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Abstract

Factors governing the distribution of organisms in the pelagic ocean are understudied. In

this paper we describe environmental parameters and macrofouling assemblages on 11

buoys deployed in the Arabian Sea for an average duration of 322 days. Macrofoulants on

all the mooring components extending from the sea-surface to a depth of 1800–4300 m

were documented. Role of temperature, salinity, dissolved oxygen, biological productivity

and zooplankton community in governing the macrofoulant distribution are described. Spe-

cies composition, vertical zonation and wet biomass exhibited significant spatial variations.

Lepas anatifera constituted more than 90% of foulant wet biomass on all moorings. Assem-

blages in the southeastern (SEAS), east-central (ECAS) and northeast (NEAS) regions

were distinct. Density of L. anatifera on surface buoys were low in SEAS (0.2±0.09 no./cm2),

high in ECAS (0.32±0.11 no./cm2) and moderate in NEAS (0.23±0.04no./cm2). Macrofou-

lants were observed up to a depth of 75 m in SEAS, 130 m in ECAS and 120 m in NEAS.

The depth profile of macrofoulant assemblages on moorings could be related to the preva-

lent hypoxic condition. Vertical profiles of wet biomass on all moorings exhibited subsurface

maxima at depth ranging from 10 to 20 m, consequent to the abundance of L. anatifera in a

thermally stable depth of water column, wherein diurnal and semidiurnal temperature vari-

ability was minimal. We attribute the observed variation in fouling assemblages to dissolved

oxygen levels, salinity and diurnal variability in temperature and salinity.

Introduction

Gaining insight into factors that govern patterns of assemblages is a fundamental objective in

ecology. Assemblages are shaped by biotic and abiotic stresses in their respective environ-

ments. Mobile and sessile organisms respond differently to the stresses. While the mobile

organisms could survive a stressful condition by retreating to a favorable environment, the sur-

vival of a sessile organism is determined by tolerance to stresses[1]. The study of sessile assem-

blages may provide information on the habitat and health of the ecosystem. When compared

to terrestrial assemblages, sessile assemblages in marine environments are relatively
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inaccessible and understudied[2]. Of marine studies, most are of intertidal, subtidal and ben-

thic habitats[3–9]while sessile assemblages in the pelagic ocean are rarely studied.

Pelagic ecosystems are highly dynamic and are shaped by multiple interrelated scales of bio-

physical interactions [2]. Crucial environmental variables such as temperature, salinity, light,

pH, dissolved oxygen (DO), nutrients, etc. show a strong vertical gradient in the pelagic ocean.

Man-made stationary structures in the ocean accumulate sessile assemblages across the vertical

gradients in environmental parameters.Assemblages of sessile organisms exhibited notable

regional variations and vertical zonation on wind farms [10,11], petroleum platforms [12–15]

moored buoys [16–18], test panels [19], undersea cables [20], instrumented platforms on the

seabed [21], etc. The factors influencing the distribution of sessile assemblages were identified

as the light penetration, temperature, pressure, food and nutrient levels, nature of substratum,

duration of immersion, and biology, physiology and dispersal of individual species [19,22].The

density of sessile photosynthetic algae in the assemblages is determined by the decay of light

levels in the water column, species-specific adaptations [23] and grazing[24]. Invertebrate taxa

dominate the sessile assemblages below the photic zone and depend upon exogenous organic

material for nutrition[22]. The exogenous organic material for invertebrate taxa in the seabed

and seamounts are transported by currents and other physical processes driven by the topo-

graphical features[25–27]. The influence of large topographical features such as seamounts in

altering the environment and increased availability of organic matter in the benthic nepheloid

layers[28]plays an important role in the establishment of sessile assemblages in an otherwise

hostile condition.But, the man-made stationary structures such as moored buoys and petro-

leum platforms are much smaller and unlikely to alter the physical environment of the adja-

cent water column. Consequently, the sessile assemblages on such structures are believed to be

dictated by the environmental parameters typical to the pelagic ocean [13,15].

Large-scale spatial patterns of assemblages in the marine environment are primarily driven

by abiotic stress [7,29–32]. In this study, we have analyzed whether the patterns of macrofou-

lant assemblages on a network of moored buoys could potentially be explained by spatiotem-

poral variability of environmental parameters. Eleven moored buoys deployed in an area

covering ~1×106 km2 in the eastern Arabian Sea (Fig 1) were selected for the study. The Ara-

bian Sea is a tropical ocean basin that exhibits pronounced seasonality in key environmental

parameters. In the subsequent sections, we have documented the patterns of macrofoulant

assemblages on the moored buoys and analyzed the influence of environmental parameters.

