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Abstract .  We have produced metaphase spindles and 
induced them to enter anaphase in vitro. Sperm nuclei 
were added to frog egg extracts, allowed to replicate 
their DNA, and driven into metaphase by the addition 
of cytoplasm containing active maturation promoting 
factor (MPF) and cytostatic factor (CSF), an activity 
that stabilizes MPE Addition of calcium induces the in- 
activation of MPF, sister chromatid separation and ana- 
phase chromosome movement. DNA topoisomerase II 

inhibitors prevent chromosome segregation at ana- 
phase, demonstrating that the chromatids are catenated 
at metaphase and that decatenation occurs at the start 
of anaphase. Topoisomerase II activity towards exog- 
enous substrates does not increase at the metaphase to 
anaphase transition, showing that chromosome separa- 
tion at anaphase is not triggered by a bulk activation 
of topoisomerase II. 

CURATE chromosome segregation requires that the 
linkage between sister chromatids is regulated dur- 
ing the cell cycle. Sister chromatids must remain as- 

sociated with each other from the time they are replicated 
until they have been correctly aligned on the metaphase plate, 
with the sister kinetochores attached to opposite poles of the 
mitotic spindle. At the onset of anaphase, the linkage between 
sisters must be promptly destroyed, allowing them to segre- 
gate to opposite poles of the spindle. 

At metaphase, a polewards force is exerted on each 
kinetochore (McNeill and Berns, 1981; Rieder and Alex- 
ander, 1990). Because the sister chromatids are linked to 
each other, and attached to opposite poles of the spindle, 
these forces will tend to collapse the spindle and must be op- 
posed by forces that tend to move the spindle poles apart 
(Cande and McDonald, 1985; Hiramoto and Nakano, 1988; 
Hyman and White, 1988). At anaphase, dissolution of the 
linkage between the sister chromatids destroys the opposi- 
tion between the polewards force on the kinetochores and the 
forces tending to move the spindle poles apart. As a result, 
the forces in the spindle could move the chromosomes to- 
wards the poles (anaphase A) and the spindle poles apart 
from each other (anaphase B). In principle, breaking the 
linkage between sisters could initiate all the events of 
anaphase, without any change in the directions or magni- 
tudes of the forces acting on components of the spindle. In- 
deed, measurements of the forces acting on kinetochores 
suggest that they do not change between metaphase and 
anaphase (Alexander and Rieder, 1991; Nicklas, 1988). 

Recent advances have greatly increased our understanding 
of the regulation of the cell cycle. The entry into mitosis and 
the initiation of spindle assembly requires the activation of 

maturation promoting factor (MPF) ~ (for review see Mur- 
ray and Kirschner, 1989b; Nurse, 1990). Active MPF is a 
complex between a catalytic subunit, p34 ~2, and cyclin B. 
The onset of anaphase coincides with the destruction of cy- 
clin B and with the consequent inactivation of MPF (Hunt 
and Ruderman, 1992; Lehner and O'Farrell, 1989; Murray 
et al., 1989). Unfertilized eggs of the frog Xenopus laevis are 
arrested in metaphase of meiosis II by cytostatic factor 
(CSF) (Masui and Markert, 1971) that is intimately related 
to the product of the c-mos proto-oncogene (Sagata et al., 
1989), and stabilizes MPF activity by preventing cyclin 
degradation (Murray et al., 1989). Fertilization of the egg 
induces an increase in the intracellular concentration of cal- 
cium that leads to the destruction of cyclin, the inactivation 
of MPF and CSF (Lorca et al., 1991; Meyerhof and Masui, 
1977; Watanabe et al., 1991), and the initiation of chromo- 
some separation. CSF-arrested extracts are prepared from 
unfertilized frog eggs, and remain stably arrested with high 
levels of MPE These extracts can be induced to inactivate 
MPF and progress to interphase by the addition of calcium 
(Lohka and Mailer, 1985; Murray et al., 1989). 

In contrast to our understanding of the activities that regu- 
late progress through the cell cycle, we do not know what 
holds sister chromatids together, nor how this linkage is bro- 
ken at anaphase. In mammalian cells, a number of proteins 
(inner centromere proteins [INCENP]) have been character- 
ized that are located between sister chromatids during 
metaphase and that remain in the center of the spindle as 
chromosomes move towards the poles at anaphase (Cooke et 

1. Abbreviations used in this paper: CSF, cytostatic factor; kDNA, kineto- 
plast DNA; MPF, maturation promoting factor. 
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al., 1987). Sister chromatids may also be linked to each 
other by interlinking (catenation) of their DNA duplexes 
(Sundin and Varshavsky, 1980). Catenation arises from in- 
complete unwinding of the parental DNA duplex during 
DNA replication. Experiments in yeast and mammalian cells 
have established that the activity of type II DNA topoisomer- 
ases is required during mitosis to allow sister separation 
(DiNardo et al., 1984; Downes et al., 1991; Holm et al., 
1985, 1989; Uemura et al., 1987), suggesting that sister 
chromatids are still catenated in mitosis. However, it is not 
known whether DNA catenation is sufficient or even neces- 
sary to maintain the linkage between sister chromatids, nor 
whether any of the identified INCENP proteins play a role 
in holding sisters together. 

To investigate what holds sister chromatids together, we 
have developed a method for studying sister chromatid sepa- 
ration at anaphase in vitro. Sperm nuclei were allowed to un- 
dergo DNA replication in interphase frog egg extracts and 
induced to form metaphase spindles by the addition of CSF- 
arrested extract. Calcium was added to these extracts to in- 
activate MPF and initiate anaphase. We show here that chro- 
mosome separation follows the inactivation of MPF, and that 
the chromosomes separating from each other in these spin- 
dies are sister chromatids. The activity of type II topoisom- 
erases is required at the metaphase-anaphase transition for 
successful sister chromatid separation, although topoisom- 
erase II activity actually decreases during the progression 
from metaphase to anaphase. 

