ARTICLE

Observational constraint on cloud susceptibility
weakened by aerosol retrieval limitations

Po-Lun Ma® ", Philip J. Rasch® !, Hélene Chepfer?3, David M. Winker® # & Steven J. Ghan® '

Aerosol-cloud interactions remain a major uncertainty in climate research. Studies have
indicated that model estimates of cloud susceptibility to aerosols frequently exceed satellite
estimates, motivating model reformulations to increase agreement. Here we show that
conventional ways of using satellite information to estimate susceptibility can serve as only a
weak constraint on models because the estimation is sensitive to errors in the retrieval
procedures. Using instrument simulators to investigate differences between model and
satellite estimates of susceptibilities, we find that low aerosol loading conditions are not well
characterized by satellites, but model clouds are sensitive to aerosol perturbations in these
conditions. We quantify the observational requirements needed to constrain models, and find
that the nighttime lidar measurements of aerosols provide a better characterization of ten-
uous aerosols. We conclude that observational uncertainties and limitations need to be
accounted for when assessing the role of aerosols in the climate system.
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erosol-cloud interactions remain a major source of

uncertainty in characterizing historical changes in cli-

mate and projecting future environmental changes!?
arising from greenhouse gas increases or other factors (e.g.,
changes in land use), because aerosol forcings often oppose
other changes. The anthropogenic effective radiative forcing
due to aerosol-cloud interactions (ERF,;), which portrays the
cloud radiative forcing response to aerosol changes between
pre-industrial (PI) and present-day (PD) conditions, is esti-
mated by state-of-the art global climate models (GCMs) to
range between —0.5 and —2.5Wm 2 as documented in
Intergovernmental Panel on Climate Change (IPCC) Fifth
Assessment Report (AR5)!. Because aerosol-cloud interactions
are extremely complex and uncertain, strong observational
constraints on relevant aerosol and cloud processes are highly
desirable. The lack of appropriate observations in the PI era
makes direct calculation of the real-world ERF,; impossible, so
satellite estimates’>3~® are frequently inferred from the spatio-
temporal co-variability between aerosols and clouds under PD
conditions, termed cloud susceptibility to aerosols (or sus-
ceptibility for short). Satellite-based ERF,; is conventionally
estimated by scaling model ERF,; by susceptibilities. If model
susceptibilities do not agree with observational estimates then it
is unlikely that ERF,.; derived using the aerosol difference
between PD and PI environments from GCMs will be accurate,
regardless of the accuracy of model estimate of aerosol state in
either PD or PI conditions. Susceptibilities are therefore widely
used in the climate modeling community as observational
constraints.

The large spread in susceptibilities and ERF,.; among GCMs
and the disagreement between GCM and satellite estimates are
generally attributed to a lack of knowledge of PI climate state
and to unavoidable simplifications and deficient process
representations (e.g. insufficient model resolution and flawed or
incomplete understanding of aerosol and cloud processes).
Large discrepancies between models and observations often
motivate model reformulations to resolve deficiencies and
increase agreement® !l However, although some cloud sus-
ceptibility metrics have been shown to be promising emergent
constraints for ERF,.; in self-consistent GCMs®12, direct
comparison of GCM and satellite estimates can confound
model development and understanding!®!“. Limitations and
uncertainties in sampling and retrieval procedures may com-
bine with model deficiencies in aerosol and cloud treatments to
obstruct understanding of aerosol-cloud interactions and may
drive model development and understanding in the wrong
direction.

In this study, we use instrument simulators to assess the impact
of the procedures and assumptions used in making the aerosol
optical depth (AOD) data product on calculations of suscept-
ibilities. We find that observational uncertainties and limitations
need to be accounted for when assessing aerosol effects on clouds
because small errors in the AOD retrieval can produce large
errors in susceptibility estimates. The largest source of error is
associated with inaccurate characterization of tenuous aerosols,
and the issue is likely to affect the susceptibility estimates both in
the model and in the real world. The sampling strategy and other
retrieval limitations contribute to errors in susceptibility estimates
to a lesser extent. We assess the susceptibility errors in different
geographical regions and quantify the observational requirements
needed for providing accurate susceptibility estimates. We find
that the nighttime lidar measurements of aerosols can provide a
better characterization of tenuous aerosols and minimize the
susceptibility errors.

Results

Lidar simulator estimates of susceptibilities. To assess the
impact of observational uncertainties and limitations on the
commonly used susceptibility-based procedures for calibrating
and evaluating aerosol-cloud interactions in a GCM and for
estimating observationally based ERF,, we have developed an
aerosol lidar simulator and embedded it in the Community
Atmosphere Model version 5 (CAM5)?. The simulator makes
use of sampling and retrieval procedures similar to (but simpler
than) the operational aerosol retrieval procedure of Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP)!6:17
onboard the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) platform to account for practi-
calities of space-based measurements to obtain AOD. The
simulator algorithm is also applied to CALIPSO data to produce
the GCM-Oriented CALIPSO Aerosol Product (GOCAP), which
can then be consistently compared with the model simulator
output (See Methods for details). We evaluate the susceptibility of
cloud droplet effective radius Sg. = —3ln(R.)/9ln(CCN)!8, which
describes the sensitivity of effective cloud droplet radius (R.) to
perturbation of cloud condensation nuclei (CCN), and suscept-
ibility of precipitation probability Spop = —aln(POP)/9ln(CCN)®,
which describes the sensitivity of probability of precipitation
(POP)? to CCN perturbation (See Methods for details). The two
susceptibility metrics are very sensitive to droplet nucleation?’
and autoconversion?*? parameterizations in models, so they are
often used as constraints to influence parameterization formula-
tions affecting model cloud properties (i.e., the cloud albedo
effect®® through the change of droplet size and the cloud lifetime
effect?* through the change of liquid water path (LWP)).

