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Abstract

Motivation: Recombination is a fundamental process in molecular evolution, and the identification of recombinant
sequences is thus of major interest. However, current methods for detecting recombinants are primarily designed
for aligned sequences. Thus, they struggle with analyses of highly diverse genes, such as the var genes of the mal-
aria parasite Plasmodium falciparum, which are known to diversify primarily through recombination.

Results: We introduce an algorithm to detect recent recombinant sequences from a dataset without a full multiple
alignment. Our algorithm can handle thousands of gene-length sequences without the need for a reference panel.
We demonstrate the accuracy of our algorithm through extensive numerical simulations; in particular, it maintains
its effectiveness in the presence of insertions and deletions. We apply our algorithm to a dataset of 17 335 DBLa
types in var genes from Ghana, observing that sequences belonging to the same ups group or domain subclass re-
combine amongst themselves more frequently, and that non-recombinant DBLa types are more conserved than re-
combinant ones.

Availability and implementation: Source code is freely available at https://github.com/qianfeng2/detREC_program.

Contact: yaoban@unimelb.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recombination, the exchange of genetic materials between two mo-
lecular sequences, is a fundamental evolutionary process in viruses,
prokaryotes, eukaryotes and even between kingdoms. The biological
mechanisms of recombination, which differ across different species,
lead to the creation of novel ‘mosaic’ sequences in which different
regions have distinct evolutionary histories.

In population genetics, recombination plays a central role in shap-
ing the patterns of linkage disequilibrium, and thus recombination

identification is of importance for estimating recombination rates,
quantitative trait loci and association studies (Drysdale et al., 2000; Li
and Stephens, 2003). Recombination also explains a considerable
amount of the genetic diversity of human pathogens (Gibbs et al.,
2001; Holmes et al., 1999; Robertson et al., 1995), such as the mal-
aria parasite Plasmodium falciparum (Claessens et al., 2014; Jiang
et al., 2011) or protozoan parasites (Weatherly et al., 2016). It plays a
central role for parasites to escape from host immune pressures, or
adapt to the effects of antiparasitic drugs. Characterization of
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recombination events in these pathogens would aid in the understand-
ing of these evolutionary mechanisms.

Many methods have been developed for identifying recombin-
ation events and/or recombinants (e.g. Auton and McVean, 2007;
Boni et al., 2007, see Lemey et al., 2009 for a review; Kosakovsky
Pond et al., 2006; Martin and Rybicki, 2000; Posada and Crandall,
2001). They can be roughly characterized into four paradigms:

1. Distance-based methods (Buendia and Narasimhan, 2007;

Huber et al., 2004; Siepel et al., 1995) look for inversions of

distance patterns among the sequences. They usually use a

sliding-window approach to estimate distances and are generally

computationally efficient.

2. Phylogenetic methods (Hein, 1990; Holmes et al., 1999; Martin

and Rybicki, 2000) look for discordant topologies in adjacent

sequence segments, which is taken as a sign of recombination.

3. Compatibility methods (Jakobsen and Easteal, 1996) test for

phylogenetic incongruence on a site-by-site basis.

4. Substitution distribution-based methods (Boni et al., 2007; Posada

and Crandall, 2001; Smith, 1992) use a test statistic to examine

adjacent sequence segments for signals of recombination.

Nearly all available methods require a multiple sequence align-
ment; this is commonly available for population genetic datasets
which have relatively low intra-population diversity, but may be un-
reliable for datasets with higher diversity. Likewise, many of the
most commonly used methods, such as RDP (Martin and Rybicki,
2000) or 3SEQ (Boni et al., 2007), are triplet-based; that is, they test
for recombination signals in each possible triplet of sequences,
which can become slow as modern-day datasets grow larger and
larger. Finally, some (though not all) methods (e.g. Siepel et al.,
1995) require a reference panel of known non-recombinant sequen-
ces, which potential recombinants can be compared against. We aim
to develop a method which works directly on sequences without
requiring a full multiple sequence alignment or a reference panel,
and is fast enough to be practical for large datasets.

