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Cancer Needs a Robust “Metadata Supply Chain” to
Realize the Promise of Artificial Intelligence
Caroline Chung and David A. Jaffray

ABSTRACT
◥

Profound advances in computational methods, including
artificial intelligence (AI), present the opportunity to use the
exponentially growing volume and complexity of available cancer
measurements toward data-driven personalized care. While
exciting, this opportunity has highlighted the disconnect between
the promise of compute and the supply of high-quality data. The

current paradigm of ad-hoc aggregation and curation of data
needs to be replaced with a “metadata supply chain” that
provides robust data in context with known provenance, that
is, lineage and comprehensive data governance that will allow
the promise of AI technology to be realized to its full potential in
clinical practice.

Introduction
Hippocrates, considered by some as the “Father of Western

Medicine,” set us out on a lofty goal of achieving predictive, person-
alized medicine with a patient-centered approach when he stated
“Declare the past, diagnose the present, foretell the future” while
reminding us that “It’s far more important to know what person the
disease has than what disease the person has.” Modern cancer med-
icine, particularly with the emergence of genomics, has set thefield on a
journey to seek a myriad of new measurements to describe both the
disease and the individual (i.e., phenomics). This includes patient
characteristics, stage, tumor, and germline genomics, imaging data,
and a multitude of additional emerging measures such as the micro-
biome, circulating markers, and data streaming from personal health
monitors. It has been argued that the current wealth of information
available for decision making exceeds human cognitive capacity (1)
such that new computational approaches such as artificial intelligence
(AI) and machine learning are needed for meaningful integration of
the growing rate and diversity of data while ensuring that we do not
lose sight of the ultimate goal, which is to treat the patient and not the
lab tests or investigations.While the promise of AI has driven a revived
hype cycle in the tsunami of data of modern medicine, recognizing
both the promise and current limitations of this technology and
identifying the necessary changes required in healthcare’s approach
to managing data are critical steps towards accelerated realization of
the benefits of AI.

The Promise and Challenges of AI in
Personalized Medicine

There are many examples where the use of AI is being pursued in
cancermedicine today ranging from the introduction of automation to

improve efficiency and consistency to the exploration of AI to provide
data-driven decision support, but this growing experience also high-
lights the need to rethink how we manage the key ingredient for their
utility–the data. For instance, the growing dependence of cancer
management on imaging including cancer staging, image-guided
therapies (e.g., surgery, radiation, interventional radiology) and
response assessment has created a demand for AI-based approaches
to improve the consistency and efficiency of image-acquisition and
interpretation. Hickman and colleagues touch on the many benefits
and challenges of AI adoption in breast cancer imaging but high-
light the pressure that the development of these algorithms are
putting on access and management to data (2). Similarly, the
growing development of digital pathology platforms introduce the
promise of integrated AI-based tools to assist with workflow but rely
on expert human classification and curation for their development.
Building upon large volumes of annotated data found in radiation
oncology, one of the earliest applications of machine learning in
cancer has been to improve the efficiency and consistent quality of
radiation treatment planning through automation of currently
manual processes of tumor and normal tissue segmentation and
plan generation (3), thereby potentially enabling access to expert
level radiation treatments in underserved populations globally (4).
AI approaches are also transforming cancer research with algo-
rithms that can automatically flag patients for eligibility to open
clinical trials, the development of natural language processing
(NLP) tools for mining published corpora to illuminate potential
linkages between clinical observations and underlying biology, or
the development of massive discovery machinery that bridges
features from across the basic and clinical data domains using
unified frameworks to predict time-to-event outcomes (5). In
addition to these domains of impact in oncology, there are numer-
ous applications of AI in more fundamental work such as the
modeling of protein folding, improvements in sequencing analyses,
and the generation of imaging data (6).