Figure 1 shows a summary of global annual mean Sg., Spop,
and ERF,. Observational estimates are displayed along with a
range of model and simulator estimates, comparing observations
with the model truth CAMS5_clim (conventionally calculated
from the standard 3-hourly model output at 1.9 by 2.5 degree
grid-spacing) and other simulator estimates (CAMS5_orb,
CAMS5_cld, CAM5_det, CAM5_aer, and CAM5_sim) produced
by incrementally examining the changes that occur as model
fields are sampled and the various retrieval steps of the aerosol
simulator are applied. The model truth is consistent with similar
estimates from previous studies®!>?> for CAM5. Sg. generally
falls within the range reported in field campaigns'® but exceeds
satellite estimates2® by more than a factor of two. Similarly, Spop
in CAM5_clim is more than 8 times larger than satellite
estimates®.

Estimates accounting only for orbital sampling issues
(CAM5_orb) agree well with the model truth CAMS5_clim,
suggesting that the spatiotemporal variability of AOD in CAMS5 is
sufficiently small that narrow nadir-only measurements ade-
quately represent the global mean fields and full-swath measure-
ments are not generally required (Supplementary Fig. 1).
CAMS5_cld (which accounts for the fact that retrievals cannot
detect below-cloud aerosols) produces a lower Sg. compared to
the model truth CAMS5_clim. This underestimate is due to the
fact that droplet nucleation takes place primarily at cloud base
and sides, and aerosols above clouds are not a good proxy for the
below cloud aerosols thought to most strongly affect clouds. The
impact is small because only aerosols below fully overcast grid
cells are not retrieved. The grid-mean AOD in partially cloudy
cells includes the contribution of the aerosols underneath the
cloud layer given the model assumption that aerosols are
uniformly distributed across the grid cell.

CAMS5_det applies a detection threshold that removes tenuous
aerosol layers, resulting in a retrieval of part of the column and a
low-biased column AOD compared to CAMS5_cld. This proce-
dure has only a small impact on global AOD, producing a global
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Fig. 1 Global mean susceptibility of cloud droplet size, susceptibility of
precipitation probability, and effective radiative forcing due to aerosol-cloud
interactions. Estimates of Sge = —aIN(Ro)/dIN(CCN)8, Spop = —aln(POP)/
dIN(CCN)®, and the inferred ERF,; are derived from satellite retrievals and
CAM5 model simulation when accounting for sampling and retrieval
limitations. Observational estimates are derived from satellite-retrieved
data products at the 20 km footprints of the Cloud and Earth’s Radiant
Energy System (CERES) from CERES-CALIPSO-CloudSat-MODIS (C3M)
70,71 Model estimates are derived from conventional sampling of model
fields (CAM5_clim) and incrementally accounting for orbital sampling
(CAMB5_orb), cloud clearing (CAM5_cld), aerosol detection threshold
(CAMS5_det), aerosol extinction retrieval (CAM5_aer), and cloud retrieval
uncertainties using CALIPSO, CloudSat, and MODIS cloud simulators
(CAMB5_sim). Vertical and horizontal bars represent the range of Sge and
Spop for a range of LWP from 20 to 200 g m—2. Blue shaded background
represents ERF,.; estimates as a function of Sg. and Spop derived from a
series of CAM5 sensitivity simulations®. See Methods for details

mean AOD reduction of —0.011 (—10%) for all-sky (Supple-
mentary Fig. 1) and —0.007 (—5%) for cloudy-sky (Supplemen-
tary Fig. 2p) conditions compared to CAMS5_cld. These
reductions are smaller than those produced by the operational
CALIPSO detection threshold procedure evaluated against
Raman Lidar measurements at two Atmospheric Radiation
Measurement (ARM) sites, where the CALIPSO detection
threshold produces a 30-50% underestimate of aerosol direct
radiative forcing?’, and against airborne High Spectral Resolution
Lidar (HSRL) measurements at North America and Caribbean
regions, where the CALIPSO detection threshold results in a
small AOD error of 0.0228, Despite the small AOD reduction in
CAMS5_det, we find the detection threshold component of the
algorithm to be the largest source of error for susceptibility
estimation, leading to a factor of 2 underestimate of true values
for both Sz, and Spop. Inaccurate characterization of low AOD
environments produces a large underestimate of susceptibility
compared to the model truth due to the stretching along the AOD
axis (Fig. 2). Removing the samples in clean environments
reduces the discrepancy between CAM5_orb and CAM5_det, but
Sre computed from these samples deviates from the model truth
(Fig. 2). This deviation is due to the fact that clouds in low aerosol
loading (i.e., clean) environments are more susceptible to aerosol
perturbation®®3°, Hence, susceptibilities can be underestimated if
the high sensitivity regime is not sampled.