We focus on the specific application of detecting recombinants
in the var genes of P.falciparum. These genes express the
P.falciparum erythrocyte membrane protein 1 (PfEMP1), which is
the main target of the human immune response to the blood stages
of infection. The var genes are a large and diverse gene family (up to
60 copies per genome), and high levels of diversity in the var genes
have been observed in a single parasite genome, as well as small
local populations (Chen et al., 2011; Day et al., 2017; Rask et al.,
2010; Ruybal-Pesántez et al., 2017). This diversity is driven primar-
ily by homologous recombination (Claessens et al., 2014), and so an
accurate identification of var recombinants is critical to understand-
ing the evolution of the system.

We focus on the DBLa domain, which is the only domain
encoded by all (but one) members of the var multigene family. This
domain has been found to be immunogenic (Tessema et al., 2019)
and is crucial to understanding acquired immunity and potential for
vaccination (Sherman, 2011). Unfortunately, the DBLa domain is
highly variable in terms of both length and sequence composition,
with datasets (Tonkin-Hill et al., 2021) containing tens of thousands
of disparate sequences. Under these conditions, multiple sequence
alignments constructed from these datasets are very unreliable, and
a phylogenetic tree is not an appropriate representation of their evo-
lutionary history due to frequent recombination. Thus, it is difficult
to reconstruct an explicit evolutionary history of the DBLa domain.

The first systematic attempt to map out recombination in var
genes was performed by Zilversmit et al. (2013), who developed a
method based on a jumping hidden Markov model (JHMM) to align
a sequence to its nearest relations in a reference dataset, allowing
jumps between sequences which represent recombination events.
They used this method to ‘paint’ each sequence according its nearest
relations. However, this method does not identify the recombinant
sequences themselves, only recombination events. An explicit identi-
fication of recombinants and non-recombinants would enable direct

comparison between them, helping to determine the effect of recom-
bination on the structure and function of the gene.

Because each sequence is considered individually, the JHMM is
limited to the detection of ‘recent’ recombination events; that is,
recombinations whose signal can be found only in one sequence in
the dataset. In contrast, a single more ancient recombination may
leave traces in multiple sequences, hindering the ability to detect
them. It is thus an unavoidable consequence that any method based
on the information provided by the JHMM is limited to the detec-
tion of recent recombinants, i.e. the descendants of recent
recombinations.

In this article, we develop a new method to identify recent
recombinants in a large dataset of sequences, that does not require a
multiple sequence alignment. This method exploits the information
produced by the JHMM method, combining it with a distance-based
comparison to identify recombinants. Extensive simulations confirm
the accuracy and applicability of our method, in particular in the
context of sequences with insertions and deletions. We also show
that our method is more accurate than many currently used meth-
ods. Finally, we apply our method to a large dataset of DBLa
sequences, producing several new biological results concerning the
patterns of recombination in this domain.

2 Materials and methods

We propose a novel method to detect recombinant sequences in a set
of protein or DNA sequences for which a full multiple alignment is
difficult to construct or unreliable. It takes as input a set of homolo-
gous sequences, and outputs the sequences that are identified as re-
combinant, their putative parents, and the corresponding
breakpoints.

See Figure 1 for a graphical overview of our method. It consists
of the following steps:

1. We apply the JHMM method of Zilversmit et al. (2013) to rep-

resent each sequence as a ‘mosaic’ of segments from other

sequences in the dataset.

2. We identify ‘recombinant triples’ which contain a recombinant

segment and its two parents. The mosaic representations provide

pairwise alignments for each of these triples, which we then

complete to three-way alignments with the MAFFT algorithm

(Katoh and Frith, 2012).

3. Using a distance-based approach, we identify the recombinant

sequence in each triple.

