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Microarray gene expression data provide a prospective way to diagnose disease and classify cancer. However, in bioinformatics,
the gene selection problem, i.e., how to select the most informative genes from thousands of genes, remains challenging. 1is
problem is a specific feature selection problem with high-dimensional features and small sample sizes. In this paper, a two-stage
method combining a filter feature selection method and a wrapper feature selection method is proposed to solve the gene selection
problem. In contrast to common methods, the proposed method models the gene selection problem as a multiobjective op-
timization problem. Both stages employ the same multiobjective differential evolution (MODE) as the search strategy but
incorporate different objective functions. 1e three objective functions of the filter method are mainly based on mutual in-
formation. 1e two objective functions of the wrapper method are the number of selected features and the classification error of a
naive Bayes (NB) classifier. Finally, the performance of the proposed method is tested and analyzed on six benchmark gene
expression datasets. 1e experimental results verified that this paper provides a novel and effective way to solve the gene selection
problem by applying a multiobjective optimization algorithm.

1. Introduction

Gene selection is an important issue in bioinformatics [1]. A
gene is the basic functional unit of heredity. Gene expression
is the process in which the instructions encoded in genes are
used to synthesize gene products [2] such as proteins. 1en,
the gene products dictate cellular function. 1erefore, ab-
normal gene expression is usually correlated with different
types of disease, such as cancer [3]. Usually, many diseases
correspond to unique gene expression profiles that can be
revealed by DNA microarray technology [4]. Typically,
microarray data corresponding to a certain disease consist of
a set of biological samples. From each sample, the expression
of thousands of genes at each position can be measured. As a
result, microarray data are usually in the form of a matrix.
However, it is not an easy task for researchers to check which

genes are responsible for a given disease because of the high
dimensionality of microarray data. 1us, determining how
to select the most significant genes effectively for further
analysis becomes urgent and vital.

1e gene selection problem is intrinsically a feature se-
lection problem with high-dimensional features and small
sample sizes. Since the gene expression data can be labeled
(whether the sample is malignant or not), partially labeled, or
unlabeled, three categories of methods are applied to solve the
gene selection problem in the literature [5]: supervised, sem-
isupervised, and unsupervised feature selection methods. Be-
cause labeled data are themost common types of data in reality,
supervised feature selection methods are the most widely used
andmost practical methods for the gene selection problem.We
refer to feature (gene) selection methods as supervised feature
(gene) selection methods in the following context.
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In the field of machine learning, feature selection, also
known attribute selection, is defined as the process by
which the best subset of relevant features is selected from a
large set of features [6], and the performance of classifiers is
assuredly improved by the optimal feature subset when
compared with the utilization of all features. However, it is
difficult to execute feature selection by retaining relevant
features and removing irrelevant and redundant features.
1ere are two main obstacles in feature selection. First, the
size of the search space is quite large. Given a dataset with n

features, there are 2n subsets (solutions) [7]. Specifically, as
big data continues to grow [8], n becomes increasingly
large. 1us, in most cases, an exhaustive search for feature
selection is impossible. Second, the feature interaction
problem makes feature selection complex. For example, a
feature as a single entity is irrelevant to the target, but when
combined with another feature, it may become significantly
relevant. In fact, there are many interaction patterns among
features. As a result, “the m best features are not the best m

features” [9]. 1erefore, the performance of a feature se-
lection method depends on two key factors: (1) effective
evaluation criteria to measure the quality of a feature subset
and (2) an efficient search strategy to explore the large
search space [10].

Regarding evaluation criteria, feature selection methods
can be roughly classified into two categories: filter methods
and wrapper methods [10]. 1e main difference between
them is that wrapper methods use a classifier to evaluate a
feature subset, while filter methods do not. Filter methods
are independent of any classifier and focus on the intrinsic
characteristics of the dataset. 1e common metrics used in
filter methods are correlation [11] and mutual information
[12]. Specifically, the filter methods examining each feature
separately are considered univariate. 1ey ignore the feature
interaction problem and lead to the redundancy of feature
subsets. 1us, multivariate filter methods such as minimum
redundancy-maximum relevance (mRMR) [13] are con-
sidered better choices. Wrapper methods select discrimi-
native feature subsets to improve the classification
performance. Most popular classifiers can be incorporated
into wrapper methods, e.g., the naive Bayes (NB), K-nearest
neighbors, support vector machine, and neural network [14].
It has been generally regarded that filter methods are usually
considered faster, but their accuracy is relatively lower.
Wrapper methods are the opposite of filter methods because
they need to consider the computational costs of the in-
volved classifiers. 1us, combining them as a hybrid method
is an alternative and promising method for feature selection
problems, especially for the gene selection problem [15].