Materials and Methods 

Materials 
Sperm nuclei were prepared as described (Murray, 1991) and stored at a 
concentration of 104/#! in small aliquots at -80~ Before use, they were 
diluted in sperm dilution buffer (100 mM KCI, 1 mM MgC12, 150 mM su- 
crose) to a concentration of '~103/#1. Bovine brain tubulin was labeled, to 
one fluorochrome per tubulin dimer, with tetramethylrhodamine by the high 
pH labeling method (Hyman et al., 1990) and stored in small aliquots in 
injection buffer (50 mM K-glutamate, 0.5 mM ghtamic acid, 0.5 mM 
MgCl2). Aphidicolin (Sigma Chemical Company, St. Louis, MO) was dis- 
solved at 20 mg/ml in DMSO. The topoisomerase II inhibitors VP-16 (de- 
methylepipodophyllotoxin ethylidene-/~-D-glucoside) and VM-26 (de- 
methylepipodopbyllotoxin thenylidene-/3-D-glucoside) were obtained from 
Bristol-Myers Squibb (Wallingford, CT) and dissolved at 10 mM in DMSO; 
doxorubicin (Ben Venue Laboratories, Bedford, OH) was dissolved at 1 
mg/ml in 0.45% NaCl; novobiocin (Sigma Chemical Company) was dis- 
solved at 100 mg/ml in water. Inhibitors were stored in small aliquots at 
-200C. 

Preparation of Extracts 
CSF-arrested extracts were made from freshly squeezed frog eggs as de- 
scribed previously (Murray, 1991; Murray et ai., 1989) except that the 
crushing spin was carried out for 15 rain at 10,000 g at 15~ and no clarify- 
ing spin was performed. 

In Vitro Anaphase 
CSF-arrested extracts were freshly prepared and rhodamine-labeled tubulin 
was added to 120 /zg/ml. Extract was dispensed into microfuge tubes, 
diluted sperm nuclei were added to a concentration of 100/#1, and extract 
and sperm were incubated at room temperature ('~200C) for 10 rain. To 
drive the extracts into interphase and to start DNA replication, 4 mM 
CaC12 in sperm dilution buffer was added to each reaction to a final con- 
centration of 0.4 mM. The reactions were incubated at room temperature 
for 80 rain before adding 0.5 vol of CSF-arrested extract (which contained 
rhodamine-labeled tubulin, but no sperm nuclei) to induce nuclear envelope 

breakdown and spindle assembly. We believe that the added CSF and MPF 
are stable because the calcium that was added at the start of the reaction 
has been sequestered. Metaphase spindles were allowed to assemble for 80 
or 90 rain. To induce anaphase, a fraction of the metaphase extract was 
placed in new microfuge tubes and calcium was added to 0.4 mM. 

The morphology of the nuclei was determined by taking samples at vari- 
ous timepoints and fixing with formaldehyde in the presence of Hoechst 
33342 (Murray and Kirschner, 1989a). Samples were examined by fluores- 
cence and by phase contrast microscopy. Light micrographs were taken on 
a Nikon Microphot-FXA (Nikon Inc., Melville, NY) with 40x or 63• ob- 
jectives, using TRI-X Pan or Technical Pan film (Eastman Kodak Co., 
Rochester, NY). 

MPF Activity 
To assay MPF activity, 1-#1 aliquots of extract were frozen in liquid nitrogen 
at the desired time points and stored at -80~ until assayed. MPF activity 
was assayed as H1 kinase activity as described by Murray (1991). H1 kinase 
activity was determined by scintillation counting slices of dried gels, and 
is expressed as arbitrary units. 

DNA Replication 
To monitor DNA synthesis, 5-#1 samples of extract were removed from the 
reaction at the desired time points, added to 1 #i of 100 mM KC1, 1 mM 
MgC12 that contained 0.25 #Ci of c~-32p-dCTP, and incubated for 10 rain 
at room temperature. Reactions were stopped by the addition of 300 mM 
sucrose, 10 mM EDTA, pH 8.0, 50 ~g/ml RNase A and incubated at room 
temperature for 10 rain. 5 #1 of freshly prepared 3 x TAE loading buffer 
(120 mM Tris-Acetate, pH 8.0, 33 mM EDTA, 30% wt/vol glycerol, 1% 
SDS) was added to each reaction, the reactions were heated to 65~ for 10 
min, and then run on a 0.7% agarose-TAE gel until the dye front bad run 
'~5 cm into the gel. Under these conditions, the sperm DNA remained in 
the wells of the gel. Gels were washed twice, for I h each, in l x  TAE, dried 
at 60~ onto paper, and autoradiographed. To inhibit DNA synthesis, aphi- 
dicolin (a specific inhibitor of DNA polymerase-c0 0kngami et al., 1978) 
was added to a final concentration of 20 #g/mi, yielding a final DMSO con- 
centration of 0.1%. Aphidicolin inhibited DNA synthesis by >95 % (see Fig. 
2 B). 

Topoisomerase Inhibition 
To test their effects on chromosome segregation, topoisomerase inhibitors 
were used in fresh extracts and were added after the extracts had reached 
metaphase. The final concentration of DMSO in the extract never exceeded 
0.3 %; this concentration has no effect on chromosome or spindle morphol- 
ogy (data not shown). The same lot of DMSO was used both to dissolve 
the topoisomerase inhibitors and for controls for the effect of added DMSG. 

The ability of inhibitors to interfere with action of type II DNA 
topoisomerase was monitored by measuring the rate at which kinetoplast 
DNA was decatenated in the presence and absence of inhibitors. These as- 
says were carried out in CSF-arrested extracts that had been frozen at 
-80~ after the addition of sucrose to 200 mM. Topoisomerase activity 
is identical in fresh and frozen extracts (data not shown). Extracts were 
diluted 50.fold into dilution buffer (100 mM KC1, 2 mM MgC12, 10 mM 
Hepes, pH 7.7, 1 mM ATP, 8 mM creatine phosphate, 1 mM DTT, 200 mM 
sucrose) containing 5 ng/ml kinetoplast DNA (kDNA) from Crithidiafasci- 
culata, (kindly provided by V. Klein and P. Englund, Johns Hopkins Uni- 
versity School of Medicine, Baltimore, MD). Reactions were incubated at 
room temperature and at each time point, 25-#1 samples were added to 0.25 
mi of digestion buffer (50 mM Tris-HC1, pH 8.0, 20 mM EDTA, pH 8.0, 
0.5% (wt/vol) SDS, 0.5 m~/ml proteinase K) and incubated at 37~ for 1 h 
to digest the proteinaceous component of any DNA-topoisomerase com- 
plexes. After digestion the samples were successively extracted with phenol 
and chloroform, ethanol precipitated, redissolved, and run on 0.7 % agarose- 
TAE gels in the absence of ethidium bromide. Gels were stained with 
ethidium bromide and photographed. For some inhibitors a simpler assay, 
using undiluted extracts and in which the samples were not proteinase K 
digested before phenol extraction, was used. 

