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Simple Summary: Successful attenuation of endoplasmic reticulum (ER) stress signaling has a
beneficial outcome in in vitro embryonal improvement. We evaluated the effect of adiponectin during
in vitro culture in porcine embryos derived from parthenogenetic activation and somatic cell nuclear
transfer (SCNT). We found that 15 and 30 µg/mL adiponectin treatment significantly improved
cleavage rates, blastocyst formation rates, and total cell number (TCN) of blastocysts derived from
parthenogenetic activation and reduced the expression levels of XBP1. In SCNT embryos, the cleavage
rate, blastocyst formation rate, and TCN of blastocysts were significantly improved by 15 µg/mL
adiponectin treatment compared to the control. In addition, the 15 µg/mL adiponectin treatment
reduced the levels of XBP1 expression and ER stress-related genes, increased expression levels of
pluripotency-related genes, and decreased apoptosis-related gene expression. Comprehensively,
treatment with 15 µg/mL adiponectin enhanced the in vitro developmental capacity of early-stage
SCNT porcine embryos by reducing ER stress and apoptosis.

Abstract: The main factor of embryonic demise is endoplasmic reticulum (ER) stress. Successful
attenuation of ER stress results in an improvement in embryo development. We studied the impact
of adiponectin in the in vitro culture (IVC) of porcine embryos derived from parthenogenetic activa-
tion and somatic cell nuclear transfer (SCNT). The first experiment revealed that 15 and 30 µg/mL
adiponectin treatments improved cleavage, blastocyst rates, and total cell number (TCN) of partheno-
genetic embryos and reduced the expression of XBP1 compared to the 5 µg/mL adiponectin treatment
and control groups (p < 0.05). The second experiment showed that cleavage rate, blastocyst forma-
tion rate, and TCN of blastocysts were improved in the 15 µg/mL adiponectin treatment group
compared with the control group, with significantly reduced XBP1 expression in ≥4-cell stage
SCNT embryos and blastocysts (p < 0.05). Treatment with 15 µg/mL adiponectin significantly im-
proved the expression of XBP1 and reduced the expression of ER stress-related genes (uXBP1, sXBP1,
PTPN1, and ATF4), increased the expression levels of pluripotency-related genes (Nanog and SOX2),
and decreased apoptosis-related gene expression (Caspase-3). These results suggest that 15 µg/mL
adiponectin enhanced the in vitro developmental capacity of early-stage SCNT porcine embryos by
reducing ER stress and apoptosis.

Keywords: adiponectin; endoplasmic reticulum stress; in vitro culture; parthenogenetic activation;
pig; somatic cell nuclear transfer
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1. Introduction

Adiponectin is a protein hormone, a subset of cytokines that are derived from adipose
tissue. Adiponectin affects glucose metabolism, fertility, and inflammation [1]. Further-
more, adiponectin regulates various signaling pathways in organisms, such as mitogen-
activated protein kinase (MAPK), serine/threonine protein kinase (AKT), AMP-activated
protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), and nuclear
factor-κB [2–5]. Adiponectin is localized in follicular cells, oocytes, corpus luteum, and
follicular fluid [6]. Adiponectin receptors have been detected in the cerebrospinal fluid of
humans, mice, rats, and in the hypothalamus of humans and pigs [7–9]. The adiponectin
receptor consists of two isoforms, namely, AdipoR1 and AdipoR2 [1]. The structure of the
two receptors is analogous to the topology of G-protein-coupled receptors with intracel-
lular/extracellular orientation of the N-terminus and C-terminus [2]. Adiponectin forms
various higher-order structures along with a trimeric form and low and high molecular
weight form, all of which have diverse mechanisms in metabolic homeostasis [10]. Levels
of adiponectin in the bloodstream vary from 3 to 30 µg/mL in various species [2,11–16].
In mice, AdipoQ, AdipoR1, and AdipoR2 are expressed in all stages of preimplantation
embryos [17]. AdipoR1 and AdipoR2 are strongly expressed in the preimplantation embryo
period, and AdipoR1 and AdipoR2 have been detected in human endometrial epithelial
and stromal cells [18]. In a rabbit experiment, AdipoQ, AdipoR1, and AdipoR2 were
detected in blastocysts and uteri during the preimplantation period [19,20]. These findings
support that adiponectin plays a role in embryo development and implantation.

Recent studies have revealed that adiponectin has important functions, such as
steroidogenesis, oxidative stress, and apoptosis, in germ and somatic cells [11]. In fe-
males, it functions in oocyte maturation and preimplantation embryo development [1,11].
Supplementation of 30 µg/mL adiponectin during oocyte maturation or embryo culture in
in vitro development of parthenogenetically activated embryos improved the maturation
and development rates of embryos in pigs [21]. Treatment with 5 µg/mL adiponectin
during in vitro maturation (IVM) of goat oocytes improved maturation rates by regulat-
ing the MAPK pathway [22]. In mouse experiments, adiponectin reduces endoplasmic
reticulum (ER) stress and apoptosis of adipocytes in vivo and in vitro by upregulating the
AMPK/PPARα/activating transcription factor-2 (ATF2) pathway [23]. Moreover, treatment
with adiponectin on bovine mammary epithelial (MAC-T) cells reduced activation of ER
stress on the proliferation of MAC-T cells [24]. Therefore, we hypothesize that adiponectin
has a strong relationship with ER stress in pigs.