Note that, extant sequences are identified as the ‘parents’ of the
recombinant; more accurately, we identify the descendants of the
ancestral sequences which were the parents of the recombination.

We discuss each step in detail in the following sections.

2.1 Calculating mosaic representations
We first use the jumping hidden Markov model of Zilversmit et al.
(2013). In this model, each character in a ‘target’ sequence is consid-
ered to be a copy from a character in a sequence in a reference set
(‘source’ sequences). The hidden state of the Markov model is the
(position of the) character which is copied. The copy may be imper-
fect, representing mutation. After a character is copied, the next
character in the target sequence is usually copied from the next char-
acter in the same source sequence. However, with small
probabilities:

• the source character may switch to any character in any position

in another sequence, representing recombination;
• the model switches to an ‘insertion’ state, where the target char-

acter is chosen randomly and the source character does not

move;
• the model switches to a ‘deletion’ state, where the source charac-

ter moves forward without being copied.
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If the model is in an insertion or deletion state, it continues in
this state until (with a small probability per character) we return to
copying characters from the current source sequence.

We first estimate the parameters of the model, following Tonkin-
Hill et al. (2021). The parameters are the probabilities of gap initi-
ation d, gap extension � and recombination (source switching) q. We
first set q to zero, and compute maximum likelihood estimates for d
and � with the Baum-Welch algorithm (see Rabiner, 1989). We then
calculate the composite likelihood of all sequences for all values of q
over the interval ½0; 0:1� under the estimated d̂ and �̂, and choose the
value of q which maximizes this likelihood as our estimate q̂.

Finally, we calculate the Viterbi path for each target sequence to
find the most probable sequence of hidden states (copied characters,
insertions and deletions). The result is a ‘mosaic’ alignment for each
sequence to a series of segments from the other sequences in the
dataset. An example of this can be seen in Figure 2A in Zilversmit
et al. (2013).

For large-scale datasets, training the JHMM model is a signifi-
cant bottleneck for our method. We again follow Tonkin-Hill et al.
(2021), and use the Viterbi training algorithm (Rodr�ıguez and
Torres, 2003) in place of the Baum-Welch to estimate d and �, and
calculate the composite likelihood over 1000 randomly selected
sequences to estimate q. This allows us to analyze large datasets
(such as the DBLa dataset in Section 3.2) in a practical timeframe
with only a small loss in accuracy.

2.2 Identifying recombinant triples and calculating

multiple sequence alignments
For each breakpoint in each sequence, we identify the triple of the
target sequence and the two sequences which contain the source seg-
ments before and after the breakpoint as a ‘recombinant triple’, that
is, the two parents and the child of a recombination. This results in
a list of recombinant triples, some of which may refer to the same re-
combination event. The JHMM method only provides a pairwise
alignment of each target segment to one source segment. We take
these pairwise alignments and add the corresponding segment from
the remaining source sequence in the triple, using the MAFFT algo-
rithm (Katoh and Frith, 2012). For each triple, this results in a mul-
tiple alignment of the segments surrounding the breakpoint. See
Supplementary Figure S16 for an overview of this process.

Note that, we require a sufficient sequence length on either side
of the breakpoint to calculate distances accurately. Moreover, we
observe in practice that short source segments resulting from the
JHMM method tend to be artifacts of the method, rather than repre-
senting multiple consecutive recombinations. To address this, we ex-
clude triples for which the aligned segment on either side of the
breakpoint has length less than 10, which we found to be a suitable
threshold in practice.

2.3 Identifying recombinant sequences
We now apply the well-known principle (Boni et al., 2007; Posada
and Crandall, 2001; Smith, 1992) that two non-recombinant
sequences will have a similar evolutionary distance all along the se-
quence; that is, the distance between the two sequences does not
change before and after a recombination breakpoint in a third se-
quence. Conversely, the distance between a recombinant sequence
and another sequence does change at a breakpoint. Using a distance-
based method here allows us to avoid an expensive tree or network
inference step and thus scale our method to many sequences.