Data and methods

Measuring geographic distribution of macrofoulants

Patterns of macrofoulants were observed on moorings deployed in the eastern Arabian Sea for

a durationof 128 to 477 days (Fig 1 and Table 1).The moorings examinedduring the study

comprised of four configurations, namely Met-Ocean buoy (AD02 and AD04), CALVAL, tsu-

nami buoy (TB12) and Ocean Moored buoy for North Indian Ocean (OMNI, moorings

AD09, AD10, AD08-A, AD08-B, AD07-A, AD07-B and AD06). Moorings AD08-A and

AD08-B were located only 16 km apart and hence are collectively referred as the AD08 in sub-

sequent text. Similarly, AD07-A and AD07-B are collectively referred as AD07 as they were

located only 14 km apart. Field permit for the research was granted by the National Institute of

Ocean Technology, Chennai, India.

Distribution of macrofoulants on mooring was documented during retrieval of the system

using photographic and scrape sampling techniques. Photographs of random quadrat mea-

surements (0.25 x 0.25 m) were taken of all mooring components shallower than 5 m to esti-

mate density of various fouling communities. Scrapes were made upto mooring substratum
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from all accessible mooring components. Individual organisms were sorted, preserved in 95%

ethanol and identified to species level for the dominant fouling barnacle and to family or order

for the other macrofoulants. Retrieval procedure of OMNI buoys permitted sampling from all

depths and analysis of depth wise distribution of macrofoulants. For other type of moorings,

samples from the components up to a depth of about four meters were collected, as rest of the

mooring components were not retrieved. Total wet biomass on Conductivity-Temperature

(CT) sensors deployed on OMNI buoys was estimated by subtracting the weight after retrieval

from thatof a clean sensor. Zooplankton samples in the upper 100 mof the water column were

collected by single vertical haul of zooplankton net (mesh size 300μm) near the moorings dur-

ing OctoberandNovember 2016.

Environmental data

Data on environmental parameters in the mooring locations were documented based on

mooring mounted sensors, shipborne measurements during retrieval of the moorings, remote

Fig 1. Depth of seabed (in meters)in the eastern Arabian Sea (Arabian Sea east of 65˚E) and the surrounding

oceanic regions based on ETOPO2v2 data. Yellow boxes indicate the three sub-regions, namely southeastern Arabian

Sea (SEAS, 6–11˚N), east-central Arabian Sea (ECAS, 11–17˚N) and northeastern Arabian Sea (NEAS, 17–23˚N).

Markers on the map indicate the locations of moored buoys.

https://doi.org/10.1371/journal.pone.0223560.g001

Table 1. Details of moored data buoys sampled in the study.

Location ID/Region Latitude Longitude Distance from nearest coast (km) depth (m) Deployment date No. of days Deployed

SEAS AD09 08.253˚N 73.350˚E 33 2250 04-07-2015 477

AD04 08.491˚N 73.096˚E 23 2300 29-03-2016 208

AD10 10.318˚N 72.589˚E 28 1800 31-08-2015 421

CALVAL 10.605˚N 72.230˚E 26 2100 26-11-2015 335

ECAS AD08-B 11.768˚N 68.597˚E 338 4320 23-06-2016 128

AD08-A 11.910˚N 68.636˚E 338 4300 24-11-2015 340

AD02 14.865˚N 68.914˚E 497 4030 03-09-2015 424

AD07-B 14.966˚N 68.994˚E 497 3960 26-06-2016 128

AD07-A 15.042˚N 68.889˚E 497 3996 19-11-2015 348

NEAS AD06 18.515˚N 67.471˚E 397 3300 21-11-2015 349

TB12 20.339˚N 67.547˚E 247 3030 14-11-2015 358

https://doi.org/10.1371/journal.pone.0223560.t001
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sensing products and other climatology datasets. SEA-BIRD CTsensors (SBE 37-SMP, SBE

37-IM) mounted on OMNI moorings at discrete depth levels 0.5, 1, 5, 10, 15, 20, 30, 50, 75,

100, 200 and 500 meters recorded temperature and salinity at hourly interval for entire deploy-

ment duration of the moorings.Profiles of temperature, salinity, chlorophyll-a and DO in the

top 500 m in the vicinity of the mooring were measured using SBE 19plus V2 SeaCAT Profiler

CTD during retrieval of the moorings. The in-situ datasets are archived by Indian National

Centre for Ocean Information Services. Spatial distribution of salinity was studied based on

World Ocean Atlas 2013 (WOA2013) [33]. Monthly climatology of remotely sensed surface

chlorophyll-a concentration over the eastern Arabian Sea was used as a proxy for phytoplank-

ton abundance.The chlorophyll-a data is based on the European Space Agency’s Climate

Change Initiative (OC-CCIv3) mission [34]. Gridded monthly climatology of ocean surface

current data used in the analysis was based on Ocean Surface Current Analysis-Real time

(OSCAR), which is an estimate of mean currents in top 30 m of the ocean[35].The bathymetry

data wasGridded Global Relief Data, Earth topography two arc-minute (ETOPO2) v2.