To determine the level of topoisomerase II activity during metaphase and 
anaphase, we measured the rate of kDNA decatenation in fresh extracts that 
contained sperm nuclei and rhodamine-labeled tubulin. 80-#1 samples of 
an extract were removed at metaphase or during anaphase, and added to 80 
#l of ice-cold decatenation buffer (100 mM KCI, 1 mM MgC12, 10 mM 
K-Hepes, pH 7.7, 50 mM sucrose, 1 mM DTT, and 1.25 mM ATP) and 40 
#l of ice-cold kDNA diluted to 24 #g/ml in decatenation buffer. Decatena- 

The Journal of Cell Biology, Volume 117, 1992 922 



tion reactions were performed on ice to prevent cell cycle progression dur- 
ing the course of the assay, and 25-t~1 samples were withdrawn at various 
times and processed for etectrophoresis as described above, with the excep- 
tion that they were not digested with proteinase K. H1 kinase activity was 
assayed at the beginning and end of the reaction to confirm that no cell cycle 
progression had occurred during the decatenation assay. 

Electron Microscopy 
100 #1 of extract containing metaphase or anaphase spindles was diluted 
with 3.8 ml of BRB 80 (80 mM KPipes, pH 6.8, 1 mM MgC12, 6 mM 
EGTA) containing 0.3% Triton X-100 and 30% glycerol, and allowed to in- 
cubate at room temperature for 2.5 min. 1.3 ml of EM-grade 8% 
glutaraldehyde (Ted Pella Inc., Redding, CA) was then added, the reactions 
mixed gently, and then layered onto a 3-ml cushion of BRB 80, containing 
40% glycerol, in Corex tubes that had been modified to hold a 12-ram- 
round acid-washed coverslip at the bottom (Evans et al., 1985). The tubes 
were spun at 13,000 g at 20~ for I h in a swinging bucket rotor. The spin- 
dles that had affixed to the coverslips were washed in 0.05 M Millonig's 
phosphate buffer (Hayat, 1970) in a humid chamber at 4~ overnight. The 
spindles and coverslips were then dehydrated and flat embedded in 
Epon/Araldite (Hayat, 1970). Sections 0.15-0.2 gm thick were cut on an 
ultramicrotome (Ultracut-E; Reichert Jung, Vienna) using a glass knife and 
placed on formvar-coated copper mesh grids. Sections were stained with 
5 % uranyl acetate at 60~ for 1 h and then destained with 0.2 M EDTA 
at room temperature for 0-15 min. Sections were then poststained for 10 
min at room temperature with 0.6% lead citrate and examined at 100 kV 
on an electron microscope (model 100C, JEOL USA, Inc., Peabody, MA). 

Results 

We used frog egg extracts to prepare metaphase spindles that 
could be induced to enter anaphase (Fig. 1). Sperm nuclei 
were added to CSF-arrested extracts that were then induced, 
by the addition of calcium, to enter interphase and replicate 
their DNA. To induce entry into mitosis and the formation 
of metaphase spindles, CSF-arrested extract was added to 
the reaction 80 min after the initial calcium addition. To in- 
activate MPF and to induce the metaphase spindles to un- 
dergo anaphase, a second calcium addition was made 170 
min after the initial calcium treatment. Samples were re- 
moved throughout the reaction. Nuclear morphology, and 
the distribution of DNA and microtubules were monitored 
by phase contrast and fluorescence microscopy. DNA repli- 
cation was monitored by the incorporation of labeled nucleo- 
tides and MPF activity was assayed as histone HI kinase 
activity. 

The time course of DNA replication, H1 kinase activity 
and spindle morphology in a typical experiment are shown 
in Fig. 2.35 min after the first calcium addition, H1 kinase 
activity was low, and the nuclei had decondensed and ac- 
quired nuclear envelopes. DNA synthesis typically began 
30-40 min after calcium addition and continued for 20--40 
min. The DNA synthesis inhibitor, aphidicolin (Ikegami, 
1978), prevented DNA replication (Fig. 2 B), but did not 
affect progression of the cell cycle as monitored by the activ- 
ity of H1 kinase (data not shown). No organized microtubule 

arrays were seen associated with interphase nuclei. This may 
simply reflect the instability of interphase microtubule arrays 
under our fixation conditions. In all the experiments shown 
in this paper, mitosis was induced by adding CSF-arrested 
extract 80 min after the initial calcium addition. After this 
addition, no further DNA replication was detected (data not 
shown). Spindles were allowed to assemble for 90 min after 
the addition of CSF arrested extract, and by the end of this 
period, the extract contained numerous well organized bipo- 
lar spindles with the chromosomes aligned on a metaphase 
plate, equidistant from the two spindle poles (Fig. 2 C). De- 
pending on the experiment, between 40 and 75 % of the 
nuclei gave rise to bipolar spindles. Once assembled, these 
spindles were stable for several hours and MPF activity re- 
mained high (Fig. 2 A, and data not shown). 

Anaphase was induced by the addition of calcium to the 
spindle containing extracts, 170 min after the initial calcium 
addition. Within 10 min of the second calcium addition, 
MPF was inactivated and anaphase A occurred: the chromo- 
somes separated and moved towards the spindle poles (Fig. 
2 C). We have not reproducibly observed anaphase B in 
these extracts. During anaphase the density of astral micro- 
tubules increased, while that of microtubules in the center 
of the spindle decreased. Telophase typically started between 
190 and 200 min and was marked by the disappearance of 
spindle microtubules and by the decondensation of individ- 
ual chromosomes and nuclear envelope formation around 
them to form karyomeres. DNA replication was detected 
again starting between 200 and 210 min (data not shown), 
and the fusion of karyomeres to form interphase nuclei was 
completed between 210 and 230 min. In all experiments, the 
fraction of bipolar spindles that underwent anaphase and pro- 
gressed to form daughter interphase nuclei after the second 
calcium addition exceeded 90 %. Thus, we have shown that 
the formation of metaphase spindles and the induction of 
anaphase can be reproducibly obtained in vitro. 