1ere are two main categories of search strategies ap-
plied in feature selection. 1e first category is sequential
search. Sequential forward selection and sequential back-
ward selection [16] are considered conventional methods
but suffer from the “nesting effect” [17] because only one
feature is added or removed at a time.1e second category is
a randomized search strategy that starts by randomly
selecting some features and then executing a heuristic
search. It has been verified that these methods based on
randomized search are better than the methods based on

sequential search because they can escape local optima more
easily [10]. Specifically, applying evolutionary computation
(EC) techniques such as genetic algorithms (GAs) [18],
particle swarm optimization (PSO) [19, 20], and differential
evolution (DE) [21, 22] to feature selection has raised the
attention of researchers in recent years.

Regarding the gene selection problem, numerous
methods based on EC techniques have been proposed in the
literature [5]. 1ese pertinent experiments have shown that
EC techniques can achieve very competitive performance
compared with traditional methods. For example, Mohamad
et al. proposed an improved binary PSO as a wrapper
method and obtained positive results [23]. Shreem et al.
proposed a Markov blanket-embedded harmony search
algorithm as a wrapper method to solve the gene selection
problem [24], and Elyasigomari et al. proposed a filter
method based on the cuckoo optimization algorithm and
shuffling [25], where a clustering technique was involved. In
addition, a modified artificial bee colony algorithm was
applied to solve the gene selection problem in the work of
Alshamlan et al. [26], where the searchmethod was enhanced
by combining two EC algorithms. Note that most current
methods based on EC techniques treat the gene selection
problem as a single-objective optimization problem. On the
other hand, recent work [22, 27] suggests that multiobjective
optimization techniques are alternatives for solving the gene
selection problem. 1is is because the single objective to
multiobjective transformation can lead to improvements in
the search strategy and evaluation criteria; thus, more com-
petitive results can be obtained. However, to the best of the
authors’ knowledge, employing an effective multiobjective
differential evolution (MODE) approach to address the gene
selection problem has not yet been well explored.

1us, in this study, a two-stage method based on
multiobjective optimization is proposed. 1e first stage
included a multivariate filter method where three objective
functions referring to mutual information are incorporated.
1e second stage included a conventional wrapper method
involving the NB classifier. 1e number of selected features
and the classification error are incorporated as the two
objective functions in this stage. In addition, both stages
employ the same search strategy: a well-designed MODE.
Finally, six benchmark datasets are used to test and analyze
the performance of the proposed method. 1e experimental
results are statistically compared with those of five widely
used feature selection methods.

1e remainder of the paper is organized as follows.
Section 2 introduces three important concepts: multi-
objective optimization, differential evolution, and mutual
information. Section 3 describes the proposed method.
Section 4 provides the experimental results and analysis.
Finally, Section 5 draws the conclusion of this paper.

2. Materials

2.1. Multiobjective Optimization Problem. Many real-world
problems involve multiple conflicting objectives that should
be optimized simultaneously [28]. A MOOP is a multi-
objective minimization problem that involves more than one
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objective function to be optimized, and it can be mathe-
matically stated as follows:

minimizef(x) � f1(x), f2(x), . . . , fk(x)( 􏼁

s.t. x � x1, x2, . . . , xn( 􏼁 ∈ Ω,
(1)

where x is the n-dimensional decision vector and Ω is the
decision space. f: Ω⟶ Rk consists of k(k≥ 2) real-valued
objective functions f1(x), f2(x), . . . , andfk(x). In normal
cases, there is no solution that can optimize all the objective
functions because of the conflicts among these objectives.
Four important definitions referring to MOOPs are given as
follows.

