2.39 ± 0.19 in the placebo group. As a result, we found that interactions be-
tween treatment and visits were negative and statistically significant (ß = −0.82, p = 0.026),
indicating a significant effect of BSE supplementation on reducing urinary MDA.

Table 2. Oxidative stress markers and antioxidant levels at the baseline and endpoint in the placebo
and BSE groups.

Variable
Placebo (n = 38) BSE (n = 38)

Estimate p-Value
Week 0 Week 12 Week 0 Week 12

ROS AUC 1861 ± 222 1869 ± 241 2254 ± 245 1457 ± 245 * −805 0.072
Urinary MDA
(µmol/g creatine) 1.94 ± 0.18 2.39 ± 0.19 2.43 ± 0.18 2.05 ± 0.19 −0.82 0.026

ox-LDL (µg/mL) 77.3± 2.7 76.5 ± 2.9 72.5 ±2.7 68.4 ± 2.9 −3.3 0.350
SOD/CAT 7.3 ± 1.7 10.1 ± 1.8 9.7 ± 1.8 9.8 ± 1.8 −2.6 0.271
SOD/GPx 0.18 ± 0.02 0.18 ± 0.02 0.21 ± 0.02 0.23 ± 0.02 0.01 0.498
SOD/(CAT+GPx) 0.18 ± 0.02 0.17 ± 0.02 0.20 ± 0.02 0.23 ± 0.02 0.03 0.180
GR (nmol/min/mL) 134.0 ± 7.9 134.9 ± 8.2 139.2 ± 7.8 133.0 ± 8.2 −7.1 0.481
GST (nmol/min/mL) 108.5 ± 6.0 98.4 ± 6.5 100.5 ± 6.0 111.4 ± 6.3 20.9 0.039
GSH/GSSG 4.79 ± 0.39 5.81 ± 0.41 4.25 ± 0.39 4.75 ± 0.41 −0.52 0.351
GSSG/TGSH 0.20 ± 0.01 0.17 ± 0.01 0.21 ± 0.01 0.20 ± 0.01 0.01 0.488

Values are presented as the LS means ± SE. Estimates and p-values were obtained using a mixed-model repeated-
measures analysis for the treatment× visit interaction terms. * p < 0.05, differences within each group. BSE, barley
sprouts; extract powder; ROS, reactive oxygen species; AUC, area under the curve; MDA, malondialdehyde; ox-
LDL, oxidized low-density lipoprotein; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase;
GR, glutathione reductase; GST, glutathione S-transferase; GSH, reduced glutathione; GSSG, oxidized; glutathione;
TGSH, total glutathione.

Next, antioxidant protective enzymes and GSH systems were investigated in ery-
throcytes to determine the protective effects of BSE against oxidative stress. As expected,
there were no significant changes in SOD, CAT, and GPx levels. However, the GSH system
seemed to be selectively improved by showing a significant increase in the GST level in
the BSE group compared with the placebo group (ß = 20.9, p = 0.039), with no significant
changes in the GSH/oxidized glutathione (GSSG) and GR level.

3.3. Alterations in Plasma Metabolomic Profile by BSE Supplementation

We analyzed plasma samples by GC-TOF-MS to compare the metabolic features before
and after BSE supplementation. The metabolomics analysis identified 19,459 metabolites
in total. The OPLS-DA score was calculated for each group. Separation between the
samples before and after supplementation was evident in the OPLS-DA plots (Figure 3A;
R2X = 0.294, R2Y = 0.987, Q2 = 0.221). To further illustrate the BSE-induced alterations
in the circulating metabolome, heatmap analyses were performed. Consistent with the
OPLS-DA score plot, the heatmap demonstrated differential levels of 16 metabolites before
and after BSE supplementation (Figure 3B).

The KEGG metabolic pathway analyses enabled to determine which metabolic path-
ways were impacted by BSE supplementation. Figure 4 shows that BSE supplementation
significantly impacted three metabolic pathways: GSH metabolism; alanine, aspartate, and
glutamate metabolism; and fatty acid synthesis. In GSH metabolism, pyroglutamic acid and
glycine tended to decrease (q = 0.076 and 0.085), and cysteine was decreased significantly
(q = 0.043) after 12-week BSE supplementation compared with the initial level. In alanine,
aspartate, and glutamate metabolism, aspartic acid tended to decrease (q = 0.085), and
asparagine, alanine, and propionic acid were decreased significantly (q = 0.011, 0.043, and
0.011, respectively) after BSE supplementation. In fatty acid synthesis, although palmitic
acid tended to decrease (q = 0.076), there were significant decreases in the acetate (q = 0.025),
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decanoic acid (q = 0.010), dodecanoic acid (q = 0.025), and stearic acid (q = 0.010) levels after
BSE supplementation relative to the initial values.
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3.4. Impacts of BSE Supplementation on Alcohol-Induced Liver Cell Damages

In line with the metabolomics results, the BSE group showed significant improvements
in liver fat content from 14.3 ± 1.1% to 12.4 ± 1.1% (p < 0.001 vs. baseline) and GGT from
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90.5± 4.2 to 81.1± 4.5 U/L (p = 0.025 vs. baseline). Reductions in liver fat content and GGT
levels were also noted in the placebo group, although to a relatively lower degree. As a
result, interactions between treatment and visits were not statistically significant (Table 3).