Chromosomes Separate Soon after Histone HI Kinase 
Levels Fall 

To determine when MPF levels fall relative to the onset of 
anaphase, we compared spindle morphology and H1 kinase 
activity every 2 min after the second addition of calcium. We 
could distinguish seven morphological stages during the 
progression to interphase: (/) metaphase; (2) metaphase- 
anaphase transition, in which part of the chromosomes had 
moved towards the poles but no separation of DNA staining 
could be seen in the center of the spindle; (3) early anaphase, 
in which a separation between the groups of segregating 
chromosomes could be seen at the former site of the recta- 
phase plate; (4) mid-anaphase, in which the chromosomes 
were approximately equidistant between the center of the 

Add Ca 
(t=O rain) 

Add Ca Add OSF.arrested 
extract 0=80 rain) 

(Interphase nucleus) 
Sperm nucleus in CSF- DNA replication 

arrested extract Metaphase spindle Anaphase spindle Daughter nuclei 

Figure 1. A schematic representation of the protocol used to produce anaphase in frog egg extracts. Times are relative to the time of first 
calcium addition. 
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Figure 2. MPF activity and 
nuclear morphology during 
the course of a typical experi- 
ment. (A) MPF activity (mea- 
sured as histone H1 kinase ac- 
tivity) graphed as a function 
of time (o). If calcium addi- 
tion at 170 rain is omitted, 
MPF activity remains high 
(m). (B) Timing of DNA repli- 
cation during interphase and 
the inhibition of DNA replica- 
tion by aphidicolin. Aphidico- 
lin was added to a concentration 
of 20/~g/ml at the beginning of 
the experiment. Times are in 
minutes after the first addition 
of calcium. (C) Nuclear mor- 
phology at various time points; 
Note the change of magnifi- 
cation in 210 rain time point. 
Data in A and C are from the 
same experiment, while that 
in B is from a different experi- 
ment. The time at which DNA 
replication begins and ends 
varies by '~15 rain between 
experiments. Bars, 10 ~m. 
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Figure 3. A detailed time course of MPF inactivation and nuclear morphology after the second calcium addition. Data from one of three 
experiments that demonstrated that MPF activity falls 2-4 rain before anaphase chromosome movement begins. (A) MPF activity (measured 
as histone H1 kinase activity) graphed as a function of time after second calcium addition. (B) A quantitation of the number of spindles 
in each phase of the cell cycle at each time point. The categories of early, mid, and late anaphase, described in the text, have been expressed 
as a single category, anaphase. (C) Nuclear morphology in stages from metaphase to late anaphase. Bar, 10 ~m. 
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Figure 4. Metaphase and anaphase chro- 
mosomes in frog egg extracts. (A) Chro- 
mosomes at the metaphase plate of a large 
spindle; the spindle is not shown but is 
oriented horizontally. The arrows indi- 
cate chromosomes that are composed of 
paired chromatids of equal length. (B) A 
spindle (visualized with rhodamine tubu- 
lin), and (C) its chromosomes at the 
metaphase-anaphase transition. This spin- 
dle was from a sample taken 8 min after 
the second calcium addition in the experi- 
ment described in Fig. 3. (D) Enlarge- 
ment of the boxed region of the spindle in 
C, showing a pair of chromatids separat- 
ing from each other. Bars: (A and D) 
5/~m; (B and C) 10/zm. 

spindle and the poles; (5) late anaphase, in which the chro- 
mosomes were still condensed but located at or near the 
spindle poles; (6) telophase, in which the clustered chromo- 
somes had begun to form karyomeres that fused with each 
other; and (7) interphase, in which fusion had been com- 
pleted to yield spherical interphase nuclei bounded by mem- 
branes (Figs. 2 C and 3 C). In Fig. 3 B early, mid-, and late 
anaphase spindles are presented as a single class. In this ex- 
periment, HI kinase activity begins to decline 4 min after 
the second calcium addition, and has reached interphase lev- 
els by 8 min. The metaphase-anaphase transition was first 
observed at 8 min, and clear chromosome separation (early 
anaphase) was first observed at 10 min, demonstrating that 
H1 kinase activity begins to fall before the morphological 
transition from metaphase to anaphase. Nuclei proceeded 
through the pathway from metaphase to interphase synchro- 
nously: at any time point, the majority of nuclei were in the 
same phase of mitosis (Fig. 3 B). 

Sister Chromaticls Separate during Anaphase in vitro 

Having demonstrated that we could induce anaphase chro- 
mosome movement in vitro, we next asked whether the chro- 
mosomes that were segregating from each other were indeed 
sisters. The behavior of spindles as observed by light micros- 
copy is entirely consistent with sister chromatid segregation. 
In metaphase spindles, we often observed chromosomes 

composed of two paired chromatids of equal length (Fig. 4 
A) (see also Sawin and Mitchison, 1991). After the second 
addition of calcium, equal amounts of DNA moved to each 
pole, as judged by the intensity of Hoechst staining (e.g., 
Fig. 2 C and 3 C). The individual chromosome arms that 
could be seen at this point were about the width of one mem- 
ber of the paired chromatids that we had observed at 
metaphase. In extracts to which no calcium was added, the 
width of the chromosomes did not decrease, indicating that 
this decrease was not the result of progressive chromosome 
condensation with increasing length of time in mitosis. In ad- 
dition, some chromosomes showed mirror symmetry about 
the metaphase plate as they were being pulled away (Fig. 4 
B-D and Fig. 2 C, 180 min), suggesting that they were sister 
chromatids in the act of separating. 