Figure 1 also shows that the deviation increases further when
the aerosol extinction retrieval uses an aerosol typing algorithm to
estimate the extinction-to-backscatter ratio (i.e., lidar ratio) to
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Fig. 2 Scatter plots and linear regressions of natural logarithm of effective
radius against natural logarithm of aerosol optical depth. Data points are
from a CAM5_orb and b CAM5_det simulations at CERES footprints over
the globe (See Methods for details on sampling at CERES footprints), with
LWP between 20 and 25 g m~2. Results for the other LWP bins show the
same characteristics. The differences between CAM5_orb and CAM5_det
are caused by the cloud clearing and the aerosol detection threshold
procedures. For better visualization of the scatter plots, AOD and R. on
every fifth CERES footprint along the satellite orbit are plotted. The
correlation and regression coefficients are computed based on all data
samples. The correlation and regression coefficients represent the Sg. for
this LWP bin for all samples and polluted (AOD > 0.1) samples

solve the lidar equation (CAMS5_aer). Since the lidar ratio
estimate is by necessity an approximation, the retrieved AOD can
deviate further from the model’s true AOD?! owing to
misclassification or inaccurate lidar ratio assumed in the
algorithm. Lidar ratio errors can increase or decrease AOD, but
the error propagation is asymmetric so that the errors often lead
to an overall increase in AOD (Supplementary Fig. 1). This
procedure reduces Sg. marginally and Spop by about 20%. Cloud
and precipitation retrieval approximations accounted for by
utilizing various cloud simulators (CAM5_sim; See Methods for
details) produce additional degradation in Sg. and Spop by about
20 and 15%, respectively. The degradation demonstrates that
cloud retrieval assumptions are important as well. The impact of
each cloud retrieval limitation on susceptibility estimates requires
further investigation.

This analysis indicates that when the model aerosol and cloud
fields are viewed through a lens that accounts for the challenges of
retrieving appropriate information from space, susceptibilities are
significantly underestimated compared to the true values, and the
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Fig. 3 Model regional mean susceptibility of cloud droplet size and susceptibility of precipitation probability as a function of retrieval procedure.
Susceptibility comparisons between a CAM5_orb and CAM5_cld, b CAM5_cld and CAMb5_det, and ¢ CAM5_det and CAMB5_aer are shown. Geographical
regions are defined in d. In a-c, Sge estimates are presented on the left and bottom axes and Spop estimates are presented on the right and top axes

simulator susceptibilities are much closer to satellite estimates
than the true model susceptibilities are. The same conclusion is
true for the ERF,;: using the conventional method of inferring
ERF, from the simulated observational estimates of suscept-
ibilities produces a value of —0.50 Wm™2, one-third of the
model’s true ERF,; (—1.56 W m™2).

Spatial variability of cloud susceptibilities. Ground-based and
field campaign measurements can be used to evaluate models and
validate satellite retrievals at particular locations or regimes, but
they might not be sufficient to constrain a GCM globally because
of their limited spatial and temporal data coverage. Figure 3
shows that S, and Spop have a large regional variability as pre-
viously discussed®” because retrieval procedures have different
impacts regionally, highlighting the importance of routine global
satellite observation missions. ERF,; also shows a large regional
variability (Supplementary Fig. 3), but it is different from that of
Sre and Spop because ERF, ; depends not only on the suscept-
ibilities (which represents the potential for ERF,;) but also on the
difference in aerosols and clouds between PD and PI simulations
as well as other factors such as solar irradiance and surface
albedo. When aerosols are neglected below clouds (CAM5_cld),
Spop is overestimated in many regions compared to CAM5_orb.
As previously studied®4, this might be explained by the fact that
aerosol concentrations below precipitating clouds are lower than
those below non-precipitating clouds due to wet scavenging.
Hence, the cloud clearing procedure produces a smaller AOD
reduction in high POP grids and a larger AOD reduction in low

POP grids. Since Spop is derived from the linear regression of In
(POP) vs. In(AOD), the larger AOD reduction in the low POP
regime results in a new regression line with a steeper slope,
producing a high Spop estimate compared to CAM5_orb. This
procedure only affects fully overcast grid cells as discussed in the
previous section. Applying a detection threshold appears to sig-
nificantly reduce susceptibility estimates in most regions, except
where aerosol loading is so large that small errors are insignif-
icant. Because the detection threshold is applied to every layer,
tenuous aerosol layers go undetected and the total column AOD
is reduced everywhere. Clean regions such as the Arctic are
expected to be affected most severely (Supplementary Fig. 2).
Figure 3 also reveals areas and conditions where the extinction
retrieval algorithm (CAMS5_aer) produces errors. For example,
elevated marine or continental aerosol layers can cause the
extinction retrieval algorithm to produce errors due to mis-
classification of these aerosol layers as biomass burning aerosols
which have a much higher lidar ratio. The Sg. and Spop differ-
ences between model and satellite estimates in most regions are
reduced when a more consistent methodology is applied (Sup-
plementary Fig. 4).