Table 3. Liver cell damage markers at the baseline and endpoint in the placebo and BSE groups.

Variable
Placebo (n = 38) BSE (n = 38)

Estimate p-Value
Week 0 Week 12 Week 0 Week 12

Liver fat content (%) 13.0 ± 1.1 11.3 ± 1.1 ** 14.3 ± 1.1 12.4 ± 1.1 *** −0.2 0.725
ALT (IU/L) 37.9 ± 2.2 34.4 ± 2.4 37.8 ± 2.2 35.9 ± 2.3 1.6 0.581
AST (IU/L) 29.2 ± 1.4 29.5 ± 1.4 29.8 ± 1.4 28.9 ± 1.4 −1.2 0.505
AST/ALT ratio 0.78 ± 0.03 0.81 ± 0.04 0.81 ± 0.03 0.81 ± 0.03 −0.04 0.424
GGT (U/L) 92.1 ± 4.2 89.9 ± 4.5 90.5 ± 4.2 81.1 ± 4.5 * −7.2 0.213

Values are presented as the LS means ± SE. Estimates and p-values were obtained using a mixed-model repeated-
measures analysis for the treatment × visit interaction terms. * p < 0.05, ** p < 0.01, *** p < 0.001, differences within
each group. BSE, barley sprouts extract powder; ALT, alanine aminotransferase; AST, aspartate aminotransferase;
GGT, γ-glutamyl transpeptidase.

Next, we applied QUINT analysis using the treatment effect size criterion to check
whether subject characteristics measured at baseline had significant interactions with the
BSE supplementation benefits on the reversal of liver cell damage, namely liver fat content
and GGT (Figure 5). The result for the pre- to post-supplementation change in liver fat
content was a pruned tree with two leaves. The split of the tree involved the variable “GR
activity” and a split point of 141.9 nmol/min/mL. The results indicated that the subjects
with a baseline GR activity lower or equal to 141.9 nmol/min/mL were responders (Leaf 1,
n = 28) whose liver fat content was significantly reduced by BSE supplementation compared
with the placebo group (p = 0.003). For the GGT levels, there were three pruned trees with
two leaves individually. The split point of the “FSS” variable was higher than 18.5, that
of the “ROS AUC” variable was higher than 539.85, and that of the “ox-LDL” variable
was higher than 60.58 µg/mL. The results indicated that the subjects with FSS (Leaf 2,
n = 51), ROS AUC (Leaf 2, n = 54), or ox-LDL (Leaf 2, n =51) values higher than the
corresponding split points were responders whose GGT levels were remarkably reduced
by BSE supplementation compared with the placebo group. However, the responder
groups for the FSS (p = 0.044) and ox-LDL (p = 0.030) subgroups only reached statistical
significance for GGT.
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4. Discussion

Alcohol-induced oxidative stress is likely a powerful mechanism for hepatic cell
death and tissue injury [31]. The most convincing data supporting the link between
oxidative stress and alcohol-induced liver injury comes from animal studies using the
intragastric feeding model. In these studies, the development of alcoholic liver injury was
associated with enhanced lipid peroxidation, generation of highly reactive free radicals, and
downregulation of the hepatic antioxidant defense system [32]. However, alcohol-induced
oxidative stress can be reversed by dietary supplementation. Pari et al. [33] demonstrated
in a rat study that treatment with grape leaf extracts reduced alcohol-induced oxidative
stress by restoring the enzymic and non-enzymatic antioxidant levels in the liver and
kidney. In the current study, we observed that 12-week BSE supplementation reduced
the magnitude of ROS generation and lipid peroxidation, respectively, and improved the
GSH antioxidant system, hepatic serological biomarkers, and steatosis in habitual alcohol
drinkers with fatty liver. To our knowledge, this study is the first human trial to show the
effects of BSE on alcohol-induced oxidative stress and related liver cell damage.

We analyzed BSE by UHPLC-LTQ-Orbitrap-MS/MS to gain insight into the potentially
active chemical compounds that might contribute to its protective effects against oxidative
stress and liver cell damage. As a result, we found that BSE contains a great diversity
of glycosylated isovitexin (known as saponarin) and isoorientin (known as lutonarin).
Isovitexin and isoorientin are C-glycosides of apigenin and luteolin, respectively, which
are dominant metabolites produced during barley grain sprouting. Previous in vitro



Antioxidants 2021, 10, 459 11 of 14

studies showed that they have even higher antioxidant activities than their corresponding
aglycones [15,34], supporting our observations in humans. Several more studies support
the hepatoprotective effects of saponarin in preclinical settings. Simeonova et al. [20]
demonstrated that saponarin reduced drug-induced oxidative stress and hepatic damage
in vitro and in vivo. Therefore, we standardized the BSE with saponarin at a concentration
of 15 mg/g.