We calculate, for each recombinant triple fa, b, cg, the evolu-
tionary distance between each pair of segments before and after the
breakpoint. We use here the BLOSUM62 distance (Henikoff and
Henikoff, 1992) for amino acids and Hamming (mismatch) distance
for DNA sequences (these could in principle be substituted by a
large variety of ways to calculate evolutionary distance). We denote
these distances by D1 and D2 for the first (pre-breakpoint) and se-
cond (post-breakpoint) segment, respectively. The pair with the
smallest absolute difference in distance before and after the
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Fig. 1. A schematic of the algorithm. From an input set of unaligned sequences, we first use the JHMM method to represent each sequence as a mosaic of other sequences.

Next, we identify triples of segments, consisting of a recombinant segment and its two parents, and complete their alignment with the MAFFT algorithm. Finally, we identify

the recombinant in each triple using a distance-based approach
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breakpoint are inferred to be the two non-recombinant sequences,
while the third is inferred to be recombinant. Formally, we have

recombinant ¼ fa; b; cgnargminfx;yg�fa;b;cgjD1ðx; yÞ �D2ðx; yÞj:

This method identifies one recombinant from each recombinant
triple; note that one recombination may generate one or more tri-
ples, but the identified recombinant from each of these triples should
be the same. We apply this to all triples identified above, generating
a list of recombinants in the entire dataset and their putative
parents.

2.4 Calculating support values
In addition to identifying recombinant sequences, we can also meas-
ure the uncertainty in our identification by using bootstrapping. For
each multiple alignment of a triple, we resample characters in the
alignment (columns) within each segment, with replacement. This
provides us with a resampled alignment, and we generate 100 repli-
cates per triple. We then run our distance-based method to identify
the recombinant for each replicate. The proportion of replicates
which infer the same recombinant as the original alignment is the
support value of this detection. The larger the support value, the
more certain we are of the detection.

3 Results

3.1 Simulations
We conducted extensive simulations to evaluate the effectiveness of
our method. Our simulation protocol is as follows:

1. Simulate a tree (genealogy) under the coalescent (without recom-

bination) using msprime (Kelleher et al., 2016).

2. Evolve amino acid sequences from a common ancestor along the

tree using Pyvolve (Spielman and Wilke, 2015). If insertions

and/or deletions are required, we use INDELible (Fletcher and

Yang, 2009) instead.

3. Generate recombinant sequences from two or more randomly

chosen sequences in the dataset, with breakpoints chosen uni-

formly at random along the genome. The parent sequences are

removed from the dataset.

This simulation produces a dataset which can be clearly sepa-
rated into recombinants and non-recombinants. Manually perform-
ing the recombination step guarantees that we have only recent
recombinants, which our method is designed to detect. Moreover,
the non-recombinants are guaranteed to have no ancient recombin-
ation events in their history. Note that, while we do not evolve our
sequences further after recombination, we do remove the parents
from the dataset, which produces a similar effect: their nearest
extant relations in the dataset are evolutionarily separated from the
recombinant sequence. In our simulations, we simulate both equal-
length sequences (no indels), and unequal-length sequences with
indel events, generating unaligned input.

There are a wide variety of parameters which could potentially
affect the performance of the method. We vary the proportion of re-
combinant sequences in the dataset; the number of recombinations
per recombinant; the number of sequences in the dataset; the se-
quence length; the mutation rate; and the substitution model. For
simulations with insertions and deletions, we also vary indel rate
and size. To keep our simulations tractable, we only vary one par-
ameter at a time, keeping the remainder fixed at default values
(Supplementary Tables S2 and S3). For each parameter combin-
ation, we simulate 100 datasets and run our method on each dataset
in turn.

Our results are shown in Supplementary Section S2. In summary,
we find that the method enjoys good performance, with most par-
ameter settings offering both sensitivity and specificity above 70%
(and often much higher). For the simulations without indels, we find
that sensitivity increases with the number of recombinations,

sequence length and mutation rate, while staying stable with respect
to the other parameters. Specificity decreases (usually slightly) as the
proportion of recombinant sequences, number of recombinations,
sequence length and mutation rate increase.