While the growing applications highlight the breadth of promise of
AI, they reinforce that our current paradigm to managing data and
models is not mature enough to support the confident deployment of
AI technologies at scale. A recent example was published byWong and
colleagues that reported that while the initial performance leading to
regulatory approval of an integrated sepsis prediction tool in the EMR
reported area under the receiver operating characteristic curve (AUC)
results of 0.76–0.83, an evaluation of over 27,000 patients across over
38,000 hospitalizations found theAUCof this proprietary sepsismodel
was only 0.63, raising caution around broad adoption of models
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without rigorous evaluation of the performance of these models
in specific settings (7). It is not only the specific data feeding into the
model but the contextual information around that data (e.g., patient
population included in training, quality of the training data, quality
of the annotations), which can impact the performance of the model
in new settings and appropriate use of the model in similar yet
unique clinical scenarios or populations. There is a growing aware-
ness of this issue at the regulatory level with the FDA seeking input
from the community on the management of AI/ML-based “Soft-
ware-as-a-Medical Device” (SaMD) and establishing guidelines for
use with a focus on understanding the source of the data to assure
cohort-appropriate application. In addition, there is growing aware-
ness of the need to establish frameworks for algorithm develop-
ment, validation, clinical commissioning, and on-going monitoring
and quality assurance in the clinical setting (8). These are needed to
provide evidence in support of the safe and reliable use of machine-
based decision-making, assure “human-in-the-loop” validation,
manage the issue of interpretability, and attend to ethical aspects
to protect against societal biases that are likely embedded in the data
or in the processes they are replicating.

Far beyond the obvious supply and demand relationship of
data and AI, it is becoming apparent that robust data governance
will both support and drive AI model management and perfor-
mance. The ability to draw together diverse data is critical to build
an understanding of the complexity of cancer, but also raises
important questions regarding access, curation, and governance
of these data to assure both appropriate use and extraction
of robust insights. The current frameworks for finding and acces-
sing data are straining under the growing demand and are under-
mining our ability to collaborate effectively and efficiently
at the institutional and individual investigator level. This will
become more critical as the sources of data become more personal
(e.g., personal health devices and voice to text and sentiment
technologies capturing more accurate clinical notes and patient-
reported outcomes; ref. 9) and expand to include patient-directed
data contributions (10).

HowDoWeRealize the Full Potential of
AI?

Organizations that want to benefit from AI technologies need to
pivot their focus from the “promise of compute” to investing in the
“supply of data.” The reliable flow of high-quality data required to
effectively develop and benefit fromAI technologies needs a “metadata
supply chain.” This chain links the explicit capture and transport of
metadata (i.e., data that is descriptive of the data and its origin that
provides the what, when, where, who, how, which, and why of the data
that embodies the context of the data) from the point of collection to
the point of insight extraction and engages all data stakeholders in the
generation, maintenance, and appropriately use high-quality data
throughout the data lifecycle. As highlighted above in the various
opportunities and promising developments of AI-based tools along
with their limitations, data needs its associated metadata to main-
tain the meaning, assure the quality, trace the provenance (i.e.,
lineage) of the data, and also engage appropriate individuals or
groups in the governance of the data. We have captured these
characteristics of the “metadata supply chain” in a set of principles
grounded in the treatment of data points as observations within a
scientific “observation paradigm” that is better aligned with the data
science empowered future of medicine than the traditional “medical
record paradigm.”

1. Observations must be in context. It is critical that the context
surrounding every observation (i.e., measurement or data point) is
captured in the form of the metadata associated with the
observation. Metadata that provides context can include the
device or person who has generated the observation, time of
day, and circumstances of the observation. For example, a
simple numeric measurement like a pain score can be impacted
by how the measurement was taken (e.g., uncertainties
associated with that measurement) and how that measurement
will be used to generate insights can be impacted on the
circumstances (e.g., patient reported or provider reported, how
the measurement was requested–pain currently or within the
past day/week or worst pain in the past day/week, what events
preceded the pain measurement, emotional state when asked
about pain). This is the start of the supply chain and investment
here is critical to assure the data has value and utility and is
used appropriately. The lack of this metadata in our current
data management practices introduces risk of misinterpretation
and this risk is realized and magnified when observations are
blindly fed into algorithms without consideration of the context
of those observations.