ER is a membranous organelle that is essential for lipid metabolism, calcium metabolism,
protein synthesis, folding, and transportation. ER also plays a role in the cellular response
to stress [25,26]. In vitro embryo production may suffer various stresses during oocyte
collection for embryo culture processes [27]. With respect to embryo development, the
successful attenuation of ER stress signaling has a beneficial outcome of embryos on in vitro
embryonal development [28]. In porcine in vitro embryos, modulation of the unfolded
protein response (UPR) signaling pathways and reduction of ER stress during IVM restored
meiotic maturation rates [29]. Moreover, treatment with the ER stress inhibitor taurour-
sodeoxycholic acid (TUDCA) during late-cleaving embryos improved embryo quality and
development [30]. These findings imply that the alleviation of ER stress is important in
early-stage embryo development.

In vitro embryo production involves various steps such as ovarian harvesting, oocyte
selection, oocyte maturation, oocyte fertilization, parthenogenetic activation (PA), somatic
cell nuclear transfer (SCNT), and embryo culture. Due to the low capacity of pig embryo
development from the cleavage stage until the blastocyst stage compared to its in vivo
counterparts [31], researchers have been attempting to improve these techniques and
subsequently improve the in vitro production of embryos [32]. Recent studies on the estab-
lishment of chemically defined media, utilization of the ‘zona hardening’ technique [32],
and improvement of maturation rates [33,34] have proved successful. Moreover, various
treatments to improve embryo development, such as zebularine [35], adiponectin [21],
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quisinostat [36], suberoylanilide hydroxamic acid [37], LAQ824 [38], melatonin [29], and
spermine [39] have been reported. LAQ824 and Quisinostat are potent histone deacetylase
inhibitors (HDACi) known to inhibit class I, IIa, and IIb histone deacetylase [36,40]. HDACi
treatment has been used to improve embryo development in SCNT and PA embryos [41].
In addition, LAQ824 treatment enhanced SCNT blastocyst rate by upregulating histone 3
lysine 9 (H3K9) and histone 4 lysine 12 (H4K12) levels [38]. Quisinostat treatment could
improve SCNT embryo development by upregulating the epigenetic nuclear reprogram-
ming status [36]. Zebularine, a DNA methyltransferase inhibitor, has been reported to
alter DNA methyltransferase levels and improve porcine SCNT embryo competence [35].
Adiponectin treatment improved maturation of oocytes and blastocyst rate in porcine
PA embryos through the p38MAPK pathway [21]. Suberoylanilide hydroxamic acid has
been reported to improve the interspecies SCNT of dog–pig embryos [37]. Melatonin
treatment during in vitro maturation improved the meiotic maturation rate and reduced
ER stress [29]. Melatonin also supports lipid metabolism and is important for oocyte
maturation and embryo development [42]. Spermine supplementation enhanced oocyte
maturation, embryo development, and concomitantly increased intracellular glutathione
levels and decreased reactive oxygen species levels [39]. However, no previous study has
investigated the relationship between adiponectin and ER stress in the early embryonic
development of SCNT. Therefore, the purpose of this study was to investigate the relation-
ship between adiponectin treatment and the ER stress signaling pathway and apoptosis in
early-stage SCNT porcine embryos.

2. Materials and Methods
2.1. Ethics Approval and Chemicals

The study was conducted in conformity with the Institutional Animal Care and Use
Committee (IACUC) of Seoul National University (approval No. SNU-190621-2). All
reagents and chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless
otherwise specified.

2.2. Retrieval of Oocyte and IVM

Ovaries were obtained from Landrace prepubertal gilts at a local pig abattoir and
placed at 32–37 ◦C in 0.9% normal saline solution. Oocyte collection and IVM were
performed as previously explained [33,35,42,43]. In brief, Oocytes were collected from
follicles (3–6 mm) utilizing a 10-mL syringe. Follicular fluid containing cumulus-oocyte
complexes COCs was aspirated and then washed at least three times in a porcine washing
medium containing 9.5 g/L of tissue culture medium (TCM)-199 (1X) Earle’s salts (Cat. No.
31100-027) (Thermo Fisher Scientific, MA, USA), 10 mM N-piperazine-N′- (2-ethanesufonic
acid) (HEPES), 0.3% polyvinyl alcohol (PVA), 2 mM sodium bicarbonate, 5 mM sodium
hydroxide, and 1% penicillin-streptomycin (Invitrogen). We selected COCs with a compact
multi-layer of cumulus cells and dark, evenly granulated ooplasm for the experiment.
Immature oocytes were cultured in IVM medium containing of TCM-199 Earle’s salts
(Cat. No. 11150-059), 10% porcine follicular fluid (pFF) (v/v), 10 ng/mL epidermal growth
factor, 0.57 mmol/L cystein, 0.91 mmol/L sodium pyruvate, 10 IU/mL human chorionic
gonadotropin, 10 IU/mL equine chorionic gonadotropin, and 5 mg/mL insulin at 39 ◦C in
a humidified atmosphere of 5% CO2 in air for 22 h. Then, COCs were washed, relocated
into hormone-free IVM medium, and then cultured for 22 h.