An important feature of our method is its ability to accept un-
aligned sequences as input. When we include indels in the generating
process, we can see (Fig. 2) that both sensitivity and specificity re-
main relatively unaffected, with a moderate decline in specificity as
indel rate increases. This indicates that our method is robust to
indels even when the indel rate is large.

We also compared our method with a number of popular recom-
binant detection methods, after aligning the simulated sequences.
We note that these methods only accept aligned sequences, making a
direct comparison potentially biased one way or the other (depend-
ing on whether the sequences have indels or not). Despite this, we
can see (Fig. 3) that our method enjoys the highest sensitivity overall
when we matched the specificity of other methods to that of our
method, whether or not indels are included in the sequences. For
more details, see Supplementary Section S2.2.

Finally, we studied the distributions of the support values for
true and false detections, and the accuracy of the JHMM methods in
our simulations (Supplementary Sections S2.3 and S2.4).

3.2 Analysis of DBLa sequences from a cross-sectional

study in Ghana
Population genetic studies of var genes have focused on sequencing
the DBLa domain, since nearly all var genes encode a single DBLa
domain. We applied our method to detect recombinants and break-
points in a dataset of DBLa sequences collected from individuals
with microscopically confirmed P.falciparum infections (isolates) liv-
ing in the Bongo District, in the Upper East region of northern
Ghana (GenBank BioProject Number: PRJNA396962) (He et al.,
2018; Pilosof et al., 2019). This dataset consists of 35 591 previous-
ly published DBLa sequences collected from 161 isolates, which
were clustered into 17 335 representative DBLa ‘types’ of average
length 125aa (s.d. 8.4aa). Of these, we detected 14 801 (85.4%) to
be recombinant. See Supplementary Section S3.1 for more details.

3.2.1 DBLa sequences from the same ups group recombine more

frequently

The upstream promoter sequences of each var gene can be classified
into three main ups groups, upsA, upsB and upsC (Rask et al.,
2010). Earlier studies on a much smaller dataset (Kraemer et al.,
2007), based on sequence similarity, proposed that var gene recom-
bination preferentially occurs within the same ups group. Using our
method, which to our knowledge is the first systematic attempt to
detect recombinants in var genes in natural parasite populations, we
found considerable evidence supporting this hypothesis. Our results
are summarized in Table 1.

We calculated the proportion of recombination triples which
have one parent and the child, both parents and both parents and
the child belonging to the same ups group (‘Parent-child’, ‘Parents’
and ‘Family’ in Table 1). With one exception, we found that the
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Fig. 3. Distribution of sensitivity (for matched specificity) for different recombinant

detection methods on simulated datasets with (left) and without (right) indel events
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parents and/or the child of a recombination were significantly more
likely (p < 2:2� 10�16 from v2 tests) to belong to the same ups
group, compared with a (conservative) null model where the parents
have independent groups, but the child shares the group of one of its
parents. (Under a more liberal model where the child group is also
independent, all P-values are highly significant.) Our results strongly
reinforce the conclusions of earlier studies, and provide more preci-
sion with the division into three ups groups.

We also considered the proportions of identified recombinants in
each ups group. We found that there was a significant difference in
the proportions of recombinants in the three groups
(p ¼ 2:193� 10�7 from a v2 test), with upsA having the least pro-
portion of recombinants, and upsC the most (82.3%, 84.9% and
87.6% from A, B and C, respectively).

3.2.2 Proportions of recombination differ among domain

subclasses

DBLa sequences can also be classified according to sequence similar-
ity into 33 subclasses (DBLa0.1–24, DBLa1.1–8, DBLa2). These
subclasses are strongly associated with ups groups; however, they
also provide greater resolution in dividing the sequences. We thus
repeated our earlier analyses with regards to the subclasses. As with
ups group, we found a significant (all p < 2:2� 10�16) increase in
recombinations with one parent and the child, both parents and
both parents and the child from the same domain subclass (Table 1).