2. The quality of an observation is captured in the context.
Contextualizing metadata that allows for an integrated, granular
data quality monitoring approach will enable comparison of
the robustness of algorithm performance to data quality and
thereby evoke some level of confidence in the extracted insights.
Moving forward, capturing comprehensive contextualizing
metadata at the point of data generation will deliver a level of
data quality measurement that no amount of post hoc data
curation will ever achieve. For instance, tumor response
assessment, which increasingly relies on image-based
measurements can be impacted by the protocol used during the
imaging session, the type of contrast agent used, the image
processing completed prior to image interpretation and, as well
as, the criteria used to determine response. The metadata
around each of these aspects collectively characterizes the
quality of the underlying observations and the certainty in the
determination of tumor response. In the case of building an AI
tool to achieve such a task, the lack of metadata to help measure
and monitor data quality would leave many unanswered
questions when the algorithm fails to perform.

3. Provenance links insights to observations. Provenance is crucial to
making determinations about whether an insight can be
trusted, how to track the integration of diverse observations,
how to reveal potential biases in the analyses or observations,
and how to verify the rights of use or, alternatively, give credit
and attribution to the human or machine contributor. By
capturing the contextualizing metadata around observations,
the information necessary to track the provenance is captured
at the time of data generation. With growing interest in data
collaborations and team science, this lack of provenance has
raised alarms around how institutions will appropriately
manage the complex issues of encumbered data and academic
credit and attribution.

4. Data governance must be granular and consistent with the needs of
the demand. Precision and granularity in data governance that
captures the data and contextualizing metadata will empower
organizations to utilize their data with confidence and provide
a level of transparency that will assure the trust of all their
patients and stakeholders, including researchers, clinical teams,
operations, finance, external partners, and collaborators. On the
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basis of first principle, the context of the observations would
capture the subject, observer, their roles, and the associated
consented rights for use.

Establishing a set of principles is a proven method to support
transformative change that requires broad engagement across diverse
teams. Health care, in particular, will benefit from these principles as a
robust metadata supply chain within healthcare requires understand-
ing and cooperation across the entire organization including those
who contribute (e.g., patients, frontline and clinical staff),manage (e.g.,
operational and research teams), and consume the data (e.g., research-
ers and administrators), as well as those responsible for overseeing the
supply chain and building the underlying technological infrastructure.
It can be argued that the only way to make real progress in medicine is
by learning from the care we deliver each and every day and the lack of
robust data with its contextualizing metadata is the single largest
impediment to making this a reality. The presented principles provide
a framework to create a sustainable solution that reinforces the
scientific paradigm of rigorous observation, assures patient engage-
ment in the governance of their data, and is necessary to realize the
promise of technologies like AI. Looking to the future, the next
generation of AI tools will strive to improve performance and will be
built on a fusion of newmethods and new data. This cycle will continue
and will put immense pressure on our ability to understand where
exactly the data that is “programming” our new AI-enabled world is
coming from. It will also highlight the remarkably inefficient and
irreproducible manual curation steps that are routinely employed
today to improve data quality prior to analysis. Finally, a unique
challenge in healthcare is the current design and operational paradigm
of electronic medical record (EMR) technology, which remain highly
fragmented and have not been engineered to support the “metadata
supply chain” paradigm. There is a major need to develop and adopt
new data governance and provenance maintaining technologies for
healthcare and health more broadly as patients become an active

participant in the metadata supply chain for the future of cancer
medicine.

Summary
In our increasingly digital world and explosion of AI, data has been

recognized as “themost valuable resource” (The Economist, 2017) and
as a potential “new currency” with great value; however it is being
increasingly realized that some data with differing qualities and
characteristics will have greater value than others. This quality and
value measure will largely be reflected in the metadata. While health-
care is the domain where AI technologies could be of greatest value to
humanity, we argue that amajor change in approach to data is required
within healthcare to set a new foundation that aligns the culture,
processes and technology and enables a robust and trustworthy
“metadata supply chain.” Organizations that decide to make the
investment to steward their data comprehensivelywill reap the benefits
promised by AI technologies and will be the best partners for their
patients and for their collaborations with other organizations whether
academic, industry, or governmental that have made similar decisions
to invest in managing their data.
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