Data analysis

Temporal variations in temperature and salinity at different depths in OMNI buoy locations

were analyzed based on the hourly dataset collected by the moorings.Summary statistics of the

temperature and salinity data were calculated to describe mean conditions, short-term vari-

ability and seasonal-scale variability. All statistics presented here are based on quality-con-

trolled data during the period mentioned in Table 1. The average value of salinity and

temperature at different depths in the mooring locations were obtained as the mean of the

dataset during the entire deployment period. Diurnal variability of salinity and temperature

were studied using a proxy called mean daily peak-to-peak variability. The mean daily peak-

to-peak variability in salinity and temperature was computed as the mean of the difference

between daily maximum and minimum.The standard deviation of salinityand temperature

timeseries after smoothing out high-frequency variability using a three-day running mean is

considered as a proxy to study seasonal scale variability. Higher values for the standard devia-

tion are indicative of large seasonal variations in salinityand temperature.Linear correlations

of the summary statistics with density distribution of the most predominant macrofoulant at

different depths on the moorings were determined using Pearson correlation. All statistical

analysis was performed in MATLAB R2019a.

Results and discussion

Distribution of foulants on moored buoys in the eastern Arabian Sea

Mooring components in the top 100 m of the water column were found to be colonized by

diverse macrofouling organisms. On the basis of wet biomass, macrofoulant taxa on moorings

were composed of 93–97% pedunculate barnacles, 1–3% algae, 1–2% bivalves, 1–2% hydroids

and less than 1% other fouling organisms like bryozoans, sessile filter feeder polychaetes, non-

sessile mobile organisms such as crab species, predatory polychaetes and echinoderms, etc.

(Table 2).

The semi-submerged buoys of all eleven moorings were nearly identical (S1–S3 Figs). Foul-

ing was observed to be concentrated around the rubber fender fixed at the waterline and on

the ridges of the corners. Mean density of the most predominant macrofoulant Lepasanatifera
on fender and edges of surface buoy of moorings are given in Fig 2A (corresponding to depth

0.5 m). In the southeastern Arabian Sea (SEAS), density of L. anatiferawas observed to be very

low (0.2±0.09no./cm2) on surface buoys (Fig 2A and S1 Table). Buoys deployed for more than

420 days in the SEAS (S1B and S1D Fig) had only low to moderate fouling. The moorings
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Table 2. Macrofoulants observed on moorings and the zooplankton groups collected from vicinity of the moorings. Zooplankton samples were collected only from

selected stations for moorings located less than 30 nautical miles apart from one another.

Mooring

location,

ID&

Region

Macrofoulants observed on mooring components Zooplankton groups collected from top 100 m of water column in vicinity of the

mooring

Identified up to Order Identified up to Family Identified up to Order Identified up to Family Larval forms

08.25˚N,

73.35˚E

AD09

[SEAS]

Pedunculata, Euphausiacea,

Decapoda, Sabellida,

Phyllodocida,

Chlorophyceae�, Mytilida,

Arcida, Ophiacanthida,

Ostreida, Desmodorida

Lepadidae, Plagusiidae,

Serpulidae, Nereididae,

Mytilidae, Ophiocomidae,

Amphiuridae, Pteriidae,

Amphioxiformes,

Foraminiferida,

Euphausiacea,

Aphragmophora,

Myodocopida

Acartiidae, Paracalanidae,

Calanidae, Candaciidae,

Lucicutiidae, Eucalanidae,

Pontellidae, Oithonidae,

Sapphirinidae, Corycaeidae,

Euterpinidae

Copepod nauplii, Crab Zoea,

Decapod larvae, Lepadidae

cyprid, Fish eggs and larvae,

Polychaete larvae

08.49˚N,

73.10˚E

AD04

[SEAS]

Pedunculata, Sabellida,

Decapoda, Euphausiacea,

Ostreida, Chlorophyceae�,

Monhysterida

Lepadidae, Serpulidae,

Plagusiidae,Pteriidae,

Linhomoeidae

Data not available

10.32˚N,

72.59˚E

AD10

[SEAS]

Pedunculata, Euphausiacea,

Decapoda, Sabellida,

Ostreida,Ophiacanthida,

Amphinomida, Phyllodocida,

Chlorophyceae�

Lepadidae, Plagusiidae,

Serpulidae,Pteriidae,

Nereididae, Amphinomidae,

Ophiocomidae

Aphragmophora,

Myodocopida,

Euphausiacea

Acartiidae, Paracalanidae,

Calanidae, Lucicutiidae,

Eucalanidae, Pontellidae,

Timoridae, Oithonidae,

Oncaeidae, Corycaeidae

Decapod larvae, Cyphonautes

larvae, Crab zoea, Copepod

nauplii, Lepadidae cyprid

10.61˚N,

72.23˚E

CALVAL

[SEAS]

Pedunculata, Decapoda,

Euphausiacea, Ostreida,

Chlorophyceae�

Lepadidae, Plagusiidae,

Pteriidae,

Data not available

11.77˚N,

68.60˚E

AD08-B

[ECAS]