We next considered the proportions of identified recombinants
in each subclass (Fig. 4). We identified seven subclasses (DBLa0.1, 5
and 11 were too high, while DBLa0.3, 8, 9 and 23 were too low)
which were significantly different from the average under a
Bonferroni correction for multiple testing. Of particular note is the
DBLa0.1 subclass, which has been noted to involve more recombi-
nations than other subclasses (Claessens et al., 2014). We suggest
that these subclasses should be explored further to determine if there
are some biological factors that may explain these results.

We also investigated the proportion of recombinants among in-
dividual isolates, and among the two broad catchment areas in the
Bongo District (Soe and Vea/Gowrie) that the isolates were collected
from. We did not detect any significant differences here (see
Supplementary Section S3.2).

3.2.3 Non-recombinant DBLa types are more conserved than

recombinant types

It is well known (Rougeron et al., 2017; Ruybal-Pesántez et al.,
2017) that some DBLa types are highly conserved (appear in many
different isolates) in a population (or even globally, Tonkin-Hill
et al., 2021). On the other hand, many other types only appear rare-
ly, or even once. We hypothesize that non-recombinant types are
more ‘stable’ than recombinants, and thus may be more highly
conserved.

We investigated this hypothesis via the recombinants identified
by our method. First, we compared the observed frequencies in the
dataset of the recombinants to the non-recombinants; we found that
non-recombinants occurred significantly more often (average 4.2
versus 3.7, P¼0.021 from a Wilcoxon rank sum test).

We also considered if there is a difference in the proportions of
frequent DBLa types in recombinants and non-recombinants. As the
frequencies of types are highly right-skewed (see Supplementary Fig.
S19), we thresholded the frequencies at various levels to determine if
there were particular frequencies where an effect could be noticed.
The results are in Table 2. We found that for a threshold frequency
of 5, there were significantly fewer frequent recombinants than non-
recombinants; however, this effect becomes less noticeable for larger
thresholds. This suggests that there is a high proportion of recombi-
nants which appear very few times in the dataset; these are poten-
tially relatively recent recombinants, which may have not been
established in the population.

3.2.4 Breakpoint positions are associated with homology blocks

It is known that a number of semi-conserved homology blocks
(HBs) occur frequently in var genes (Rask et al., 2010). These HBs
recombine at exceedingly high rates (Freitas-Junior et al., 2000;
Taylor et al., 2000), and are known to be useful in predicting disease
severity (Rorick et al., 2013). We thus investigated the patterns of
recombination in DBLa types in relation to these homology blocks.

The positions of recombination breakpoints, as found by the
JHMM method, are shown in Figure 5. Of particular note is:

• The recombination rate is not constant throughout the sequence,

but displays three distinct peaks spaced in roughly equal inter-

vals. These peaks clearly correspond to the three most frequent

homology blocks, HB5, 14 and 36, with the height of the peak

also corresponding to the frequency of the HB.
• The frequency of breakpoints drops sharply toward either end of

the sequence. This is an artifact of the method and does not

imply that the recombination rate is lower there; we cannot rec-

ognize a recombination which is close to one end of the

sequence.

This reinforces the biological theory that recombination occurs
within short identical segments (Sander et al., 2014).