To extend these observations, we examined sections of 
metaphase and anaphase spindles by EM. We could see 
paired chromatids of equal length apparently attached to the 
metaphase spindle (Fig. 5 A). At the interface between the 
microtubules and chromosomes, we did not observe the tri- 
laminar structure characteristic of many kinetochores. Sa- 
win and Mitchison (1991) were also unable to find trilaminar 
kinetochores by EM in metaphase spindles assembled in 
Xenopus egg extracts. In anaphase spindles, we observed in- 
dividual chromosomes fixed in the process of moving toward 
the poles and each of these chromosomes was one-half the 
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Figure 5, Electron micrographs of metaphase and anaphase spindles. (A) A metaphase spindle. The dark bar running across the spindle 
is a fold in the section, (a) An enlargement of the area inside the box in A showing a pair of chromatids at the metaphase plate. (B) A 
late anaphase spindle. (b) An enlargement of the area inside the box in B showing chromosomes segregating to the pole at anaphase. Note 
that the width of each chromosome in b is one-half that of the chromosome in a. Bars: (,4 and B) 2.9/~m; (a and b) 0.4 #m. 
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Figure 6. DNA replication and 
nuclear morphology in the pres- 
ence and absence of aphidicolin. 
(A) DNA replication in a reaction 
without aphidicolin. The times 
listed above each well correspond 
to the number of minutes after the 
first calcium addition. The arrow 
indicates the time at which aphi- 
dicolin was added to a parallel re- 
action, whose spindles are shown 
in C. (B) Nuclear morphology in 
a control reaction and (C) in a re- 
action to which aphidicolin had 
been added to 20 #g/ml 60 min 
after the first calcium addition (as 
indicated in A). Metaphase spin- 
dles were fixed immediately be- 
fore calcium addition. Anaphase 
spindles were fixed 22 min after 
the second calcium addition and 
interphase samples were taken 52 
min after the second calcium ad- 
dition. Bars, 10 #m. 

width of a metaphase chromosome pair. In some sections, 
the chromosomes had a V-shaped morphology, as though 
they were being pulled to the spindle poles by their kineto- 
chores (Fig. 5 B). The simplest interpretation of these obser- 
vations is that the paired chromosomes seen at metaphase are 
indeed sister chromatids and that the sisters separate from 
each other at anaphase. 

To confirm that the segregating entities were sister chro- 
matids, we devised a treatment that would interfere with 
chromosome separation only if the chromosomes were sis- 
ters. We added aphidicolin, an inhibitor of DNA replication, 
late during DNA replication to create pairs of sister cbro- 

matids that would be mostly replicated, but held together by 
some unreplicated regions. In these regions sister chro- 
matids are held together by base pairing between DNA 
strands, as well as by the normal linkage between sisters, and 
cannot be easily separated from each other. Therefore, the 
separation of sister chromatids will be prevented by inhibit- 
ing the completion of chromosome replication, while that of 
homologs, or randomly associated chromosomes will not. 

We found that extracts to which aphidicolin had been 
added late in S phase (60 rain after the initial calcium addi- 
tion) (Fig. 6 A) formed morphologically normal metaphase 
spindles. However, when these spindles were induced to en- 
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A B Aphidicolin C Aphidicolin No Aphidicolin 
" -  - -  late in S phase in metaphase 

3o 3o 

"6 "5 
10 10 

0 0 
No No No 0 1-2 3-8 >8 Seg. 0 1-2 3-8 >8 Seg. 0 1-2 3-8 >8 Ssg. 

Number of chromosome bridges per spindle 

Figure 7. The distribution of chromosome bridges 
on spindles in the absence and presence of aphidi- 
colin. The number of cross-bridges per spindle 
was scored for spindles fixed at mid-anaphase and 
the percent of the total number of spindles in each 
category was determined. The spindles in the "no 
segregation" (No Seg.) category appeared not 
to segregate their chromosomes. Chromosome 
bridges stretched all over these spindles and the 
bulk of chromatin was in the middle of the spindle, 
not near the poles. The data presented here are 
compiled from four separate experiments. (A) No 
aphidicolin added; 136 spindles scored. (B) Aphi- 

dicolin added late in S phase, as determined by DNA replication assays; 70 spindles scored. (C) Aphidicolin added at the time of second 
calcium addition, after DNA replication had been completed; 48 spindles scored. 

ter anaphase, many chromosome bridges, representing in- 
completely separated chromosomes, were seen (Fig. 6 C), 
compared to spindles in which DNA synthesis had not been 
inhibited (Fig. 6 B). To quantify this effect, we compared the 
number of bridges present in anaphase in aphidicolin-treated 
extracts with the number in untreated extracts. A substantial 
increase in both the number of bridges per spindle and in the 
number of affected spindles was seen after aphidicolin treat- 
ment (Fig. 7, A and B). However, the timing of MPF inacti- 
vation, chromosome decondensation, and nuclear envelope 
formation was identical in aphidicolin-treated and untreated 
extracts (Fig. 6 and data not shown). 

As a control for the effects of the drug, we added aphidico- 
lin at the time of second calcium hddition, long after DNA 
replication had been completed. This did not interfere with 
anaphase, demonstrating that aphidicolin blocks chromo- 
some separation by interfering with DNA replication rather 
than by inhibiting activities involved in destroying the link- 
age between fully replicated chromosomes (Fig. 7 C). These 
data strongly suggest that the chromosomes that segregate at 
anaphase in our extracts are indeed sisters. 

Topoisomerase H Activity Is Required for Sister 
Chromatid Separation 
To examine the role of DNA topoisomerase II at anaphase, 
we tested the ability of topoisomerase inhibitors to block 
chromosome segregation. Metaphase spindles were formed, 
and topoisomerase II inhibitors were added immediately be- 
fore the calcium addition that induces anaphase. The addi- 
tion of 10 #M VP-16, a potent inhibitor of topoisomerasr II 
(Chen et al., 1984), had no effect on the morphology of 
metaphase spindles but grossly disrupted chromosome 
segregation when anaphase was induced (Fig. 8). In VP-16 
treated extracts, although some chromosome movement oc- 
curred, no clear chromosome segregation had occurred by 
the time that control spindles had reached mid-anaphase 
(Fig. 8, A and B). The addition of DMSO from the same lot 
that had been used to dissolve the VP-16 had no effect on 
chromosome segregation (data not shown). The amount of 
chromosome movement was further reduced at higher con- 
centrations of VP-16 (30 #M). By the time that control spin- 
dles had reached late anaphase, chromosomes had moved 
away from the metaphase plate in VP-16-treated extracts but 
were still associated by multiple chromosome bridges (Fig. 
8 B), suggesting that the linkage between sister chromatids 
could not be completely dissolved in these extracts. Delays 