Pedunculata, Lepadiformes,

Decapoda, Euphausiacea,

Phyllodocida, Chlorophyceae�

Lepadidae, Poecilasmatidae,

Plagusiidae, Nereididae

Data not available

11.91˚N,

68.64˚E

AD08-A

[ECAS]

Pedunculata, Lepadiformes,

Phyllodocida, Ostreida,

Euphausiacea, Decapoda,

Cheilostomata, Haplotaxida,

Monhysterida,

Chlorophyceae�

Lepadidae, Poecilasmatidae,

Nereididae,Pteriidae,

Plagusiidae,

Membraniporidae, Xyalidae,

Polygordiidae

Lepadiformes,

Foraminiferida,

Euphausiacea,

Aphragmophora,

Myodocopida

Luciferidae, Paracalanidae,

Clausocalanidae, Calanidae,

Pseudocalanidae, Eucalanidae,

Candaciidae, Oithonidae,

Oncaeidae, Corycaeidae,

Oikopleuridae

Copepod nauplii, Lepadidae

cyprid, Lepadidae nauplii,

Poecilasmatidae nauplii,

Conchodermasp. cyprid, Crab

zoea, Polychaete larvae

14.86˚N,

68.91˚E

AD02

[ECAS]

Pedunculata, Decapoda,

Euphausiacea, Ostreida,

Phyllodocida, Chlorophyceae�

Lepadidae, Plagusiidae,

Pteriidae, Nereididae

Data not available

14.96˚N,

68.99˚E

AD07-B

Pedunculata, Lepadiformes,

Decapoda, Euphausiacea,

Phyllodocida, Chlorophyceae�

Lepadidae, Poecilasmatidae,

Plagusiidae, Nereididae

Data not available

15.04˚N,

68.88˚E

AD07-A

[ECAS]

Pedunculata, Lepadiformes,

Decapoda, Euphausiacea,

Mytiloida, Enterogona,

Phyllodocida, Ostreida,

Amphinomida,

Oscillatoriales,

Chlorophyceae�

Lepadidae, Poecilasmatidae,

Plagusiidae, Mytilidae,

Clavelinidae, Nereididae,

Pteriidae, Amphinomidae,

Phormidiaceae

Aphragmophora,

Euphausiacea

Clausocalanidae, Calanidae,

Candaciidae, Pontellidae,

Oithonidae, Oncaeidae,

Corycaeidae, Oikopleuridae

Bivalve veliger, Lepadidae

cyprid, Lepadidaenauplii,

Poecilasmatidae nauplii,

Copepod nauplii, Polychaete

larvae

18.51˚N,

67.47˚E

AD06

[ECAS]

Pedunculata, Lepadiformes,

Decapoda, Euphausiacea,

Phyllodocida,

Chlorophyceae�, Copelata,

Gelidiales, Oscillatoriales

Lepadidae, Poecilasmatidae,

Plagusiidae, Nereididae,

Pteriidae, Microcoleaceae,

Oikopleuridae

Foraminiferida,

Euphausiacea,

Aphragmophora,

Myodocopida

Acanthoniidae, Podonidae,

Clausocalanidae, Calanidae,

Candaciidae, Diphyidae,

Lucicutiidae, Pontellidae,

Oithonidae, Oncaeidae,

Sapphirinidae, Corycaeidae,

Oikopleuridae

Polychaete larvae, Lepadidae

nauplii, Poecilasmatidae

nauplii, Copepod nauplii,

(Continued)
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deployed in the east-central Arabian Sea (ECAS) for more than 340 days namely, AD08-A,

AD07-A and AD02 were the most fouled (S2B, S2C, S2E and S2F Fig) with high density of L.

anatifera (0.4±0.06no./cm2). Buoys deployed in the ECAS for a shorter duration of ~130 days,

namely, AD08-B (S2D Fig) and AD07-B (S2A Fig) were also colonized by juvenile L. anatifera
with a density of 0.22±0.06 no./cm2. Moderate levels of L. anatifera (0.23±0.04 no./cm2, Fig

2A) were observed on surface buoys of moorings in the northeastern Arabian Sea (NEAS) (S3

Fig).

The vertical distribution of fouling organisms colonizing the buoy and its mooring system

were investigatedbased on data from OMNI buoys. The algal communities were observed on

all moorings in the depths from 0 to 75 m. The dominant macrofoulant species colonizing sub-

surface mooring components were pedunculate barnacles, hydroids, polychaetes, oysters, etc.

The density and wet biomass of the macrofoulants varied with depth. The Macrofoulants were

noticeable up to a depth of 75 m in the SEAS, 130 m for the ECAS and 120 m for the NEAS.