2.3. Parthenogenetic Activation

Parthenogenetic activation methods were performed as explained formerly [44].
Briefly, After IVM, denuded oocytes were stabilized in activation medium comprises
with 0.28 M mannitol, 0.1 mM CaCl2, 0.5 mM HEPES, and 0.1 mM MgSO4. Next, oocytes
were transferred into an activation chamber. Electric activation of oocytes was performed
by using a BTX Electro-Cell Manipulator 2001 (BTX Inc., San Diego, CA, USA) with a single
direct current (DC) pulse of 1.5 kV/cm for 60 µs. Oocytes were transferred to porcine
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zygote medium-5 (PZM-5) (Waco Chemicals, Osaka, Japan, Cat. CSR-CK024) after electri-
cal activation, then cultured at 39 ◦C in a humidified atmosphere of 5% O2, 5% CO2, and
90% N2.

2.4. Cell Isolation, Nuclear Donor Cell Culture, and Arrangement

Porcine fibroblasts were obtained from the ear tissue of an adult pig then cleaned as
explained previously [36,45], hairs were removed using a sterile surgical blade and washed
four to five times with phosphate-buffered saline (PBS, Gibco, Grand Island, NY, USA). Cell
preparation was performed as explained in a previous study [36,46]. The minced tissue
was cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, culture medium)
consists of 1 mM sodium pyruvate, 10% fetal bovine serum (Gibco, culture medium) (v/v),
and 100 IU/mL each of penicillin and streptomycin at 38.5 ◦C, 5% CO2 in humidified air.
Donors for SCNT were used from cells from passages 3 to 7. The cell suspension was
prepared by using trypsin and placed in Tyrode’s albumin lactate pyruvate (TALP)-HEPES
for SCNT.

2.5. SCNT and Embryo Culture

SCNT processes including enucleation, nuclear transfer, fusion, and activation were per-
formed as explained formerly [38]. In brief, oocytes were denuded with 0.1% hyaluronidase
in TALP-HEPES medium and stained with 5 µg/mL Hoechst-33342 in TALP-HEPES for
10 min. Oocytes with dark homogenous ooplasm with polar body were selected for
SNCT [33]. Furthermore, the first polar body and elemental Metaphase II (MII) chromo-
some were enucleated using an aspiration glass pipette. Then, a donor cell was transferred
using an aspiration glass pipette into the perivitelline space of enucleated oocyte. The
medium for enucleation was TALP medium consisting of 5 µg/mL cytochalasin B (CB)
and TALP without CB for nuclear transfer injection medium. The couplets were stabilized
into fusion medium (0.28 M mannitol enclosing 0.1 mM MgSO4 and 0.5 mM HEPES) and
placed in a 20 µL droplet of fusion medium for electrically induced fusion. Hereinafter,
oocyte-donor cell couplets fusion was implemented using an electrical machine (LF101;
Nepa Gene, Chiba, Japan) with a single DC pulse of 1.2 kV/cm, 30 µs. The couplets
were cultured for 1 h in PZM 5 medium, then equilibrated in activation medium (0.28 M
mannitol enclosing 0.1 mM CaCl2, 0.1 mM MgSO4, and 0.5 mM HEPES) and accomplished
by electrical stimulation with a single DC pulse of 1.5 kV/cm for 30 µs using a BTX Electro
Cell Manipulator 2001 (BTX Inc., San Diego, CA, USA). SCNT embryos were rinsed several
times in PZM-5 culture medium, and approximately 15–20 embryos were cultured in 20 µL
PZM-5 droplets topped with mineral oil at 38.5 ◦C in a humidified atmosphere of 5% CO2,
90% N2, and 5% O2.

2.6. Experimental Design and Adiponectin Treatment

In the first experiment, we supplemented various concentrations of adiponectin during
IVC on parthenogenetic porcine embryos. Experimental design in the first experiment was
as follows: (i) adiponectin 0 µg/mL (control); (ii) adiponectin 5 µg/mL; (iii) adiponectin
15 µg/mL; and (iv) adiponectin 30 µg/mL. Adiponectin (Cat No. RD572023100, BioVendor)
was supplemented into the culture medium during IVC. In the second experiment, we
utilized the 15 µg/mL adiponectin treatment during IVC for SCNT: (i) adiponectin 0 µg/mL
(control) and (ii) adiponectin 15 µg/mL. In the first and second experiment, we studied
the effects of adiponectin on cleavage rate and following embryo development, total cell
numbers (TCN) of blastocysts, and X-box binding protein 1 (XBP1) expression levels. The
experiment was replicated at least three times in each analysis. In the third experiment, we
analyzed the mRNA expression levels of the gene associated with ER stress, apoptosis, and
embryo quality from ≥4 cell stage embryo derived from SCNT on day-2. We evaluated
two groups: (i) adiponectin 0 µg/mL (control) and (ii) adiponectin 15 µg/mL.
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2.7. Embryo Development and Total Blastocyst Cells Assessment

The embryo development calculation as day 0 is based on the day of electrical activa-
tion for PA and SCNT-derived embryos. Cleavage and blastocyst rates were evaluated on
day-2 (48 h) and day-7 (168 h), respectively. Further, the TCN of blastocysts is counted by
the nuclei staining technique [43]. Blastocysts were rinsed in TALP solution, immediately
stained with 5 µg/mL Hoechst-33342 in a dark environment for 10 min. Blastocysts were
placed on glass slides with a tear of glycerol, topped with a cover glass, and evaluated
by a fluorescence microscope (TE 2000; Nikon Corp, Tokyo, Japan). Image J software
(version 1.49 q; National Institutes of Health, Bethesda, MD, USA) was utilized to analyze
the images.