in chromosome movement and the subsequent formation of 
chromosome bridges were observed even when metaphase 
spindles were incubated for 45 rain before VP-16 addition 
(data not shown). VP-16-treated extracts still carried out 
other aspects of the progression to interphase: MPF inactiva- 
tion, chromosome decondensation, and interphase nuclei 
formation were initiated at the same time in untreated and 
in VP-16-treated extracts (Fig. 8). The addition of three 
other compounds that have been reported to inhibit 
topoisomerase II, VM-26 (10 #M or 30 #M) (Chert, 1984), 
doxorubicin (1 /zg/ml) (Tewey et al., 1984), or novobiocin 
(250 #g/ml) (Hsieh and Brutlag, 1980; Osheroffet al., 1983) 
had essentially the same effect on chromosome movement as 
VP-16 (data not shown). The aberrations in chromosome 
morphology seen with topoisomerase inhibitors are more se- 
vere than those seen with late inhibition of DNA replication 
(Fig. 6). We believe this reflects the fact that most DNA was 
allowed to replicate in the experiments with inhibitors of 
DNA replication, while the topoisomerase inhibitors were 
added before the beginning of chromosome separation. 
Therefore, the number of points at which sister chromatids 
remain attached to each other may be smaller in the experi- 
ments where DNA replication was inhibited than it is in 
those where topoisomerase inhibitors were added. 

To demonstrate that VP-16 was acting to inhibit type II 
topoisomerase in our experiments, we assayed topoisomer- 
ase activity in the presence and absence of the drug. To mea- 
sure topoisomerase II activity, we examined the ability of our 
extracts to release small DNA circles from kinetoplast DNA 
(kDNA) (Marini et al., 1980), the highly catenated networks 
of DNA isolated from the kinetoplasts of bemoflagellate pro- 
tozoans. Topoisomerase activity was inhibited by the follow- 
ing compounds: VP-16 (10 #M, Fig. 9), VM-26 (10 #M, data 
not shown), doxorubicin (1 #g/ml, data not shown), novobio- 
cin (250 #g/ml) (data not shown). The observation that these 
compounds block topoisomerase II activity at the same con- 
centration at which they prevent chromosome segregation, 
strongly suggests that the topoisomerase II-mediated decate- 
nation of sister chromatids is required for their separation. 
In vivo metaphase lasts less than 10 min during the early em- 
bryonic cell cycle. The ability of topoisomerase II inhibitors 
to block chromosome segregation, even when added after 
spindles have spent as much as 45 rain in metaphase, demon- 
strates that sister chromatid decatenation cannot be com- 
pleted during metaphase, but requires the events that induce 
anaphase. 
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Figure 9. VP-16 inhibits topoisomerase II activity in frog egg ex- 
tracts. Decatenation assays were carried out using frozen CSF- 
arrested extracts with kinetoplast DNA as a substrate, as described 
in Materials and Methods. Samples were taken at the indicated 
times (in min) and run on 0.7 % agarose gels. The position at which 
the released mini-circles run is indicated by an arrow, while the 
catenated DNA networks are retained in the wells of the gel. Reac- 
tions contained either 1% (vol/vol) DMSO or 10 #M VP-16 (final 
DMSO concentration 1% (vol/vol). The markers (M) are a HindlH 
digest of lambda DNA. 

Topoisomerase H Activity Does Not Increase at the 
Metaphase-Anaphase Transition 

Does topoisomerase II activity increase at the metaphase to 
anaphase transition to cause sister chromatid separation? We 
assayed topoisomerase II activity by measuring the rate of 
kDNA decatenation. Topoisomerase II activity and spindle 
morphology were determined at metaphase and at three 
different times after the induction of anaphase: just before 
the earliest visible metaphase-anaphase transition; in mid- 
anaphase, soon after sister chromosomes had separated; and 
in late anaphase, well after sister chromosomes had sepa- 
rated. We found that the rate of kDNA decatenation was 
highest in samples taken from metaphase, slightly lower in 
the first two time points after calcium addition, and lowest 
in late anaphase (Fig. 10). Thus, topoisomerase II activity 
appears to decrease as extracts leave mitosis, although we 
cannot exclude the possibility that we have failed to detect 
a transient increase in topoisomerase activity during the 
metaphase-anaphase transition. 

Discuss ion  

We have assembled metaphase spindles in frog egg extracts 
and shown that these spindles can be induced to undergo 
anaphase. Sister chromatid separation is prevented by in- 
complete DNA replication, or the presence of topoisomer- 
ase II inhibitors during the induction of anaphase. 

Anaphase In Vitro Resembles Anaphase In Vivo 

To what extent does the anaphase we observe in extracts 
resemble anaphase in intact cells? We have used CSF, a natu- 
ral inhibitor of the exit from mitosis, to arrest extracts with 
high levels of MPF and allow sufficient time for spindle as- 
sembly. Sawin and Mitchison (1991) have shown, using con- 
ditions similar to ours, that each bipolar metaphase spindle 
forms from a single nucleus. The length of the spindles as- 
sembled in the frog egg extracts (•30 t~m) is similar to that 
seen in intact frog eggs CKarsenti et al., 1984). There are no 
direct measurements of the rate of anaphase chromosome 
movement in frog embryos, but the observation that spindle 
size and the duration of anaphase are not grossly different be- 
tween embryos and extracts (A. W. Murray, unpublished ob- 
servations) argues that the rate of anaphase chromosome 
movement is similar in these two systems. 

Because CSF-arrested extracts are made from cells ar- 
rested in metaphase of meiosis II, the spindles that we have 
assembled by adding CSF-arrested extracts to our reactions 
might be regarded as meiotic rather than mitotic spindles. 
Whether these spindles are truly in mitosis or meiosis II is 
irrelevant to studies on the mechanism of sister chromatid 
segregation, because sister chromatids separate from each 
other in both mitotic and meiosis II anaphases. When in- 
duced to enter anaphase, spindles formed in extracts undergo 
morphological changes similar to those seen in cells: as 
chromosomes move to the poles, astral microtubules become 
more prominent and microtubule density at the center of the 
spindle decreases. 