The pedunculate barnacle, L. anatifera was dominant from 0 to 50m (Fig 2). Besides, a few

specimens of L. anatifera were observed even at 75m depth on moorings in the ECAS and

NEAS.At 75 to 130 m depth, the moorings in the ECAS and NEAS were mainly colonized by

pedunculate barnacles Conchodermahunteri and Octolasmiswarwickii, and their maximum

density was observed around 100m depth.The analysis of vertical profiles of wet biomass on all

moorings revealed subsurface maxima in the depth range 10 to 20 m (Fig 2B), which coincided

with high barnacle abundance (Figs 2A and 3). Consequently, the vertical profile of foulant

wet biomass was nearly identical to the vertical distribution of L. anatifera (Fig 3). The analysis

in S1 Appendix suggests that the distribution of macrofoulant assemblages documented herein

were not significantly affected by the factors like dissimilarities in deployment duration, anti-

fouling measures and retrieval procedures among moorings.

Environmental control on spatial variability of fouling communities

Macrofoulant assemblages on eleven moored buoys retrieved from the open ocean waters of

the Arabian Sea revealed the existence of distinct regional patterns. Ecological and oceano-

graphic factors might explain the observed distributions. Herein, the possible influences of var-

ious ecological and oceanographic factors in governing the regional patterns were

investigated.

Biological productivity. Several studies have reported increased growth of organisms in

various trophic levels, aided by the upwelling driven availability of nutrients, phytoplankton

and detritus [29,36–40]. We used remotely sensed and in situ chlorophyll-a data (Figs 4 and

5A) as proxies for phytoplankton abundance. Remote sensing gives an average value for

Table 2. (Continued)

Mooring

location,

ID&

Region

Macrofoulants observed on mooring components Zooplankton groups collected from top 100 m of water column in vicinity of the

mooring

Identified up to Order Identified up to Family Identified up to Order Identified up to Family Larval forms

20.34˚N,

67.55˚E

TB12

[ECAS]

Pedunculata, Euphausiacea,

Decapoda, Sabellida,

Chlorophyceae�, Ostreida,

Enterogona

Lepadidae, Plagusiidae,

Pteriidae, Serpulidae,

Clavelinidae

Euphausiacea,

Aphragmophora,

Myodocopida

Podonidae, Luciferidae,

Paracalanidae, Calanidae,

Metridinidae, Lucicutiidae,

Pseudocalanidae, Eucalanidae,

Pontellidae, Oithonidae,

Oncaeidae, Sapphirinidae,

Corycaeidae

Lepadidae cyprid, Fish larvae,

Copepod nauplii,

�Identified up to Class.

https://doi.org/10.1371/journal.pone.0223560.t002
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chlorophyll-a in the top 25 meters[41]. High concentration of chlorophyll-awas observed in

the NEAS (Fig 4A–4L). But, the chlorophyll-a concentration was perennially low in the ECAS.

Moderately high chlorophyll-a concentration was observed in the vicinity of SEAS moorings

during July to October. Vertical profile of chlorophyll-a in upper 200mof water column based

on CTD casts in the vicinity of moorings (Fig 5A) was also consistent with the monthly clima-

tology data (Fig 4A–4L).Relatively low concentration of chlorophyll-a observed in the ECAS

in comparison to SEAS and NEAS suggests that ECAS was least productive region. However,

the moorings in the least productive area within the study region had the highest density of

macrofoulants (Figs 2 and 3). Hence, it is apparent that factors other than biological productiv-

ity also contribute significantly to the spatial variability of macrofoulant wet biomasson moor-

ings. Previous studies suggest that pelagic production constitutes the dominant basal resource

fueling sessile suspension-feeding organisms on artificial reefs[24].The role of changes in con-

centration of planktonic food in determining the vertical distribution of filter feeders on the

mooring has to be further examined.

Zooplankton community analysis. The zooplankton samples were collected during the

mooring retrieval. The density of zooplankton was higher in NEAS (~5000 no./m3) in compar-

ison to ECAS and SEAS (~2000 no./m3)(S4 Fig). Copepods were the dominant taxain all zoo-

plankton sampling locations but they did not account for the fouling. Among the fouling

Fig 2. (a) Density of L. anatifera (no./cm2) on buoy and Conductivity-Temperature (CT) sensors of moorings in the Eastern Arabian

Sea (b) Wet biomass (kg) of foulants on CT sensors retrieved from different depth levels at OMNI mooring locations.

https://doi.org/10.1371/journal.pone.0223560.g002
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community, nauplii and cyprids of the stalked barnacle, L. anatiferawas observed in most of

the stations (Table 2). ECAS and NEAS also recorded the presence of Poecilasmatidae nauplii.