Impacts of the MODIS retrieval uncertainty. Retrieval artifacts
are not unique to CALIPSO and susceptibility estimates derived
from other space-based measurements can also be compromised
in clean environments. Figure 4 shows the sensitivity of model
estimates of susceptibilities to sampling strategies appropriate to
the AOD retrieved by the Moderate Resolution Imaging
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Fig. 4 Model global mean susceptibility of cloud droplet size and
susceptibility of precipitation probability when accounting for the retrieval
uncertainty. Susceptibilities Sge (@) and Spop (b) are evaluated when the
MODIS AOD retrieval uncertainty is imposed. The MODIS AQOD retrieval
uncertainty, expressed as expected error (EE =+ (a+r- AOD), where a is
the absolute error and r is the relative error), is imposed on CAM5_orb in
the form of random noise with a normal distribution with the standard
deviation of EE. Colored lines represent Sg. and Spop as a function of
absolute and relative errors imposed on the CAMb5_cld results. The
CAMS5_orb, CAM5_orb with MODIS Collection 5 EE (CAM5_MODCS5), and
CAMDB5_orb with MODIS Collection 6 EE (CAM5_MODC6) are depicted by
circle, square, and triangle, with vertical bars denoting the range of Sg. and
Spop for a range of LWP from 20 to 200 g m~2. The difference of Sg. and
Spop between CAMB5_orb and the estimates with zero errors is caused by
the cloud clearing procedure. The MODIS Collection 5 EE is + (0.05 +
0.15- AOD) over land and = (0.03 + 0.05 - AOD) over ocean>>. The MODIS
Collection 6 EE is = (0.05 + 0.15- AOD) over land and + (0.04 + 0.10 -
AOD) and —(0.02 + 0.10 - AOD) over ocean3®. Due to the asymmetry of
the MODIS Collection 6 EE over ocean, two normal distributions (with the
standard deviation of 0.04 + 0.10- AOD and 0.02 + 0.10- AOD,
respectively) are produced. The positive part of the first distribution and
the negative part of second distribution are used to represent the full
MODIS Collection 6 EE and are superimposed on the CAM5_cld AOD
results

Spectroradiometer (MODIS)*>>¢ in the presence of retrieval
uncertainty. When Sg. and Spop are evaluated by superimposing
the clear-sky sampling and the error envelope representing the
uncertainty for MODIS Collection 5 AOD retrieval on the
CAMS5_orb AOD field, the susceptibilities are also under-
estimated relative to the model truth. This deviation is again
largely attributed to inaccurate characterization of AOD in clean
environments (Supplementary Fig. 5). With the smaller uncer-
tainty of MODIS Collection 6, the deviation is reduced but
still large.

The deviation in susceptibility from the model truth can be
further decomposed by considering cloud clearing and absolute
and relative errors in the MODIS AOD retrieval. The impact of
the MODIS cloud clearing procedure is examined by removing
the fully overcast (over a model grid box) samples to account for
the fact that MODIS only retrieves AOD under clear-sky
conditions and assuming both absolute and relative errors are
zero. Results show that Sg. and Spop estimates are reduced by
about 10 and 20%, respectively. The reduction in Spop due to the
MODIS cloud clearing procedure is significantly larger than that
using the CALIPSO cloud clearing procedure (CAM5_cld), where
fully overcast samples are included in susceptibility calculations
even though only aerosols above clouds are considered.

Noise superimposed on the AOD to mimic the relative error
(which dominates at high AOD conditions) of the MODIS AOD
retrieval does not appear to have a strong influence on
susceptibility estimates. Accounting for the absolute error of
AOD (which dominates at low AOD conditions) produces
significant errors in susceptibility estimates, similar to the effect of
applying the GOCAP detection threshold procedure. The
absolute error of MODIS AOD retrieval needs to be reduced to
0.02 to minimize the deviation in susceptibilities from the model
truth, which is much smaller than that of either Collection 5 or 6.
Like the previous analysis for the active sensor, these results also
indicate that accurate characterization of aerosols in low aerosol
loading conditions is critical for accurate susceptibility estimates.

Observational requirements needed for accurate estimates. The
issue with partial and low-biased (produced by the CALIPSO
simulator) or inaccurate (produced by the MODIS simulator)
column AOD retrieval in low AOD conditions (which drives the
deviation from the model truth) is likely present in both the
modeled and the real world, because low AOD samples are
globally quite common. While previous studies have suggested
that low aerosol loading environments are mostly found in
remote regions’’, our analysis indicates that clean environment
samples (with AOD <0.1) account for more than half of the
samples globally and frequently occur in most regions. Even for
regions with strong anthropogenic influence (e.g., Asia, North
Pacific Ocean, etc.), clean environment samples account for at
least one-third of the total in both CAMS5 and observations
(Supplementary Fig. 2). A previous observational study show that
low CCN conditions can be found after the passage of a frontal
system that has strong wet scavenging of aerosols*. The aerosol
retrievals in post-frontal depleted aerosol regions near these thick
warm clouds are likely to be inaccurate, resulting in errors in
susceptibility estimates. The AOD error identified in both
CALIPSO and MODIS simulators becomes evident when it is
lower than 0.1 (Supplementary Fig. 6).