If frog egg extracts are to be used to study the nature of 
sister chromatid linkage and the mechanism of sister chro- 
matid segregation, it is crucial to demonstrate that the 
segregating chromosomes are indeed sisters. A number of 
observations demonstrate that sister chromatid segregation 
occurs during the in vitro anaphase. When examined by light 
or by electron microscopy, spindles assembled in vitro con- 
tain chromatid pairs aligned at the metaphase plate; the two 
members of each pair have identical lengths and morpholo- 
gies. In early anaphase these pairs are observed to split and 
their two members are pulled towards opposite poles of the 
spindle. When the DNA polymerase inhibitor aphidicolin is 
added to extracts late in DNA replication, pairs of chro- 
matids held together by unreplicated regions are formed. 
When spindles formed under these conditions are induced to 
undergo anaphase, chromatin bridges are formed that stretch 
between the segregating chromosomes, demonstrating that 
the chromosomes attempting to segregate from each other 
are indeed sisters. 

The following considerations confirm that the chromosomes 
whose segregation we observe must be sisters. One alterna- 
tive possibility is that the paired chromosomes that separate 
are not sisters but nonhomologous chromosomes that are be- 
ing paired and segregated by a distributive disjunction mech- 
anism. Such a system operates in meiosis I to segregate chro- 
mosomes that have failed to undergo mitotic recombination 
(Grell, 1962; Dawson et al., 1986). Recent observations on 

Figure 8. The effect of inhibiting topoisomerase II on nuclear morphology at anaphase. (A) Control anaphase. (B) Anaphase in the presence 
of the topoisomerase II inhibitor VP-16. VP-16 was added to the extract to 10 #M, just before the second calcium addition. Bars, 10/~m. 
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Figure 10. Topoisomerase II 
activity falls after the meta- 
phase to anaphase transition. 
Topoisomerase II activity was 
assayed in fresh extract at four 
different time points: (a) meta- 
phase; (b) after the induction 
of anaphase before chromo- 
some movement had begun (8 
rain after second calcium ad- 
dition); (c) in mid-anaphase 
(13 rain after second calcium 
addition); and (d) in late ana- 
phase (18 rain after second 
calcium addition). A sample 
of extract from each time 
point was mixed with kDNA 
to begin decatenafion reac- 
tion. Reactions were carried 
out on ice to halt progression 
through the cell cycle and to 
slow the rate of decatenation. 
Topoisomerase activity was 
monitored as the extent of de- 
catcnation that had occurred 
after 1, 2, 5, and 10 min, The 
markers are a HindIN digest 
oflambda DNA. The arrow in- 
dicates the position in the gel 
to which decatenated mini- 
circles migrate. 

meiotic spindles in Drosophila by Theurkauf and Hawley 
(1992) show that the chromosomes segregated by the dis- 
tributive pairing mechanism, lie not on the metaphase plate 
but in between the plate and the spindle poles. We do not ob- 
serve chromosomes in this position. In addition, inhibition 
of DNA replication, or type II topoisomerase activity should 
have no effect on the segregation of nonhomologous chromo- 
somes. The possibility that the segregating chromosomes are 
homologous chromosomes that have become paired with and 
linked to each other by meiotic recombination can also be 
eliminated. Using conditions similar to ours, Sawin and 
Mitchison (1991) demonstrated that each spindle is formed 
from a single sperm nucleus. Since sperm nuclei are haploid 
no chromosome will have a homolog with which it could 
pair. 

In summary, by a variety of criteria, the anaphase that we 
have observed in vitro resembles anaphase in vivo, strongly 
suggesting that anaphase in vitro proceeds by the same mech- 
anism as anaphase in vivo. We believe that the extracts de- 
scribed here will be valuable for studying the mechanisms 
of sister chromatid separation and anaphase chromosome 
movement. 

The Role of DNA Catenation in Sister 
Chroraatid Linkage 
Are sister chromatids at metaphase linked by DNA catena- 
tion? Incomplete unwinding of DNA duplexes during repli- 
cation produces replicated DNA molecules that are linked by 
catenation (Sundin and Varshavsky, 1980, 1981), and that 
can only be separated from each other by the action of type 
II DNA topoisomerases. Experiments in budding and fission 
yeast and, more recently, in mammalian cells, show that type 

II DNA topoisomcrase activity is required during mitosis for 
successful chromatid separation (DiNardo et al., 1984; 
Dowries et al., 1991; Holm et al., 1989; Uemura et al., 
1987). This suggests that, in vivo, sister chromatids are 
catenated and that this catenation must be resolved in mitosis 
to allow them to segregate from each other. However, none 
of these experiments address the question of when, in a nor- 
mal spindle, topoisomerase activity is required to ensure 
complete sister chromatid segregation. ! n both mammalian 
cells and yeasts, the metaphase--anaphase transition cannot 
be experimentally regulated without depolymerizing spindle 
microtubules. In such cells, chromosomes do not experience 
normal metaphase forces. On the other hand, without ex- 
perimentally controlling the metaphase-anaphase transi- 
tion, it is not possible to determine whether topoisomerase 
activity is inhibited before or after the induction of anaphase. 
We have used CSF, a physiological regulator, to control the 
transition between metaphase and anaphase without affect- 
ing spindle function. We find that topoisomerase activity is 
required during anaphase, even in spindles that have been ar- 
rested in metaphase before the addition of topoisomerase in- 
hibitors, unequivocally demonstrating that topoisomerase 
activity is required during anaphase for sister chromatid 
segregation. 