Zooplankton samples from all stations lacked larval forms of acorn barnacles, substantiating

the absence of adult acorn barnacles from the moorings. The absence of acorn barnacles could

be attributed to the offshore location of the stations[42–44]. Although Mytilidae and Ostreidae

Fig 3. Conductivity-Temperature sensors retrieved from OMNI buoys (a) NEAS-AD06, (b) ECAS-AD07, (c)

ECAS-AD08-A, (d) ECAS-AD08-B, (e) SEAS-AD10 and (f) SEAS-AD09. The labels in the figure indicate depth at

which the CT sensors were deployed.

https://doi.org/10.1371/journal.pone.0223560.g003
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were observed on moorings, the zooplankton community lacked bivalve larvae, except for

bivalve veliger in ECAS. The absence of bivalve larvae could be attributed to seasonality of

reproduction exhibited by the species.

Most of the biofouling taxa on mooring components, viz. barnacles, bivalves, bryozoans,

polychaetes, hydrozoans etc. have a planktonic larval stage in their life cycle[45]. However, the

fouling community is not a replica of the zooplankton community. The variations between

biofoulants and zooplankton communities could be due to the dispersal capability of larval

forms, which are susceptible to competition, predation, mortality and advection by ocean cur-

rents[46](Fig 4). Besides, the zooplankton distributions reported here are based on point sam-

ples of larvae from organisms which live for months to years.

Salinity. The eastern Arabian Sea is part of a highly saline tropical ocean [47]. Seasonally

reversing monsoon currents in the north Indian Ocean [48]advect low-saline water from the

Bay of Bengal into the SEAS during the period from November to April. Consequently, salinity

in the SEAS rapidly decreases during November to April (Fig 6B–6G). Vertical profile of salin-

ity based on CTD casts (Fig 5B) also suggests that salinity in upper 200min theSEASwas lower

than that of ECAS and NEAS. Fig 7A–7C showcertain summary statistics of temporal

Fig 4. Color shading shows monthly climatology of chlorophyll-a (mg m-3) in the eastern Arabian Sea based on

OC-CCIv3 data. Vectors show monthly climatology of surface currents based on the OSCAR data. Triangular markers

indicate the locations of the moored buoys.

https://doi.org/10.1371/journal.pone.0223560.g004
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evolution of salinity in top 100 m of water column at the mooring locations. Mean salinity in

the mooring locations were in the range of 35 to37 PSU (Fig 7A). The mean salinity in the

SEAS was about 1 PSU lower than that of ECAS and NEAS (Fig 7A). On average, daily varia-

tions in salinity, determined as mean daily peak-to-peak variability in salinity, was less than 0.4

PSU in the eastern Arabian Sea, with highest daily variations recorded in the SEAS and lowest

in the ECAS (Fig 7B). Salinity in the SEAS mooring locations showed large seasonal variations

as evident from the high standard deviation of salinity (Fig 7C). The large seasonal scale salin-

ity variations in the SEAS were a consequence of changes in circulation patterns (Fig 4A–4L

and Fig 5A–5L).

Fig 8A–8C shows scatter plot of density of L. anatifera on CT sensors in the depth range 5

to 75 m versus different statistics of salinity. The density of L. anatifera showed a significant

positive correlation (R = 0.45, p = 0.011) with mean salinity. The significant positive correla-

tion suggests that density of L. anatifera could increase with increase in mean salinity. Signifi-

cant negative correlation (R = -0.495, p = 0.004) was observed between the mean daily peak-

to-peak variability in salinity and density of L. anatifera(Fig 8B). Seasonal variability of salinity

did not show any significant correlation with density of L. anatifera (Fig 8C) in the eastern

Arabian Sea.Hence, it is apparent that the prevailing low-saline conditions and strong diurnal

variability of salinity contributedsignificantly to the lowdensity of L. anatifera on moorings in

the SEAS.

Fig 5. Vertical profiles of (a) chlorophyll-a (mg m-3) and (b) salinity (PSU) based on CTD casts during October-November 2016.

https://doi.org/10.1371/journal.pone.0223560.g005
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Temperature. Temperature plays a vital role in regulating respiration, feeding and breed-

ing of marine organisms [49,50]. Tolerance of marine organisms to ambient temperature

showed marked variations across species [51,52]. Recruitment of larvae on substrates were also

influenced by temperature [53–55]. Hence, temperature could potentially regulate species

composition and vertical zonation of macrofoulants on moorings. The most predominant

macrofoulant on the mooring, L. anatifera is usually found in tropical oceans having

Fig 6. Monthly climatology of sea surface salinity (in PSU) in the eastern Arabian Sea based on WOA2013 [33]. Triangular

markers indicate the locations of the moored buoys.

https://doi.org/10.1371/journal.pone.0223560.g006
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temperature >18˚C. Laboratory experiments suggests that L. anatifera could reproduce in

temperatures ranging from 15 to 30˚C, with 19 to 27˚C being the most optimal breeding tem-

perature [56].