We have explored the sensitivity of the deviation in
susceptibilities from the model truth to detection thresholds by
multiplying the detection threshold function employed in the
aerosol lidar simulator by a scale factor. Lowering the detection
threshold allows more of the tenuous aerosol layers in the model
to be detected and retrieved (Supplementary Fig. 7) and can
reduce the susceptibility errors. Figure 5 shows the deviation in
the global AOD from the model truth is reduced from 6.6% to
3.5% as the detection threshold is reduced by a factor of 32. The
deviation in Sg. and Spop from the model truth reaches a
minimum as the detection threshold is decreased by a factor of
32. However, lowering the detection thresholds when detecting
aerosol layers in the real world can cause noise excursions to
more frequently be classified as aerosols, producing errors in the
retrieval. We find that the daytime GOCAP AOD climatology is
very sensitive to detection threshold. Lowering the detection
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threshold by more than a factor of 4 produces a very large and
unrealistic daytime GOCAP AOD climatology (Supplementary
Fig. 8) compared with other satellite products. Daytime aerosol
retrieval is difficult because samples are greatly influenced by the
solar background and the signal-to-noise ratio is small, requiring
higher detection thresholds. Nighttime measurements are not
noise-free, but we find that the nighttime GOCAP AOD retrievals
are significantly less sensitive to detection threshold because
background noise is lower so that a lower detection threshold can
be applied. Note that a lower detection threshold is also adopted
in the standard CALIPSO nighttime AOD retrieval'”. Nighttime
AOD appears realistic and falls within the range of observational
estimates even with the lowest detection threshold, indicating that
the impact of the possible inclusion of noise on the GOCAP AOD
is small. This analysis suggests that CALIOP is quite capable of
detecting very thin aerosol layers when background noise is small.
Ignoring these tenuous layers to avoid noise during daytime is a
primary cause for producing errors in susceptibility estimates.

Discussion

This study identifies the components of common satellite aerosol
retrieval procedures responsible for errors in satellite estimates of
susceptibilities, quantifies observational requirements needed to
improve the estimates, and makes suggestions about how better
susceptibility and forcing estimates can be obtained from current
lidar products. We demonstrate that the conventional space-
based estimates of aerosol-cloud interactions can be biased low
compared to the real-world true values due to limitations and
approximations required by retrieval from space. Using simula-
tors minimizes differences in sampling and algorithms between
models and observations so that satellite and model estimates can
be compared fairly and consistently. Agreement between satellite
and model estimates is therefore better when retrieval estimates of

susceptibility are compared to simulator estimates, even though
the simulator estimates deviate from the model truth.
Susceptibility errors due to retrieval limitations are readily
apparent when comparing estimates based on simulator output to
model susceptibility based on internal model information (model
truth), suggesting that both satellite and simulator estimates are
likely biased low compared to the true values but the amplitude of
the biases may not be the same. Therefore, satellite-based sus-
ceptibility estimates should not be compared to direct model
estimates without using a simulator. We suspect that clouds in
GCMs might indeed be too susceptible to aerosol changes?, but
differences resulting from inconsistent comparisons of suscept-
ibilities should not be used to guide model reformulations.
Satellite retrievals show frequent occurrence of low AOD
samples (more than half of the time globally, and at least one-
third of the time in regions with strong anthropogenic influence).
AOD climatology in most regions are low enough to be affected
by this issue. Therefore, we believe that satellite estimates of
susceptibilities may also be significantly affected by inaccurate
AOD retrievals in clean environments, and more work is needed
to assess the issue. We argue that conventional satellite-based
estimates of susceptibility should not serve as a strong constraint
on GCMs because they do not accurately measure the interactions
where the action occurs most effectively (ie., in cloudy regions
when aerosols are tenuous). The AOD retrieval error in clean
environments needs to be reduced significantly for the space-
based susceptibilities to be accurate enough to serve as strong
constraints on models. We show that the errors in susceptibility
estimates can be minimized by restricting the analysis to night-
time lidar measurements when background noise is lower so that
aerosol detection thresholds can be set lower to better detect
tenuous aerosol layers. However, cloud droplet size and LWP in
the present analysis framework are retrieved from MODIS which
only has daytime retrievals. Susceptibility metrics would need to
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be revised to use only active remote sensor measurements at night
for both cloud and aerosol fields to allow lower aerosol detection
thresholds. Alternatively, the HSRL onboard the next generation
satellite EarthCARE® is expected to have a better characteriza-
tion of aerosols in clean environments and can measure extinc-
tion directly, reducing the AOD retrieval errors associated with
the detection thresholds and extinction retrievals even during
daytime.

We have shown that the retrieval procedures produce small
errors in AOD estimates, but the small errors in low AOD con-
ditions result in errors in susceptibility estimates large enough to
affect scientific understanding and conclusions. Other analysis
frameworks such as using cloud decks as CCN chambers*! which
avoids errors from aerosol retrieval, using joint histograms
instead of susceptibilities to account for the nonlinear response of
clouds to aerosols*?, or measuring the change of optically thicker
cloud properties and larger aerosol perturbations®’, may have
different biases. More work using similar strategies to those dis-
cussed in this study would be useful for assessing the impacts of
observational uncertainties and limitations (including those of
cloud retrievals) on estimates of aerosol effects on clouds using
these analysis frameworks.