4 Discussion

In this article, we have developed a statistical method to detect re-
combinant sequences from a large set of genetic sequences without
requiring a multiple alignment or a reference panel. We can also as-
sess the reliability of the inferred recombinants with a
bootstrapping-based tool. Simulations show that our method

Table 1. Proportions of recombinations from the same ups groups

and DBLa subclasses

Parent–child Parents Family

UpsA versus upsB/C 99.7% ð92:5%Þ 98.9% ð85:0%Þ 98.5% (85.0%)

UpsA, B and C 85.3% ð75:4%Þ 65.5% ð50:9%Þ 51.1% (50.9%)

DBLa 58.8% ð53:9%Þ 31.0% ð7:9%Þ 20.6% (7.9%)

Note: Expected proportions are given in brackets. All P-values are highly

significant (< 2:2� 10�16) except for the entry marked in red (P¼ 0.2734).
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Fig. 4. Proportions (and 95% confidence intervals) of recombinants for each DBLa
subclass. Subclasses which are significantly different from the overall average (under

a correction for multiple testing) are highlighted in red. The horizontal dashed line

displays the overall proportion of recombinant sequences in the entire dataset

Table 2. Proportions of frequent (larger than the threshold) recom-

binant and non-recombinant DBLa types

Threshold 5 10 15 20

Recombinants 17.5% 4.5% 2.1% 1.3%

Non-recombinants 21.0% 6.0% 2.3% 1.6%

P-value (v2 test) 0.006 0.047 0.666 0.634
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performs very well even when there is a high recombination rate,
long sequences or a large dataset. Crucially, it maintains its accuracy
in the presence of insertions and deletions, where methods that re-
quire an alignment would normally fail. In a study of DBLa domains
of var genes, comparisons between recombinant and non-
recombinant DBLa types reveal a series of biologically meaningful
results; we find evidence for the hypothesis that recombination is
more frequent within ups groups, but also find that it is more fre-
quent within domain subclasses. We also find novel results that
recombinants differ from non-recombinants both in their represen-
tation in domain subclasses, and in their levels of conservation.

While our method is not strictly an alignment-free tool, it car-
ries several advantages over methods based on a full multiple se-
quence alignment. Our method mostly aligns segments which are
closely related to each other, thus increasing the reliability of the
alignments; as datasets increase in size and variability, it will be-
come more difficult to construct a reliable full alignment for all
sequences. Moreover, our method only attempts to align three
sequences at once, again saving time and increasing reliability. By
identifying recombination triples directly from the JHMM, our
method also avoids having to examine all possible triples of
sequences one by one.

As noted above, our method is designed to only detect recent
recombinants, which have not yet diverged in the dataset. For ex-
ample, if a more ancient recombination produces a lineage that
diverges into two sequences, they will be preferentially matched to
each other by the JHMM, and it is possible that no recombination
will be detected. The initial clustering of DBLa tags into types at
96% similarity (a standard part of the preprocessing pipeline) may
help in this regard, as the lineages must diverge beyond this thresh-
old to be distinguished. The use of different clustering thresholds
may affect the results, potentially unlocking access to signals of
older recombinations.

Note that it is uncertain how long a recombinant will remain re-
cent for, and this may well depend on sampling coverage and sample
size. For example, although recombination events have been
reported on timescales of several years (Claessens et al., 2014), a re-
combinant may continue to be ‘recent’ for far longer than that. The
Ghana dataset studied in this article is the first of a longitudinal
dataset collected over several seasons, which may give insight into

the frequency and patterns of recombination on epidemiological
timescales; this is the subject of current work.

Furthermore, there is an implicit assumption that recombina-
tions do not ‘interact’ with each other, i.e. that they are sufficiently
far apart either in the evolutionary network or in the genome that
we can decompose the dataset into recombinant triples and assess
those independently. This is a strong (and perhaps unrealistic, in the
context of genes which have a high recombination rate) assumption
which we make to obtain a tractable algorithm. As seen from our
results, we do appear to obtain good accuracy with our detections
even in cases where this assumption might not hold; assessing the
exact impact of this assumption on our results is also the subject of
future work.

Although our methods are motivated primarily by the highly re-
combinant var genes, our approach is not restricted to these genes,
but could be used for any genes which are recombinant but lack a re-
liable alignment or reference panel. The scalability of our method
means that it will be applicable even to large datasets, thus holding
great promise for broader applications.
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