2.8. Immunofluorescence Staining of XBP1 in Embryos

Protein levels of XBP1 were analyzed by immunofluorescence staining described
previously [33]. In the first experiment, we performed on blastocyst stage of PA-derived
embryos. At least 20 blastocysts each group from four biological replicates were utilized.
In the second experiment, we performed on embryos at ≥4 cell stage and at the blastocyst
stage. We utilized at least 20 samples of ≥4 cell embryos or blastocysts per group from
four biological replicates. In brief, samples were washed with PBS with 1% polyvinyl
alcohol (PVA; w/v), then sample fixation was implemented for 1 h in 4% paraformaldehyde
(w/v) in PBS. The samples were percolated with 1% (v/v) Triton X-100 in distilled water
(DW) at 38 ◦C incubator for 1 h, and then the embryos were rinsed in 1% PVA in PBS.
Further, to prevent nonspecific binding, the samples were incubated in 2% bovine serum
albumin (BSA) in PBS for 2 h. Then, embryos were transferred to 2% BSA in PBS consist
of XBP1 primary antibody (1:400; PA5-27650; Invitrogen, Carlsbad, CA, USA), incubated
at 4 ◦C for the night. Next, 1% PVA in PBS solution was used for washing the embryos.
Embryos were rinsed in PVA and incubated in a secondary fluorescein isothiocyanate-
conjugated anti-rabbit polyclonal antibody (1:200; ab6717; Abcam, Cambridge, UK) for 2 h
in room temperature at 25 ◦C. Dilution of antibody was implemented using 2% BSA in
PBS. Further, the embryos were arranged on a glass slide with 100% glycerol and captured
with epifluorescence microscope (TE2000-S; Nikon Corp., Tokyo, Japan). Image J software
(version 1.46r; National Institute of Health, Bethesda, MD, USA) was used to analyze the
fluorescence images.

2.9. Analysis of Gene Expression on ≥4 Cell Stage Embryo on Day-2 by Quantitative Real-Time
PCR (qRT-PCR)

The samples were collected from at least 400 of ≥4 cell stage embryo from at least 8
biological replicates in each group and preserved at−80 ◦C until use. RNA extraction, com-
plementary DNA (cDNA) synthesis, and processes associated quantitative real-time PCR
(qRT-PCR) were implemented as formerly described [38,47]. We used the RNAqueousTM

Micro Kit (Invitrogen, Vilnius, Lithuania). mRNA quantification was implemented uti-
lizing a NanoDrop2000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE,
USA). According to the company’s guideline, cDNA was synthesized immediately using
amfiRivert cDNA synthesis Platinum Master Mix 0 (GenDEPOT, Houston, TX, USA). For
quantitative real-time PCR, composition of every single reaction is consisting of 10 µL SYBR
Premix Ex Taq (Takara, Otsu, Japan), 8.2 µL of Nuclease Free Water, 1 µL cDNA, 0.4 µL
(10 pmol/µL) forward primer, and 0.4 µL (10 pmol/mL) reverse primer. These were placed
in a 96-well reaction plate (Micro-Amp Optical 96-Well Reaction Plate, Applied Biosystems,
Singapore). The StepOneTM Real-Time PCR System (Applied Biosystems, Waltham, MA,
USA) was used for amplification of the mixture. Thermal cycler was performed 40 PCR
cycles with parameters: initial denaturation at 95 ◦C for 15 s, annealing at 60 ◦C for 1 min,
and extension at 72 ◦C for 1 min. we performed at least three replicates for each plate.
The mRNA expression levels of each gene were normalized to the housekeeping gene
(GAPDH). The list of primer sequences is presented in Table 1. Each transcript sample was
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calculated by using the equation R = 2−[∆Ct sample − ∆Ct control]. For simplification of
correlation, the average expression level of each gene from the control group was set as 1.

Table 1. Primer sequences for qRT-PCR.

Genes Primer Sequences (5′–3′) Product Size (Bp) Accession No.