The observation that topoisomerase II inhibitors block sis- 
ter chromatid segregation strongly suggests that sister chro- 
matids are catenated at metaphase. We cannot exclude the 
possibility that topoisomerase II has a role in chromatid 
segregation other than decatenating sister chromatids and 
that we have inhibited this activity. However, because the 
topoisomerase inhibitors used in this study have different 
mechanisms of action, we feel that this possibility is unlikely 
(Osheroff et al., 1983; for review see Liu, 1989). 
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It has been difficult to establish the role that DNA catena- 
tion plays in the linkage between sister chromatids. On one 
hand it has been proposed that the primary linkage between 
sister chromatids is DNA catenation (Murray and Szostak, 
1985). On the other, experiments on the segregation of mini- 
chromosomes in yeast suggest that although catenation may 
be a prerequisite for bipolar attachment of chromosomes to 
the mitotic spindle, it need not be continuously maintained 
to ensure accurate chromosome segregation (Koshland and 
Hartwell, 1987). Because of the inability to visualize in- 
dividual chromosomes in budding yeast, it is impossible to 
exclude the possibility that mini-chromosomes segregate as 
soon as they are decatenated, even though the natural chro- 
mosomes are still on the metaphase plate. 

If catenation is the only linkage between sister chromatids, 
then sister chromatid segregation could be induced by the 
activation of topoisomerase II at the onset of anaphase. 
However, by monitoring the decatenation of an exogenous 
substrate (kDNA), we find that there is no increase in 
topoisomerase II activity at the metaphase-anaphase transi- 
tion. Thus, an increase in bulk topoisomerase activity at 
anaphase cannot be the trigger for chromosome segregation. 
This observation can be explained in a number of ways. The 
first is that there are two populations of topoisomerase II: 
one which is soluble and a second, in the nuclear scaffold, 
which is closely associated with the chromosomes (Earn- 
shaw et al., 1985). The soluble pool, whose activity we have 
assayed using an exogenously added substrate (kDNA), may 
be regulated differently from the chromosome-associated 
pool. The second possibility is that, during metaphase, the 
catenation between sister chromatids is protected from 
topoisomerase activity, and that the protecting factors are re- 
moved when anaphase is induced. Finally, catenation may 
not be the only entity holding sister chromatids together. In- 
stead there might exist another linkage, involving unknown 
components, whose dissolution is the primary trigger for sis- 
ter chromatid separation. This linkage would maintain a high 
local concentration of DNA, so that strand passages cata- 
lyzed by topoisomerase II would be as likely to increase cate- 
nation as to decrease it. At anaphase the destruction of the 
other linkage would allow sister chromatids to move apart, 
decreasing the local DNA concentration and favoring decate- 
nation (Holm et al., 1989). In this view, decatenation would 
be triggered by anaphase and would be a consequence rather 
than a cause of chromosome segregation and would not re- 
quire an increase in topoisomerase activity. Candidates for 
a proteinaceous linkage between the chromosomes must be 
present along the chromosome arms as well as the kineto- 
chore, since acentric sister chromatids remain paired through- 
out metaphase (Bajer and Mole-Bajer, 1972). The INCENP 
proteins that are localized between sister chromatids along 
their length are candidates for such a linkage. However, the 
recent observation that the association of these proteins with 
chromosomes is abolished considerably before sister chro- 
matid separation and the onset of anaphase (Earnshaw and 
Cooke, 1991), suggests that they cannot be the only compo- 
nents holding sister chromatids together. 

Models for chromosome segregation in which chromo- 
somes are held together only by catenation of the sister chro- 
matids, and separation is triggered by an increase in the force 
acting at the kinetochores can be eliminated. Earlier studies 
on mitosis demonstrate that the initial separation of sister 
chrornatids does not require kinetochore activity. In cells ar- 

rested in mitosis by colchicine, the sister chromatids eventu- 
ally separate from each other in the absence of spindle 
microtubules, although there is no directed movement of the 
kinetochores towards the spindle poles (Mole-Bajer, 1958; 
Sluder, 1979). In these mitoses, the kinetochores often re- 
main linked at the centromeres after the arms have sepa- 
rated, suggesting that there may be special components that 
hold sister kinetochores together in addition to the compo- 
nents that hold the chromosome arms together. In normal 
mitoses careful time-lapse cinematography has shown that 
the initial separation of the sisters occurs synchronously all 
along the length of a chromosome, rather than beginning at 
the kinetochore and then moving towards the poles, as would 
be expected if the sisters had to be pulled apart by their 
kinetochores (Bajer and Mole-Bajer, 1972). Acentric sister 
chromatids do separate from each other at anaphase, al- 
though after their initial separation they fail to show directed 
movements towards the spindle poles (Bajer and Mole-Bajer, 
1972). Finally, experimental measurements suggest that 
force acting on kinetochores does not increase in anaphase 
(Alexander and Rieder, 1991; Nicklas, 1988). 

The event that triggers sister chromatid separation is un- 
known. As a first step towards identifying this event we have 
examined the timing of sister chromatid separation relative 
to the inactivation of MPE The first stages of sister separa- 
tion are seen 4 min after HI kinase activity begins to fall. 
It is tempting to conclude from this temporal correlation that 
the inactivation of H1 kinase is a prerequisite for sister chro- 
matid separation, as it is for chromosome decondensation 
and nuclear envelope assembly (Murray et al., 1989). How- 
ever, it is also possible that sister separation is triggered, not 
by the inactivation of MPF, but by the events that trigger cy- 
clin B degradation and that the proteolytic system that de- 
grades cyclin B also degrades proteins involved in holding 
sisters together. The existence of nondegradable forms ofcy- 
clin should make it possible to distinguish between these 
possibilities (Murray, 1989). Anaphase in meiosis II of frog 
oocytes, and in our in vitro extracts, is induced by an increase 
in the intracellular calcium concentration (Kline, 1988; 
Meyerhof and Masui, 1977). Although a role for calcium in 
inducing mitosis in other systems has been reported (Hepler, 
1983; Izant, 1983; Poenie et al., 1986; Schollmeyer, 1988; 
Tombes and Borisy, 1989), it is not clear whether an increase 
in the intracellular calcium levels is a universal prerequisite 
for the induction of anaphase (Tombes and Borisy, 1989). 

The ability to induce chromosome segregation in vitro will 
facilitate studies both on the initial separation of sister chro- 
matids at the metaphase-anaphase transition, and on the 
anaphase movement of the chromosomes towards the poles. 
In vitro studies will help to clarify the role of DNA catena- 
tion, and the INCENP proteins in holding sister chromatids 
together. In addition, they will allow a biochemical dissec- 
tion of the linkage between sister chromatids and of the 
mechanism by which this linkage is destroyed at anaphase. 
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