Definition 1 (Pareto dominance). Let a � (a1, a2, . . . , an)

and b � (b1, b2, . . . , bn) be two vectors. a is said to dominate
b, represented as a≺ b, if

(1)∀i ∈ 1, 2, . . . , k{ }, fi(a)≤fi(b),

(2) f(a)≠ f(b).
(2)

Definition 2 (Pareto optimal solution). For a givenMOOP, a
vector x∗ ∈ Ω is called the Pareto optimal solution if

∃x′ ∈ Ω, x′≺ x∗. (3)

Definition 3 (Pareto optimal set). All Pareto optimal solu-
tions compose the Pareto optimal set P, which can be de-
scribed as follows:

P � x∗ ∈ Ω |∃ x′ ∈ Ω, x′≺x∗􏼈 􏼉. (4)

Definition 4 (Pareto front). 1e image of the Pareto optimal
set is called the Pareto front PF, which is composed of
objective vectors and is defined as follows:

PF � f(x) | x ∈ P{ }. (5)

For a real-world MOOP, the Pareto optimal P is usually
unreachable and infinite. 1erefore, the goal of an optimi-
zation method [29–31] is to obtain an approximation of P,
which is convergent and diverse in the objective space as
much as possible. In addition, an excellent approximation of
P is crucial for a decision maker to select the final solutions.

2.2. Standard Differential Evolution. DE is a simple but
powerful stochastic optimization algorithm that was first
proposed by Storn and Price in the 1990s [32]. Recent re-
search has increased the efficiency for solving many real-
world problems [33–35]. 1e characteristic of DE is using
the difference between two candidate solutions to generate a
new candidate solution. 1is algorithm is population based
and works through a cycle of computational steps, which are
similar to the steps employed in common evolutionary al-
gorithms.1e flowchart of standard DE is shown in Figure 1,
and it can be separated into the following four stages: ini-
tialization, mutation, crossover, and selection.

DE optimizes a problem by maintaining a population of
candidate solutions and evolving them with specific for-
mulas within the search space. An individual, also called a
genome, is represented as a vector forming a candidate
solution for a specific problem as follows:

X(i)(t)
� x

(i)(t)
1 , x

(i)(t)
2 , . . . , x

(i)(t)
d􏼐 􏼑, (6)

where d is the dimension of the search space and X(i)(t)

represents the ith individual in the NP-sized population at
generation t.

Initially, all individuals X(i)(t), also called target vectors,
are randomly initialized by restricting them in a problem-
specific range. 1en, standard DE starts its main loop. Every
individual evolves in the following steps. First, for each in-
dividual X(i)(t), the differential mutation operator works and
generates a donor vector V(i)(t) � (v

(i)(t)
1 , v2

(i)(t), . . . , v
(i)(t)
d )

as follows:

V(i)(t)
� X r1( )(t)

+ F X r2( )(t)
− X r3( )(t)

􏼒 􏼓, (7)

where F is the mutation scale factor that controls the scaled
difference and r1, r2, and r3 are three different integers, which
are randomly chosen from the range [1, NP]. Note that the
three integers must be different from the current index i.

Next, the trial vector U(i)(t) � (u
(i)(t)
1 , u

(i)(t)
2 , . . . , u

(i)(t)
d )

is generated by crossing over the target vector X(i)(t) and the
donor vector V(i)(t). A typical crossover mutation operation
employed in standard DE is implemented by exchanging
components between X(i)(t) and V(i)(t) as follows:

u
(i)(t)
j �

v
(i)(t)
j , if r≤Cr or j � jr( 􏼁,

x
(i)(t)
j , otherwise,

⎧⎪⎨

⎪⎩
(8)

where u
(i)(t)
j is the jth element of U(i)(t) and r is a uniformly

distributed random real number in [0, 1]. Cr is the crossover
rate that controls the probability of how many elements of
U(i)(t) are inherited fromV(i)(t). jr, which ensures thatU(i)(t)

obtains at least one element from V(i)(t), is a random integer
in [1, d].

1en, the selection process is executed to update all
individuals as follows:

Initialization 

Mutation 

Crossover 

Selection Whether 
end?

End 

Yes

No

Figure 1: 1e flowchart of standard differential evolution.
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X(i)(t+1)
�

U(i)(t)
, if f U(i)(t)

􏼐 􏼑≤f X(i)(t)
􏼐 􏼑􏼐 􏼑,

X(i)(t)
, otherwise,

⎧⎪⎨

⎪⎩
(9)

where f(·) is the single-objective function of DE.
Finally, the DE terminates when the stopping criterion is

met.