Methods

The GCM-oriented CALIPSO aerosol product (GOCAP). To maximize the
consistency between models and observations, we follow the same strategy that
guided the development of the cloud lidar simulator®®: the same algorithm,
including the detection thresholds and averaging strategy, is applied in the cloud
lidar simulator and in the production of the corresponding GCM-Oriented
CALIPSO Cloud Product (GOCCP) dataset4. We produce the GOCAP dataset
from a CALIPSO Level 1 data product, which is cloud-cleared and averaged to 20
km horizontal resolution with 60 m resolution in the vertical, using an algorithm
that is simplified from the standard CALIPSO Level 2 algorithm!, to make
implementation feasible in the aerosol simulator for GCMs. All data samples above
clouds and in cloud-free columns are used. We developed the aerosol layer
detection scheme based on the standard CALIOP algorithm*® with some simpli-
fications. First, the threshold adjustment designed primarily to correct the
attenuation above aerosol layers lying below cirrus clouds is not applied, because
lidar profiles below clouds are already removed from this Level 1 dataset. This
could hamper detection of aerosols below elevated aerosol layers. Second, since the
resolution of the dataset is 20 km, the multi-resolution layer detection is only
applied at 20 and 80 km resolutions. For the purpose of this study, which focuses
on tropospheric aerosols and aerosol-cloud interactions, we only identify aerosol
layers below 12 km. We set the coefficients Cy and C; to 1 in the detection
threshold function?®, so that scattering ratio (defined as the total attenuated
backscatter (ATB) normalized by the molecular ATB) larger than ~1.14 near the
surface and larger than 1.4 at 12 km are classified as aerosols at 5km horizontal
grid spacing. The scattering ratio thresholds are reduced to 1.05 near the surface
and 1.15 at 12 km at 80 km grid spacing. To distinguish noise from daytime aerosol
signals at such high vertical resolution, we impose an ATB threshold such that the
ATB needs to be larger than the scattering ratio threshold at 8 km for the layers to
be classified as aerosol-laden layers. An aerosol typing algorithm® is then applied
to the identified aerosol layers with some variations: The 3 ATB thresholds to
distinguish aerosol types are replaced with one scattering ratio threshold, which is
set to 1.6, to avoid the misclassification due to potential model bias in the tem-
perature and pressure fields. The depolarization ratio thresholds are changed from
0.075, 0.20, 0.05 to 0.15, 0.25, 0.10 for daytime samples. The lidar ratios are
prescribed accordingly. The lidar equation is then solved:

2" (U () et (2)) 2
e < 7top

ATB(2) = (Boer(2) + Pt (2)) -

)

where ATB is a function of height (z), and « and 8 are extinction and backscatter
coefficients. Subscripts aer and mol denote aerosol and molecular components. The
final GOCAP dataset contains many fields, including vertical profiles of different
types of aerosol, extinction, frequency of occurrence of different aerosols, and the
vertically integrated AOD. The GOCAP AOD estimates used in this study agree

reasonably well with the standard CALIPSO Version 3.00 Level 3 cloud-free AOD
estimates (correlation coefficient = 0.91) and other satellite AOD estimates (Sup-
plementary Fig. 9).

Aerosol lidar simulator for GCMs. Following the development of the cloud lidar
simulator3, we use the 180-degree backscatter and extinction coefficients of

aerosols and the atmosphere computed by CAM5 to construct the ATB profiles at
532 nm. This approach has been tested in regional chemical transport models*”+8.

To ensure consistency in model-observation comparisons, the same algorithm and
detection thresholds used to produce GOCAP are then applied to retrieve the
simulator-derived aerosol extinction coefficient at sub-column scale to allow dif-
ferent aerosol extinction retrievals in different sub-columns within a given GCM
grid. Nevertheless, because CAMS5 assumes homogeneous distribution of aerosols
within a grid, the sub-column aerosol retrievals in this study can only be different
as a result of the cloud-clearing procedure as described below.

The sub-column clouds and precipitation profiles*® are constructed using the
Subgrid Cloud Overlap Profile Sampler (SCOP)*” in the Cloud Feedback Model
Intercomparison Project (CEMIP) Observation Simulator Package (COSP)’!,
representing the subgrid variability of clouds simulated by the model. The sub-
column clouds are then used for the cloud-clearing procedure. The cloud clearing is
done in a consistent way as that in the CALIPSO profile data: At each sub-column,
the aerosol extinction profile is retrieved only above clouds by limiting the aerosol
layer detection to operate from the model top to the layer where a cloud layer is
detected, which is determined when the total (ice and liquid) water path from the
layer top to the model top exceeds the threshold value of 1 gm™2. The aerosol
extinction profile retrieval can then be performed for each sub-column by solving
the lidar equation using the lidar ratio provided by the aerosol typing algorithm.
The grid-mean AOD is computed as the vertical integral of grid-mean extinction
profiles. The model’s true AOD and the AOD retrieved by the simulator are
different by definition: the former represents the vertical integral of aerosol
extinction over the entire atmospheric column at all locations and all
meteorological situations, while the latter represents the vertical integral of
extinction between top-of-the-atmosphere (TOA) and the top of the highest cloud.
Nevertheless, it is worth noting that the grid-mean AOD in partially cloudy cells
(with at least one cloud-free sub-column that allows aerosol extinction retrieval
from the model top to the surface) includes the contribution of the aerosol
underneath the cloud layer given the assumption that aerosols are uniformly
distributed across the grid cell. Therefore, the grid-mean AOD is the same as the
total column AOD in these cells. This is consistent with the GOCAP AOD
retrieval, where the gird-mean AOD also includes the contribution of the aerosol
underneath the cloud layer. In the aerosol typing algorithm, the model aerosol
depolarization ratios for dust, sea salt, and black carbon are set to 0.35, 0.01, and
0.02, and the depolarization ratio for other aerosol species is set to 0.