Different statistics of temperature evolution in the eastern Arabian Sea were analyzed to

study the influence of temperature on biofouling. Vertical profile of temperature based on

mean data during the mooring deployment period (Fig 7D) and CTD casts during October

2016 (Fig 9A) revealed a warm mixed layerhaving minimal variation of temperature with

depth. A significant fraction of the biofoulants observed on the mooring was concentrated

withinthis warm layer in top 50 m (Fig 3). Also, majority of L. anatifera observed on moorings

were in the water column having mean temperature in the range of 28 to 29.5˚C(Fig 8D). But

density of L. anatifera exhibited insignificant correlation with mean temperature (Fig 8D),

apparently due to the nearly identical mean temperature values throughout the eastern Ara-

bian Sea (Fig 7D). Previous studies have shown that diurnal temperature fluctuations can

influence community structure in marine environments [57,58]. Diurnal temperature variabil-

ity in the eastern Arabian Sea was studied based on mean daily peak-to-peak variability in tem-

perature (Fig 7E). In all mooring locations, average daily variations in temperature was only

about 0.5˚C at depth 15 to 20 m, while much larger daily temperature variations were observed

in other depths of the water column.The larger values of mean daily peak-to-peak variability in

Fig 7. Scatter plot showing depth versus (a) mean salinity, (b) mean daily peak-to-peak variability in salinity, (c) standard deviation of

salinity after smoothing the time series using 3-day running mean, (d) mean temperature, (e) mean daily peak-to-peak variability in

temperature and (f) standard deviation of temperature after smoothing the time series using 3-day running mean. Different marker

types are used to identify moorings. Keys for the marker types and marker colors are given at the bottom of the figure.

https://doi.org/10.1371/journal.pone.0223560.g007
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temperature in the water column deeper than 20 m was due to internal tides having diurnal

and semidiurnal periodicities[59,60]. High frequency temperature variability was most pro-

nounced in the SEAS moorings (Fig 7E). Temperature data close to sea surface also had diur-

nal and semidiurnal oscillations (Fig 7E). The high-frequency temperature variability

penetrating up to a depth of 10 m from the sea surface was driven by factors such as turbu-

lence, air-sea fluxes and diurnal solar heating [61]. In the eastern Arabian Sea moorings, L.

anatifera was observed in the water column that recorded mean daily peak-to-peak variability

of temperature less than 1.5˚C (Fig 8E). Significant negative correlation (R = -0.549, p = 0.001)

was observed between density of L. anatifera and mean daily peak-to-peak variability in tem-

perature (Fig 8E). Hence, it is plausible that relatively stable temperature in water column in

the depth range 15 to 20 m could have promoted increased growth of L. anatifera, leading to

the formation of subsurface maxima (Fig 2).Standard deviation of temperature time series

after smoothing out high frequency variability using a three-day running mean (Fig 7F) is con-

sidered as a proxy to study seasonal scale variability of temperature. Relatively higher standard

deviations of temperature were observed in the water column deeper than 20m in the SEAS

pointing to the large seasonal variability of temperature in the region compared to both NEAS

Fig 8. Scatter plot showing abundance of L. anatifera (no./cm2) versus (a) mean salinity, (b) mean daily peak-to-peak variability in

salinity, (c) standard deviation of salinity after smoothing the timeseries using 3-day running mean, (d) mean temperature, (e) mean

daily peak-to-peak variability in temperature and (f) standard deviation of temperature after smoothing the time series using 3-day

running mean. Different marker types are used to identify the depth levels in water column. The markers are also color coded to

distinguish respective mooring locations. Keys for the marker types and marker colors are given at the bottom of the figure.

https://doi.org/10.1371/journal.pone.0223560.g008
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and ECAS. But, density of L. anatiferadid not show any significant correlation with seasonal

variability of temperature (Fig 8F).

Dissolved oxygen

Availability of DO in the marine environment is a crucial factor that regulates metabolic and

biogeochemical processes. The near-surface layer of the ocean is replete with DO. But, the sub-

surface depths has a much lower concentration of DO, wherein oxygen advected from surface

layer is consumed by respiration, decay of sinking organic matter etc.[63]. The depleted level

of DO in water depth ranging from 10 to 1300 m with a concentration less than 0.5 ml l-1 is

called mid-depth Oxygen Minimum Zone (OMZ) [64]. The Arabian Sea with its closed north-

ern boundary encompasses the second-most intense OMZ of all tropical oceans [62].

Profiles of DO in the vicinity of moored buoys based on CTD casts are plotted in Fig 9B.