2.3. Mutual Information. In information theory [36], the
mutual information of two variables quantifies the mutual
dependence between them. 1is metric measures the cor-
relation between two variables powerfully and is not sen-
sitive to the noise in sampling [37]. Given two continuous
variables x and y, their mutual information can be defined as
follows:

I(x; y) � Bp(x, y)log
p(x, y)

p(x)p(y)
dx dy, (10)

where p(x) and p(y) are the probability density functions of
x and y, respectively, and p(x, y) is the joint probability
density function. 1erefore, if two variables are strictly in-
dependent, their mutual information is equal to 0. Similarly,
for two discrete variables x and y, mutual information has
the following form:

I(x; y) � 􏽘
x∈X

􏽘
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
. (11)

Given two variables x and y, the range of the mutual
information I(x; y) between them is [0, min H(x), H(y)􏼈 􏼉],
where H(·) is the function to calculate the entropy of a
variable.

Although mutual information has been considered an
excellent indicator to quantify the independence between
two variables, its calculation is not easy because estimating
probability density functions is a complex task. If two
variables are discrete, the calculation of mutual information
is straightforward by counting the samples in difficult cat-
egories to make the joint and marginal probability tables.
However, if at least one of the two variables is continuous,
the calculation becomes difficult. In this work, we use en-
tropy estimation based on the K-nearest neighbor distance
[38] to calculate mutual information.

3. Methodology

In this section, the proposed two-stage method based on
MODE is described. Figure 2 illustrates the flowchart of the
proposed method, which consists of two stages: a filter stage
and a wrapper stage. In the latter stage, a novel wrapper
method based on MODE is proposed. In addition, two
single-objective wrapper methods based on DE are proposed
in this stage. 1ese two single-objective methods serve as the
baseline to test the performance of the MODE-based
wrapper method and help us investigate the following: (1)
whether it is necessary to consider the number of selected
features in the wrapper method and (2) whether the method
based on multiobjective optimization outperforms the
methods based on single-objective optimization.

3.1. Multiobjective Differential Evolution. Due to the effec-
tiveness of DE for solving single-objective optimization
problems, extending DE to solve MOOPs has attracted the
interest of researchers in the literature [34]. Two important
issues in extending DE into MODE need to be overcome.
1e first issue is how to order two candidate solutions. 1e
solutions are straightforward to order when one solution
dominates the other solution. However, if two candidate
solutions do not dominate each other, an additional strategy
to assign the complete order must be provided. Second, an
effective scheme of maintaining a set of nondominated
solutions during the optimization process is necessary. In
contrast to single-objective optimization problems where
only one global optimal solution is generated, the goal of
MOOPs is to obtain a set of nondominated solutions.
1erefore, the convergence and diversity of the set of
nondominated solutions should be ensured. A widely used
method is to adopt an external archive to couple with the
current population [30].

1e proposed MODE follows the framework of the
standard DE, which is shown in Figure 1. 1e external
archive stores the nondominated solutions that interact with
the current population. In addition, the mutation operator
and the selection operator, which are different from those of
the standard DE algorithm, are modified. 1e key compo-
nents of the proposed MODE are described below.

3.1.1. External Archive. Adopting an external archive to
store nondominated solutions is a common and effective
method in numerous multiobjective evolutionary algo-
rithms [39, 40]. Similarly, an archive Arc with limited size
Na is maintained in the optimization process of the pro-
posed MODE. A solution s will be added into Arc if any one
of the following criteria is met. (1) Arc is empty. (2) Arc is
not full, and s is nondominated by any solution in Arc. (3) s

dominates at least one solution in Arc. Note that in this case,
these solutions dominated by s will be removed from Arc.
(4) Arc is full, and s is nondominated with any one solution
in Arc. In this extreme condition, s is first added into Arc,
and a density estimation operation is executed to assign each
solution a crowding distance value (see Section 3.1.2). 1en,
the solution in the most crowded region will be removed
from Arc.

1e archive Arc interacts with the current population in
two aspects. First, the equation for generating a donor vector
V(i)(t) (see equation (7)) is modified by

V(i)(t)
� X rarc( )(t)

+ F X r2( )(t)
− X r3( )(t)

􏼒 􏼓, (12)

where X(rarc)(t) is a solution that is randomly selected from
the external archive Arc rather than the current population.
1is handling method is inspired by the standard mutation
strategy in DE/best/1 [41]. X(rarc)(t) can be regarded as one of
the best solutions that are stored in archive Arc. Second, the
selection operator (see equation (9)) of MODE is modified,
which is illustrated in Algorithm 1, and the interaction
between the current population and archive Arc will be
enhanced. Since the updating scheme of archive Arc is based
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on crowded information, archive Arc will be updated in a
timely manner at each iteration, and the convergence and
diversity of these nondominated solutions in Arc can be
ensured.