GAPDH F: GTCGGTTGTGGATCTGACCT
R: TTGACGAAGTGGTCGTTGAG 207 NM_001206359

uXBP1 F: CATGGATTCTGACGGTGTTG
R: GTCTGGGGAAGGACATCTGA 106 NM_001142836.1

sXBP1 F: GGAGTTAAGACAGCGCTTGG
R: GAGATGTTCTGGAGGGGTGA 142 NM_001271738.1

ATF4 F: AGTCCTTTTCTGCGAGTGGG
R: CTGCTGCCTCTAATACGCCA 80 NM_001123078.1

PTPN1/PTP1B F: GGTGCTCACGACTCTTCCTC
R: TTCTCTGCACGAGCTTCTGA 158 NM_001113435.1

Caspase-3 F: GCCATGGTGAAGAAGGAAAA
R: GGCAGGCCTGAATTATGAAA 132 NM_214131.1

Nanog F: GGTTTATGGGCCTGAAGAAA
R: GATCCATGGAGGAAGGAAGA 98 NM_001129971

SOX2 F: ATGCACAACTCGGAGATCAG
R: TATAATCCGGGTGCTCCTTC 130 NM_001123197

qRT-PCR, Quantitative real-time polymerase chain reaction; F, Forward primer; R, Reverse Primer.

2.10. Statistical Analysis

The data were evaluated with GraphPad PRISM 5.01 (PRISM 5; GraphPad Software,
Inc., San Diego, CA, USA). All data from the first experiment were evaluated by using
univariate analysis of variance (ANOVA) followed by Tukey’s test. In addition, all data
from the second and third experiments concerning gene expression levels were evalu-
ated by Student’s t test. Probability values less than 0.05 (p < 0.05) were regarded to be
statistically significant.

3. Results
3.1. Effects of Adiponectin Supplementation on Embryo Development, TCN of Blastocyst, and
Expression of XBP1 Derived from Parthenogenetic Activation

In the first experiment, after parthenogenetic activation of oocytes, the effects of
adiponectin on cleavage rate, embryo development, TCN of blastocysts, and protein
expression of XBP1 were investigated (Figure 1). We applied various concentrations of
adiponectin during IVC for 168 h. Results showed that 15 and 30 µg/mL adiponectin
supplementation enhanced the development of cleavage, blastocyst, and TCN of blastocysts
compared to the control and 5 µg/mL adiponectin groups (p < 0.05). Furthermore, 15 and
30 µg/mL adiponectin treatment reduced the expression levels of XBP1 compared to the
control and 5 µg/mL adiponectin groups (p < 0.05). Interestingly, there were no significant
differences between 15 and 30 µg/mL adiponectin treatment on cleavage, blastocyst, TCN
of the blastocyst, and expression levels of XBP1.

3.2. Effects of Adiponectin Supplementation during IVC on Embryo Development, TCN of
Blastocyst, and Expression of XBP1 Derived from SCNT

In experiment 2, we studied the effects of adiponectin on cleavage, blastocyst rate,
TCN of blastocysts, and protein expression of XBP1 in ≥4-cell embryos and blastocysts
by performing the SCNT technique. According to the results of the first experiment,
15 µg/mL adiponectin treatment was utilized in the second experiment. The use of
15 µg/mL adiponectin supplementation yielded a significant enhancement in cleavage,
blastocyst formation rate, and TCN compared to the control treatment (p < 0.05) (Table 2). In
addition, analysis of XBP1 expression level revealed that 15 µg/mL adiponectin treatment
significantly reduced the level of XBP1 expression in ≥4-cell stage embryos and blastocysts
compared to the control treatment (p < 0.05) (Figure 2).



Animals 2021, 11, 473 7 of 15

Figure 1. Effect of adiponectin supplementation of various concentrations during in vitro culture of parthenogenetic
activation embryos on cleavage rate (a), blastocyst formation rate (b), total cell numbers (c), and protein expression of
XBP1 (d); Hoechst staining of blastocysts (Scale bars 50 µm) (e) and XBP1 immunofluorescence (scale bars 50 µm) (f). Data
are expressed as mean ± SD. a,b Bars with different letters indicate significant difference (p < 0.05). The experiment was
performed as at least three independent replicates. AdipoQ 5 = adiponectin 5 µg/mL; AdipoQ 15 = adiponectin 15 µg/mL;
AdipoQ 30 = adiponectin 30 µg/mL. TCN, total cell number of blastocysts.

Table 2. Effect of adiponectin treatment during in vitro culture (IVC) on embryonic development
and total blastocyst cell number derived from somatic cell nuclear transfer (SCNT) embryos.

Adiponectin
(µg/mL)

Number of
Embryos
Cultured

No. of Embryos Developed (Mean ±
SD, %) Total Blastocyst Cell

Number (Mean ± SEM)
≥2 Cells Blastocyst

0 132 117 (88.6 ± 0.89) a 34 (25.6 ± 3.1) a 55.96 ± 5.5 a

15 130 120 (92.3 ± 0.55) b 53 (39.8 ± 3.1) b 72.44 ± 7.0 b

Note: Replication number = 5. Abbreviation: SD: standard deviation. a,b Values within a column with different
superscripts differ significantly at p < 0.05.