The concentration of DO in the near-surface layer was ~3 ml l-1 at all mooring locations. The

thickness of the well-mixed oxygen-repletenear-surface layer was observed to be highest in the

ECAS (~65 m) and lowest in the SEAS (~30m) (Fig 9B). DO depleted rapidly in oxycline

located below near-surface layer at all mooring locations. DO in the NEAS and ECAS

decreased to microxic levels (<0.1 ml l-1, [65])at ~140mdepth. But in the SEAS, DO first

Fig 9. Vertical profiles of (a) temperature (˚C) and (b) DO (ml l-1) based on CTD casts during October-November 2016. The CTD casts

were performed in the vicinity of OMNI buoys before retrieval of the moorings. The dashed vertical line in (b) indicates DO level of 0.2

ml l-1, which is hypoxic and physiologically stressful for marine organisms[62].

https://doi.org/10.1371/journal.pone.0223560.g009
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decreased to hypoxic levels (<0.2 ml l-1) at ~70mand then increased with depth from 140m

(Fig 9B). The higher concentrationof DO in intermediate depths in the SEASwas driven by

advection of DO from southern hemisphere [66,67]. The oxycline was very shallow and had

strong vertical gradientin the SEAS(Fig 9), which indicates prevalence of strong upwelling in

the region.Time seriesin-situ measurement of DO in the SEAS also revealed the occurrence of

pronounced seasonality associated with upwelling [68].Macrofoulants with limited or no

motility may be exposed to physiological stress associated with episodes of hypoxia. Seasonal

occurrence of hypoxia could devastate marine environment [69–71]. Hence, the varying levels

of oxygen stress can be instrumental in shaping composition and vertical zonation of macro-

foulants on moorings. Hypoxic conditions in the SEAS at a shallow depth of 75 m could be a

significant contributor for the absence of macrofoulants below 75 m on moorings.

The deeper near-surface DO replete water columnin the ECAS (Fig 9B) hadL. anatifera
assemblages up to 75 m depth.C. hunteri and O. warwickii were predominant macrofoulants

in the depth range 75 to 130 m on moorings in the NEAS and ECAS. In these regions, the

depth range 75 to 130 m coincided with oxycline and thermocline wherein both temperature

and DO decreased rapidly with depth (Fig 9A and 9B). The prevalence of strong vertical gradi-

ents could regularly cause huge fluctuations in temperature and DO as the water column oscil-

lates due to internal tides. Thus it is apparent that the C. hunteri and O. warwickii thriving in

depth 75 to 130 m on moorings in the NEAS and ECAS were better adapted to physiological

stress associated with depleted DO and semidiurnal oscillations in DO and temperature.

Conclusion

Macrofoulant assemblages on moored buoys spread across an area of ~1×106 km2 in the east-

ern Arabian Sea exhibited significant spatial variability in terms of species composition, verti-

cal zonation and wet biomass. Our analysis revealed that the observed patterns of

macrofoulant assemblages were shaped by various environmental parameters. Biological pro-

ductivity and zooplankton community distribution in the vicinity of the moorings were

observed to have only a limited influence in shaping the macrofoulant assemblages.

A correlation analysis based on temperature and salinity suggests that the most predomi-

nant foulant on moorings,L. anatifera was less tolerant to low-saline environments and diurnal

variations in both temperature and salinity. But, the mean temperature and seasonal variability

in temperature and salinity prevalent in the near-surface waters of the eastern Arabian Sea had

only a limited influence on L. anatifera abundance. The results also suggested that the higher

density of L. anatifera in the ECAS was aided by the relatively stable near-surfacetemperature

and salinity conditions prevalent in this region.

The impact of artificial substratum, foraging and other biotic factors on the macrofouling

were not considered in the present study. Previous studies in shallow coastal environments

revealed that assemblages on artificial substrates were not identical to that of adjacent natural

substrates as they offer atypical surfaces in terms of orientation, depth range and surface

[72,73]. Foraging also plays an important role in shaping the assemblages on artificial struc-

tures [74]. The influence of these factors in determining the mesoscale patterns of macrofou-

lant assemblages on artificial structures have to be further investigated.

Broad scale warming observed in the global ocean [75–77] as well as interannual warming

or cooling events such as El Niño–Southern Oscillation (ENSO) could induce significant

impact on marine ecosystems [78]. Ourstudy suggests that the impact of anomalies in ocean

temperature or salinity on marine ecosystems could be reflected in the abundance of L. anati-
fera on artificial structures in the marine environment. Previous studies have shown that cer-

tain epifaunal taxa of foulant communities found on the mooring components such as
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foraminifera, nematoda, polychaeta, etc. are good bioindicators of ocean acidification [79],

ocean warming [80] and hypoxic environments [64,81]. Many of the common macrofoulants

on moorings are also considered as good bioindicators for anthropogenic impacts [82].These

organisms could, potentially act as bioindicators to monitor changes in the pelagic ecosystems,

which constitute about 99 percent of earth’s biosphere[83]. Moored buoys are distributed in

all major oceanic regionsas part of Global Tropical Moored Buoy Array as well as other

regional networks enabling real-time in-situ ocean observation[84]. Global distribution of

moored buoys, coupled with the availability of high-quality scientific data about its environ-

ment make them an ideal platform to monitor the effect of environment on macrofoulant

assemblages. Sustained monitoring of mesoscale patterns of macrofoulant assemblages on

moored buoys could significantly enhance our understanding of changes in pelagic ecosystem

associated with the global changes in climate.
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