It is worth noting that even though the simulator simulates the GOCAP
retrieval procedure, there are unavoidable inconsistencies between the modeled and
the real-world due to the model’s imperfect representation of real atmospheric
processes. For example, CAMS5 uses RRTMG radiative transfer parameterization®2,
which uses the two-stream §-Eddington approximation. Therefore, three-
dimensional cloud radiative effects on aerosol retrievals®>> are not considered in
the model and by the simulator. This effect cannot be accounted for in the model
before a multi-stream radiative transfer parameterization is implemented. Besides,
the simulator only retrieves aerosols in cloud-free sub-columns and above cloud.
The contamination from undetected cloud in real-world aerosol retrieval® is not
an issue for the simulator. These issues affect the satellite estimates of
susceptibilities®®, but do not affect the deviation of model and simulator estimates
of susceptibilities from the model truth.

CAMS. CAMS is configured to run in constrained meteorology mode® in which
the model winds are nudged toward ERA-Interim®’ reanalysis with a relaxation
time scale of 6 h. Two model simulations are performed, one with PD forcing and
the other with PI aerosol forcing (while other forcings are the same as the PD
configuration), using the IPCC AR5 aerosol emission inventory®®, The model is
run at 1.9° by 2.5° horizontal resolution with 30 vertical levels. The model simu-
lations are performed from 1 November 2007 to 1 January 2009, but the first two
months of model results are excluded from analyses. The nudging technique has
been used and proven useful to constrain the natural variability in climate models.
The nudged simulation provides accurate ERF,; estimates with shorter (i.e., year-
long as opposed to decade-long) simulations?>>*%. The model configuration, post-
processing, and analysis procedure are documented in a previous study?’.

Model fields are written out at the model spatial resolution and 3-hourly
temporal resolution for the CAMS5_clim simulation, which represents the model
truth. Changes are made incrementally in order to assess the impact of each
procedure. When satellite simulators are enabled (i.e., for CAM5_orb, CAM5_cld,
CAMS5_det, CAM5_aer, and CAM5_sim), they are written out at the horizontal
resolution of the CERES footprints (i.e., 20 km), by allowing each model grid to be
sampled multiple times. Each CERES footprint sample carries grid scale
information for aerosols and in-cloud information for clouds. The simulators then
perform independent sub-column aerosol and cloud retrievals for each CERES
footprint sample. CAM5_orb represents model properties sampled with the same
orbital space and time sampling strategies used by the sun-synchronous A-train
products (at every CERES footprint). CAMS5_cld represents the procedure where
aerosols at and below the highest cloud layer in each sub-column are masked as
missing data. The total column AOD is computed by vertically integrating grid-
mean aerosol extinction at each model level, excluding the masked layers at each
sub-column. CAM5_det represents the procedure of applying the detection
threshold used in identifying aerosol layers. CAM5_aer represents the procedure of
applying the aerosol typing and extinction retrieval algorithms to retrieve aerosol
extinction, compounding the consequences of both spatiotemporal sampling and
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the complete retrieval algorithm of the aerosol lidar simulator. CAM5_sim utilizes
the aerosol lidar simulator and cloud simulators (CALIPSO, CloudSat, and
MODIS), which use consistent definitions of aerosol and cloud properties (i.e.,
AOD, cloud fraction, LWP, R,, and radar reflectivity) and consider only the portion
of the atmosphere sounded by satellites.

Sre and Spop. Previous studies suggest that some susceptibility metrics do not
provide a good constraint on ERF,L. In this study, we examine two commonly
used susceptibility metrics, susceptibility of cloud droplet effective radius Sge =
—oln(R,)/9In(CCN)'8, which describe the sensitivity of effective cloud droplet
radius (R.) to perturbation of CCN, and susceptibility of precipitation probability
Spop = —oln(POP)/0ln(CCN)®, which describe the sensitivity of probability of
precipitation (POP)!® to CCN perturbation. POP is defined as the ratio of the
number of precipitating events to the number of cloudy events!®. We use AOD as a
proxy for the column-integrated CCN. It is worth noting that aerosol index (Al
defined as AOD multiplied by Angstrom exponent) is a better proxy for
CCN#2:62,63 (Supplementary Fig. 10). However, because Spop computed from this
study is consistent with the previous study® which uses AI as the proxy for CCN
and Sg, bias increases from 0.10 to 0.14 when using Al as the CCN proxy, the large
difference between model and satellite estimates is not attributed to the choice of
CCN proxy.