3.3. Effects of 15 µg/mL Adiponectin Supplementation during IVC on Unfolded Protein
Response-Related Genes Caspase-3, Nanog, and SOX2 in ≥4-Cell Day-2 Embryos

In experiment 3, we analyzed the effects of 15 µg/mL adiponectin treatment on the
expression of UPR genes, Caspase-3, Nanog, and SOX2 in ≥4-cell day-2 SCNT embryos
(Figure 3). Treatment with 15 µg/mL adiponectin significantly reduced the expression
levels of uXBP1, sXBP1, PTPN1, ATF4, and apoptosis-related gene Caspase-3 compared to
the control treatment (p < 0.05). Moreover, the expression levels of pluripotency-related
genes (Nanog and SOX2) were lower than those in the control (p < 0.05).
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Figure 2. Effect of 15 µg/mL adiponectin supplementation during in vitro culture of somatic cell nuclear transfer (SCNT)
embryos on the protein expression of XBP1 in ≥4-cell embryos on day-2 (a) and in blastocysts (b); Hoechst (blue) and
immunofluorescence (green) staining of control and adiponectin-treated ≥4-cell embryos (scale bars 200 µm) (c) and
blastocysts (scale bars 100 µm) (d). Comparison of XBP1 expression in the blastocyst stage derived from parthenogenetic
activation and SCNT (scale bars 100 µm) (e,f). At least 24 embryos per group from 4 biological replicates were analyzed in
each experiment. Data are expressed as mean ± SD. a,b Values with letters indicate significant difference (p < 0.05). The
experiment was performed as at least three independent replicates. AdipoQ 15 = adiponectin 15 µg/mL.

Figure 3. Relative expression levels of unfolded protein response-related mRNAs (uXBP1, sXBP1, ATF4, PTPN1), Caspase-3,
Nanog, and SOX2 in ≥4-cell embryos (day 2) derived from somatic cell nuclear transfer embryos (a–g). Data are expressed
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as mean standard deviation (±SD). Within each category, a,b groups marked with different letters are significantly different
(p < 0.05). The experiment was replicated three times. AdipoQ 15 = adiponectin 15 µg/mL.

4. Discussion

In vitro embryo production by means of parthenogenetic activation, in vitro fertiliza-
tion (IVF), and embryo culture techniques could be crucial for agricultural and biomedical
purposes, as these biotechnologies could ensure good development and quality of embryos.
Along with the success of IVF-IVC technologies, crucial improvements have been achieved
in SCNT through the enhancement of enucleation methods, fusion, activation, and pro-
duction efficiency [48,49]. However, embryos derived from current IVC systems still face
the major challenge of low development rate and quality compared to in vivo-derived em-
bryos [50,51]. The major contributor to this failure in in vitro embryonic development is ER
stress signaling, and factors that modulate or alleviate ER stress signaling have resulted in
positive effects on embryo survival and further development capacity [28]. The reduction
of ER stress is progressively performed in in vitro culture treatments in order to increase
the efficiency of parthenogenetic activation, SCNT, and IVF. Examples include the use of
tauroursodeoxycholic acid [52,53], melatonin [29], valproic acid [54], and salubrinal [55]. In
the present study, we studied the supplementation of adiponectin during IVC on embryo
development, ER stress, embryo quality, and apoptosis.

In the first experiment, we found that 15 and 30 µg/mL adiponectin supplementa-
tion significantly increased cleavage rates, blastocyst rates, and TCN of parthenogenetic
embryos. Moreover, there were no significant differences between 15 and 30 µg/mL
adiponectin treatment during IVC. Concomitantly, these treatment groups significantly
reduced the expression level of XBP1 compared to the control and 5 µg/mL adiponectin
groups (p < 0.05). We demonstrated that treatment with 15 and 30 µg/mL adiponectin
significantly improved cleavage rate, blastocyst rate, and TCN of blastocysts compared
to the control and 5 µg/mL adiponectin groups (p < 0.05). These results implied that 15
µg/mL adiponectin treatment during IVC was sufficient to enhance in vitro embryo devel-
opment. The results were similar between 15 and 30 µg/mL adiponectin treatment, with no
significant difference among the groups (p > 0.05). In addition, a previous study reported
that 30 µg/mL adiponectin improved oocyte maturation rate and blastocyst formation
rates in porcine oocytes [21]. Even though 30 µg/mL is the upper limit of physiological
concentration [11,56], investigation on higher concentrations of adiponectin treatment
could provide further insight regarding the evaluation of the effects of adiponectin on
in vitro embryo development.