It is almost impossible in the clinical setting to test the concept of imbalance between
ROS production and the antioxidant defense system directly in the liver. Hence, we used
circulating samples (plasma, erythrocytes, and urine) because chronic alcohol use leads
to oxidative stress markers in the circulatory system and extrahepatic tissues at the same
time [32]. The GSH antioxidant system consists of several components, including the GPx,
GR, GST, and GSH. Together, these molecules effectively remove hydrogen peroxide [35].
GSH (γ-l-glutamyl-l-cysteinyl glycine) can also interact non-enzymatically with individ-
ual ROS to detoxify them [35,36]. Given the considerable amount of harmful oxidants
detoxified in a GSH-dependent manner, a compromised GSH antioxidant system has
been speculated to be a major contributor to the pathologic liver injury in chronic alcohol
drinkers [36]. Consistent with these previous findings, results from the current study
indicate that BSE supplementation improved the GSH antioxidant system by selectively
targeting the GST level without affecting the GSH level. GST catalyzes the conjugation of
GSH with ROS or peroxidized lipids for their elimination from the system [37,38].

Furthermore, we performed a non-targeted GC-TOF-MS metabolomic analysis to ex-
plain the possible mechanism of action of BSE in linking the suppression of oxidative stress
to the improvement of hepatic cell damages and steatosis. OPLS-DA is a supervised mod-
eling approach for extracting the differential metabolites between the two groups, while
PCA is an unsupervised modeling approach for identifying the maximum variance [39].
The OPLS-DA model in the present study displayed greater than 98% goodness-of-fitted,
suggesting that the BSE supplementation led to changes in endogenous metabolites. Re-
garding the link between alcohol-induced oxidative stress and hepatic cell damage, Singh
et al. [13] reported higher plasma levels of GGT and MDA and GSH depletion in alco-
holics than in healthy volunteers in a clinical setting. GGT is a membrane-bound enzyme
that catalyzes the transfer of the γ-glutamyl moiety of GSH to amino acids. GGT is also
involved in the synthesis of GSH, playing an important role in the antioxidant defense
system [40]. However, an increase in plasma GGT linked to the release of γ-glutamyl
amino acids and cysteinyl glycine has been widely used as an index of liver dysfunction
or alcohol intake [41], indicating hepatic cell damage and a high turnover rate of hepatic
GSH due to oxidative stress [42]. In the current study, BSE supplementation led to sig-
nificant reductions in pyroglutamic acid, glutamylated amino acids, and GGT in plasma,
suggesting that BSE reduced GSH turnover and hepatic cell damage via suppression of
oxidative stress. Meanwhile, regarding the link between alcohol-induced oxidative stress
and hepatic steatosis, Kalhan et al. [43] reported higher plasma levels of glutamyl peptides
and lower plasma levels of GSH in subjects with steatosis than in healthy controls. In
the present study, the remarkable reductions in aspartic acid, asparagine, alanine, propi-
onic acid, palmitic acid, acetate, decanoic acid, dodecanoic acid, and stearic acid levels
were found after BSE supplementation, implicating the suppression of fatty acid synthesis.
Taken together, the alterations in the metabolic response most probably reflect that BSE
supplementation restores hepatic function via activating the GSH antioxidant system.

The analysis of hepatic serological biomarkers and steatosis identified that BSE sup-
plementation lowered the liver fat content and GGT levels remarkably in the within-group
comparisons, but not in the between-group comparisons. These results prompted us to
introduce a robust strategy for identifying the subgroups of subjects for whom the effective-
ness of BSE supplementation differs from the others. We used an unsupervised machine
learning algorithm, QUINT, which was developed to separate the subjects into responders
and non-responders based on an array of variables measured before treatment started
in a two-arm clinical trial [28]. Such background characteristics that predict differential
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effectiveness are called effect modifiers [44]. The analysis revealed that the liver fat content
was improved markedly in subjects who initially had relatively lower GR activity. GR is an
enzyme that catalyzes the recycling of GSSG to GSH and has a role in the maintenance of
GSH homeostasis, especially when the cells are exposed to oxidative stress [45]. On the
contrary, GGT improvement was significant in subjects who initially had a relatively higher
fatigue or lipid damage level. These findings are important because they indicate the
persons who should receive the optimal treatment based on their individual characteristics.

5. Conclusions

Here, we revealed that BSE supplementation improves hepatic damages in habitual
alcohol drinkers with fatty liver by relieving alcohol-induced oxidative stress and main-
taining the GSH antioxidant system. The plasma metabolomics analysis of endogenous
metabolites was useful in explaining the link between the suppression of oxidative stress
and the improvement in hepatic cell damage and steatosis. We also demonstrated that
BSE supplementation might be more effective in subjects who initially had a relatively
lower GR activity, higher fatigue level, or more significant oxidative damage in the back-
ground. However, we did not explore whether multiple chemical compounds present in
BSE exert synergistic actions in protecting against alcohol-induced oxidative stress and
hepatic damage. Future studies are needed to understand the complex interactions between
multiple BSE components and multiple targets in the body by applying a computational
network approach.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-392
1/10/3/459/s1, Table S1: Chemical fingerprints of BSE analyzed by UHPLC-LTQ-Orbitrap-MS.
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