3.1.2. Density Estimation. Many density estimation methods
have been proposed in the literature [29, 30]. In our pro-
posed method, a parameter-independent method called the
crowding distance is used to assist Pareto dominance in
assigning the complete order. 1e basic idea is that the
degree of crowding of a solution in objective space is
quantified by the distance between its neighbors. For a given
solution s and an archive Arc, the crowding distance of s can
be calculated by Algorithm 2. 1is method is similar to the
method used in the nondominated sorting genetic algo-
rithm-II (NSGA-II) [29], and the crowding distance of a
solution is considered the perimeter of the cuboid formed by
its neighbors.

3.1.3. Parameter Control. 1e mutation scale factor F (see
equation (7)) and the crossover rate Cr (see equation (8)) are
the two main control parameters in DE. A well-tuned setting
of F and Cr is crucial to the performance of DE [41].
However, determining how to set the suitable values of F and
Cr is problem-specific. To select suitable parameters for F

and Cr, we follow the idea of self-adaptive differential
evolution (SaDE) [42] and use a self-adaptive strategy to
control the two parameters in MODE.

1e employed parameter control strategy is described as
follows. At each iteration, a set of F values is regenerated
from a normal distribution with a mean of μ � 0.5 and a
standard deviation of σ � 0.3. 1en, these F values are

orderly applied in equation (12) to generate the donor
vectors. In this way, both exploitation (small F values) and
exploration (large F values) are ensured during the evolution
process. Furthermore, the crossover rate Cr is gradually
adjusted according to previous experience during the evo-
lutionary process. Specifically, Cr is assumed to obey a
normal distribution with a mean of μ � Crm and a standard
deviation of σ � 0.1 but is restricted to [0, 1]. Initially, an
empty pool is created, and Crm is set to 0.5. At each iteration,
a set of Cr values is regenerated and applied to generate the
trial vectors, as shown in equation (8). If a trial vector
successfully replaces its target vector in the selection process,
the corresponding Cr value will enter the pool. At the end of
each iteration, the new Crm is reset as themedian of the pool,
and then the pool is emptied.

3.2. Implementation of MODE in Feature Selection. 1e
proposed MODE is an optimization method over contin-
uous spaces. However, the landscape of feature selection
problems is discrete. To implement MODE in feature se-
lection, a binary strategy is incorporated in the proposed
method. For a given dataset with M features
H � h1, h2, . . . , hM􏼈 􏼉, a candidate solution in MODE is
represented as

X(i)(t)
� x

(i)(t)
1 , x

(i)(t)
2 , . . . , x

(i)(t)
M􏼐 􏼑, xj ∈ [0, 1], (13)

where M is the number of dimensions of X(i)(t), and it is
equal to the dimensionality of the data points. Consequently,
a feature subset S ⊂ H is determined by X(i)(t) and a preset
threshold parameter λ ∈ (0, 1), which is shown in Algo-
rithm 3. 1is strategy is also employed in the two single-
objective methods based on DE.

One solution

MODE

Pareto front

Pareto front

Objectives:
f1 = num. features
f2 = classification error

Objectives:
f1 = num. features
f2 = max relevance
f3 = min redundancy

Decision making

Feature
subset

Evaluation
result

Feature
subset

Feature
subset

Classfication
error

Evaluation
result

Training Data

MODE

Stage 1: Filter Stage 2: Wrapper

Classifier:
NB

Figure 2: 1e flowchart of the proposed two-stage method based on MODE for gene selection.
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3.3. :ree Objectives of the Filter Stage. 1e first stage of the
proposed method is considered a multivariate filter method
where the intrinsic characteristics of the raw data are
considered. 1ree objective functions to be minimized are
defined in the filter stage to evaluate a feature subset. 1e
first objective function is the number of selected features,
and it is considered a prime motivation of feature selection.
Previous works [27] have proven that incorporating the

number of selected features as an objective is necessary in
feature selection. For a given feature subset
S � s1, s2, . . . , sn􏼈 􏼉, the first objective function is defined as

f
(filter)
1 � |S| � n. (14)