Adiponectin directly affects the development of preimplantation embryos of mice
in vitro [1]. In porcine embryos, adipoR1 and adipoR2 were localized in cumulus cells,
oocytes, and early-stage embryos [21]. Furthermore, adiponectin improves the in vitro
maturation of oocyte and embryo development through the p38MAPK pathway [21],
reduces ER stress-induced early apoptosis, and blocks the mitochondrial apoptosis pathway
through the AdipoR1/AMP-activated protein kinase signal pathway in mouse adipose
tissue [23]. Treatment by 10 and 20 µg/mL adiponectin in human umbilical vein endothelial
cells (HUVECs) for 24 h after stimulation by lipopolysaccharide reduced the number of
apoptotic endothelial cells, implying that adiponectin treatment reduced apoptosis in
endothelial cells by alleviating the ER stress IRE1α pathway stimulated by oxidative
stress [57]. Many studies have reported that adiponectin has beneficial effects in alleviating
ER stress in cells and embryo development [21,23,24,57]. Adiponectin reduced ER stress
and apoptosis of endothelial cells by downregulating GRP78, Caspase-12 expression, and the
IRE1α pathway in HUVECs [57]. In addition, activation of IREα can promote the C/EBP-
homologous protein (CHOP) signaling pathway to induce apoptosis [58,59]. Adiponectin
also alleviated UPR signaling by downregulating glucose-regulated protein 78 (GRP78),
eukaryotic translation initiator factor 2α (eIF2 α), protein kinase RNA-like ER kinase (PERK),
and IRE1α (ATF6α) expression in MAC-T [24].
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XBP1 is an essential activator regulating gene expression of UPR signaling during ER
stress. Under stress, XBP1 transcription is activated to form spliced-XBP1 (sXBP1) from
the unspliced-XBP1 (uXBP1) form. Moreover, XBP1 is spliced specifically under ER stress;
therefore, XBP1 is generally used as an ER stress marker both in vivo and in vitro [27,60].
In addition, XBP1 expression was detected in the cytoplasm at the 2- to 8-cell, morula, and
blastocyst by fluorescence staining assessment [61]. Inhibition of ER stress by alleviating
the expression of active XBP1 improved embryo development in mice and pigs [29,60,61].
However, day-2 embryos with 5 to 8 cells can be associated with fragmented embryos [62].
Embryos derived from SCNT and parthenogenetic activation revealed a higher occurrence
of fragmented embryos whose presence was misinterpreted during observation under
a microscope [63,64]. Furthermore, fragmentation may significantly decrease blastocyst
rate and TCN of blastocysts in humans and pigs [64,65]. The fragmentation rates at
the 5- to 8-cell stage were 28.7% and 40.8% in parthenogenetic activation and SCNT
embryos, respectively [62]. In contrast, no fragmentation was observed in porcine embryos
derived in vivo, this was associated with microfilament distribution between in vitro and
in vivo-derived embryos [64]. The cause of embryonic fragmentation may be related to
in vitro culture conditions [65]. Moreover, in vitro culture conditions produce a higher
concentration of reactive oxygen species (ROS) that trigger developmental disturbance
of the embryos [66]. Many studies have reported the use of chemically defined media
such as PVA for IVM supplementation. These reports revealed that PVA supplementation
of IVM medium can be utilized for oocyte maturation comparable to pFF-supplemented
medium [67–69]. Therefore, further investigation of embryo development stages associated
with adiponectin, in vitro culture defined media, and ER stress could contribute to the
enhancement of in vitro embryo development.

Our present study showed that 15 and 30 µg/mL adiponectin treatments reduced the
expression levels of XBP1 in blastocysts derived from parthenogenetic activation. XBP1
is one of the classic ER stress marker genes; other ER stress-related genes include ATF4,
GRP78, HSPA5, and ATF6 [27]. In addition, XBP1 has an important function in the IVM
of oocytes and in vitro embryo development [27,61]. The sXBP1 and uXBP1 mRNAs
were expressed at the 4-cell, morula, and blastocyst stages of porcine embryos, while
the XBP1 protein is expressed in the cytoplasm and nucleus during the 4-cell, morula,
and blastocyst stages [60]. In addition, ER stress-activated XBP1 splicing may play role
early embryonic genome activation in porcine [60]. In the second experiment, 15 µg/mL
adiponectin treatment during the IVC of SCNT embryos enhanced cleavage, blastocyst rate,
and TCN of the blastocysts, and concurrently reduced XBP1 expression levels in ≥4-cell
embryos and blastocysts (p < 0.05). A comparison of XBP1 expression between blastocysts
derived from parthenogenetic activation and SCNT revealed that SCNT embryos showed
significantly higher expression than parthenogenetic activation embryos. In addition, SCNT
embryos received more manipulation than parthenogenetic activation embryos, including
enucleation of first polar body, MII chromosome mass, and nuclear transfer of somatic
cells [38]. In the present study, adiponectin improved PA and SCNT embryo development
in the early stage and concomitantly decreased XBP1 expression. Investigation of ER stress
in porcine SCNT and IVF embryos has been previously reported. Lee et al. reported
that SCNT embryos showed increased expression levels of XBP1 compared with IVF
embryos in all stages of preimplantation embryos [70]. Therefore, manipulation of oocytes
in SCNT embryos can induce excessive ER stress and apoptosis during preimplantation
development compared to PA and IVF embryos. Investigation of XBP1 during embryo
development has been reported in previous studies, and XBP1 protein expression was
detected in germinal vesicles, MII, 1-, 2-, 4-, 8-cell, morula, and blastocyst stages of porcine
PA embryos. In addition, expression of XBP1 was low during the MII, 1-, 2-, and 8-
cell stages, but high during the morula and blastocyst stages [60]. Furthermore, mRNA
expression of XBP1 was strong during the 1-cell stage and weak during the blastocyst
stage in porcine SCNT and IVF embryos [70]. In contrast, ER stress conditions were
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observed during the 1-cell stage but were strong in the blastocyst stage of mouse embryo
development [71].