These two metrics can be conveniently computed using satellite data products
and model fields, while computing some other metrics (such as the susceptibility of
droplet number concentration) requires additional assumptions. Both Sk, and Spop
are calculated at the grid scale of the model and observations. The procedure for
computing Sge and Spop is documented in previous studies®? and is briefly
described here. All samples are first divided into different LWP and lower
tropospheric stability (LTS, defined as the potential temperature difference between
700 hPa and the surface) bins and geographical regions, which can mitigate the
spatial gradient effects®®. Sy, and Spop (the linear regression coefficients) for each
bin are then computed, and the final Sg. and Spop values are averaged over regions,
and over LWP and LTS bins, weighted by area, LWP, and cloud fraction. S, has
been computed from field campaign measurements, satellite retrievals, ground-
based measurements, and model simulations in numerous studies, and Spop has
been proven useful for CAMS5 and some other global models®!2, Furthermore, Spe
and Spop are strongly controlled by model physics parameterizations in CAM5,
providing process-level constraints on the model: Spop is controlled by the
autoconversion process*?2, and S is controlled by the droplet nucleation
process~’.

To compute Sg. and Spop from C3M satellite data, we use LWP and R, at cloud
top from MODIS, cloud fraction from CALIPSO and CloudSat, the precipitation
flag denoting liquid precipitation from CloudSat, and AOD from CALIPSO. The
LTS is computed from ERA-Interim. To compute Sg. and Spop from CAM5 with
simulators, we use the LWP and R, at cloud top computed by the MODIS
simulator®®, cloud fraction computed by the CALIPSO simulator*> and CloudSat
simulator®, radar reflectivity from the CloudSat simulator, and AOD from the
aerosol simulator. A precipitating column is identified when the near-surface radar
reflectivity from the CloudSat simulator exceeds 0 dBZ (corresponding to 0.6 mm
day~! surface precipitation rate®) in any of the sub-columns. It should be noted
that even though using cloud simulators accounts for the inconsistency between
modeled and satellite-retrieved cloud fields, some cloud retrieval limitations (e.g.,
effects of drizzle®”%8 and sub-pixel variability®®) that can affect satellite estimates of
susceptibilities are not treated in the model or the simulator due to the simplified
process representation in the model.

Grid-mean AOD and in-cloud averaged cloud properties (e.g., LWP and R.) are
conventionally used for computing Sg. and Spop and are used in this study as well.
This is consistent with the model physics which assumes that aerosols are
distributed uniformly within a grid box and uses in-cloud mean values to compute
microphysical process rates with prescribed inverse relative variance for subgrid
cloud water distribution. Nevertheless, it is worth noting that subgrid variability
might affect cloud retrievals®® and susceptibility estimates in the real world (i.e.,
observational estimates of susceptibilities can be different if data are aggregated to a
different resolution®). In C3M, even though aerosols and clouds are detected at 1
km resolution for MODIS (while the aerosol retrievals are reported at 10 km
resolution), and 5 km for CALIPSO, they are aggregated to CERES footprints at 20
by 20 km resolution. Susceptibilities are therefore computed at this resolution and
results are consistent with previous satellite-based estimates®2°, Results are
compared with model estimates which are computed at model grid scale at 1.9 x
2.5 degree resolution and at 20 km CERES footprints as discussed in the previous
section. For satellite data that collocates aerosol, cloud, and precipitation, the
spatial resolution of C3M is currently the highest available. Future studies are
needed for estimating susceptibilities at higher resolution when high-resolution
satellite datasets become available.

Inferring ERF,; from Sg. and Spop. Model ERF,; is directly computed from

differencing shortwave cloud forcin% (SWCF) between simulations with PD and PI
aerosol forcings and is —1.56 W m™~ in CAMS5. The lack of satellite observations in
the PI era means that direct calculation of the real-world ERF,; is impossible, so
satellite estimates">3~8 are traditionally inferred from susceptibilities, using aerosol
difference between PD and PI environments from GCMs. In this study, we use the

empirical formula derived from a series of paired CAMS5 simulations (one with PD
and the other with PI aerosol forcing), to describe the anthropogenic aerosol effects
on cloud radiative forcing (expressed as the ratio of the fractional increase of SWCF
to the fractional increase of CCN from the PI to the PD aerosol forcing scenario):

%&?\;) = A, + A,, where the first term of the right hand side A, = 0.17 x (0.25 x

Spop + 0.01) represents the contribution from the cloud lifetime effect and the
second term (1, = 0.07) attributes the remainder to the contribution from the
cloud albedo effect®. Model ERF,; can then be decomposed to cloud albedo effect
(ERFalbede — —0.96 Wm™2) and cloud lifetime effect (ERFiftime = —0.60 W m™~2)
accordingly, given the model’s true Spop = 1.0 and total ERF,; = ~156 Wm™2
The satellite and simulator estimates of ERF,; can then be inferred from the
model’s true ERFb*°and ERFiftime, by scaling ERFAP*4 by the ratio of model’s
true Sg. to various Sg. estimates, and by scaling ERFiime by the ratio of model’s
true A, (which depends on Spop) to various A, estimates.

Code availability. The aerosol simulator code will be released as part of COSP, and
is currently available at http://portal.nersc.gov/project/acme/pma/aerosim/. Code
modifications to CAM5 for calculating the aerosol 180-degree backscatter are
available at the same location.

Data availability. GOCAP will be released as part of COSP, and are currently
available at http://portal.nersc.gov/project/acme/pma/aerosim/. Model output used
in this study can be provided upon request.
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