In the third experiment, we evaluated the gene expression related to UPR (uXBP1,
sXBP1, PTPN1, and ATF4), apoptosis (Caspase-3), and embryo development (Nanog and
SOX2) in SCNT 4-cell embryos. During in vitro embryo production processes, including
parthenogenetic activation and SCNT, the oocytes and embryos face various stresses [27].
Stress on the ER initiates the unfolded protein response mechanism. ER stress initiates
the segregation of GRP78/BiP from three branches of transmembrane proteins (ATF6,
IRE1α, and PERK) [27,33]. ATF6, IRE1α, and PERK actively correct protein folding, enact
ER homeostasis, and eliminate misfolded proteins [72]. Activation of PERK promotes
translation of ATF4, inducing transcription of genes such as GRP78 or BiP [73]. Furthermore,
IRE1α is activated and triggers the conversion of uXBP1 to sXBP1, which subsequently
stimulates UPR-reactive genes [27]. ER stress also promotes PTPN1 gene expression, which
is associated with ER stress. Therefore, the reduction of XBP1 alleviates ER stress levels [74].

Our present study revealed that 15 µg/mL adiponectin treatment significantly reduced
the mRNA expression of ER stress-associated genes (uXBP1, sXBP1, PTPN1, and ATF4)
in early-stage SCNT embryos. These results demonstrated that 15 µg/mL adiponectin
treatment alleviated the ER stress-associated genes. Under ER stress conditions triggered by
tunicamycin, expression of u-XBP1 and s-XBP1 in the 4-cell, morula, and blastocyst stages
increased [60]. Moreover, tunicamycin treatment during IVM in porcine embryos increased
the expression of ER stress-related genes, including u-XBP1 and s-XBP1 in oocytes [33].
In this study, 15 µg/mL adiponectin treatment reduced expression of u-XBP1 and s-XBP1
to the same degree at the transcriptional level. In addition, adiponectin treatment also
reduced the expression levels of other genes related to ER stress such as ATF4 and PTPN1.
Based on these results, adiponectin treatment reduced ER stress by downregulating UPR-
related genes such as uXBP1, sXBP1, PTPN1, and ATF4. A previous study reported a
relationship between XBP1 and adiponectin. XBP1 overexpression triggered inflammation
of adipocytes by downregulating adiponectin and activating IL-6, TNF-, and leptin expres-
sion [75]. A study on mitochondrial dysfunction and ER stress revealed that treatment
with S-methylisothiourea sulfate significantly reduced sXBP1 expression and promoted
adiponectin synthesis in adipocytes [76]. However, further investigation is needed to eluci-
date the relationship between adiponectin, ER stress-related genes, and the improvement
of in vitro embryo production.

Analysis of the apoptosis-related gene Caspase-3 revealed that it was significantly
downregulated in 15 µg/mL adiponectin treatment compared to the control (p < 0.05).
Similar results were obtained with TUDCA treatment during the IVC of porcine embryos.
The presence of TUDCA increased the TCN of blastocysts and increased anti-apoptotic
gene expression (BCL2), however, the pro-apoptotic genes BCL2L1 (Bcl-xl) and TP53 were
downregulated [60]. In addition, adiponectin has a positive effect on the reduction of
apoptosis; the number of apoptotic endothelial cells caused by sepsis was attenuated
following treatment with adiponectin. Furthermore, adiponectin reduced apoptosis of
endothelial cells by alleviating ER stress through the inositol-requiring enzyme 1α (IRE1α)
pathway [57]. At the protein level, adiponectin treatment increased PPARα expression,
reduced ATF2 protein levels, and reduced apoptosis in mouse adipocytes [23]. Treatment
with adiponectin in HUVECs reduced ER stress and apoptosis by decreasing p-IRE1αI,
GRP78, CHOP, and Caspase-12 protein levels [57]. Moreover, treatment with adiponectin
in rat ventricular myocytes alleviated ER stress response by reducing the levels of GRP78,
Caspase-12, C/EBP homologous protein, and p38MAPK [77]. However, additional studies
are needed to investigate the relationship between adiponectin and ER stress, particularly
on the protein levels of key genes related to ER stress and mechanisms of adiponectin
associated with ER stress in specific stages of porcine in vitro embryo development.

In addition, mRNA expression levels of genes related to embryo development (Nanog
and SOX2) were high in the 15 µg/mL adiponectin treatment group. Nanog is expressed
in the inner cell mass (ICM) and functions to maintain pluripotency. In addition, SOX2 is
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related to the pluripotent embryonic stem cells (ESCs) phenotype [38]. Therefore, apoptosis
is related to blastocyst quality [38]. Accordingly, the results of 15 µg/mL adiponectin
treatment provide constructive evidence supporting ESCs. Moreover, the cleavage rate,
blastocyst formation rate, and total cell number of blastocysts significantly improved in the
15 µg/mL adiponectin treatment due to firm regulation of apoptotic genes.

5. Conclusions

The present study revealed that 15 µg/mL adiponectin treatment in IVC enhanced
the developmental capacity of early-stage porcine SCNT-derived embryos by reducing the
level of XBP1 expression and alleviating ER stress-related genes. In addition, 15 µg/mL
adiponectin treatment enhanced the TCN of blastocysts and the developmental capacity
of early-stage SCNT embryos by enhancing the expression levels of Nanog and SOX2 and
decreasing that of Caspase-3.
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