1e second objective function strives to select the fea-
tures with the highest relevance to the target class variable

Input: a target vector X(i)(t) and its trial vector U(i)(t)

Result: X(i)(t+1) and updated Arc.
begin
if X(i)(t)≺U(i)(t) then
X(i)(t+1)⟵X(i)(t);
else if U(i)(t)≺X(i)(t) then
X(i)(t+1)⟵ U(i)(t);
Add U(i)(t) to Arc if the criterion is met;
else
else
/∗X(i)(t) and U(i)(t) are nondominating each other.
Check U(i)(t) is dominated by a solution in Arc.
if ∃s∗ ∈ Arc, s∗≺U(i)(t) then
X(i)(t+1)⟵X(i)(t)

else if ∃s∗ ∈ Arc,U(i)(t)≺s∗ then
X(i)(t+1)⟵U(i)(t);
Add U(i)(t) to Arc if the criterion is met;
else
/∗ Nondominated.
Calculate the crowding distance of X(i)(t), U(i)(t), referring to Arc

if X(i)(t) is in a more crowded region than U(i)(t) then
X(i)(t+1)⟵U(i)(t);
Add U(i)(t) to Arc if the criterion is met;
else
X(i)(t+1)⟵X(i)(t);
Add U(i)(t) to Arc if the criterion is met;

ALGORITHM 1: 1e selection process of the proposed MODE.

Input: a solution s and the external archive Arc.
Result: calculate the crowding distance cd of s.
begin
cd⟵ 0
if ∃s∗ ∈ Arc, s∗≺s then
cd⟵ 0
return;
if s ∉ Arc then
Append s to Arc temporarily;
/∗Remove s from Arc after calculation.
len⟵ the length of Arc

for Each objective k do
Sort all solutions in ascending order in Arc according to fk(.);
Get the new index i of s in Arc

if i �� 1 or i �� len then
cd⟵cd + 1
else
cd⟵cd + (Arc[i + 1].fk − Arc[i − 1].fk)/(Arc[len].fk − Arc[1].fk);

ALGORITHM 2: Calculating the crowding distance of a solution.
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(labeled as malignant or not). 1is objective aims to max-
imize the relevance between the features and the target class.
Independent of the number of selected features of S, it can be
defined as follows:

f
(filter)
2 � −D(S, c) � −

1
|S|

􏽘
si∈S

I si; c( 􏼁, (15)

where c is the target class variable and I(si; c) is the mutual
information between feature si and target class c.

In addition, the redundancy among each pair of the
selected features should be narrowed down because re-
dundant information does little to improve the accuracy of a
classifier [43]. 1e third objective function aims at mini-
mizing the redundancy of the feature subset, and it is defined
as follows:

f
(filter)
3 � R(S) �

1
|S|

2 􏽘
si,sj∈S

I si; sj􏼐 􏼑. (16)

3.4. Two Objectives of the Wrapper Stage. 1e second stage
of the proposed method included a wrapper method
where the employed classifier should be considered. As
shown in Figure 2, a set of nondominated solutions is
generated after the filter stage. Although every one of
these solutions can be accepted as the starting point of
the second stage, it seems more reasonable to select some
typical solutions among them according to computa-
tional costs. Since the aim of the filter stage is to select a
small number of informative features, we select the so-
lution with the smallest number of features as the input
of the wrapper stage. Minimizing the classification error
rate of a classifier is the main goal of the wrapper stage. In
this study, the famous and effective Gaussian NB [44]
classifier is applied. 1e NB classifier is a supervised
learning method for classification, which is based on
Bayes’ theorem and assumes that every pair of features is
independent. 1e Gaussian NB classifier is the state-of-
the-art type of NB classifier to handle continuous data in
which the continuous values of a special feature are
assumed to fit a Gaussian distribution. After selecting a
suitable classifier, the two objective functions of the
wrapper stage can be defined as follows:

f
(wrapper)
1 � Num. of selected features,

f
(wrapper)
2 � ErrorRate.

⎧⎪⎨

⎪⎩
(17)

According to the guidance of Xue et al. [27], the first
objective function to be minimized is defined as the number
of selected features. In the following content, we can in-
vestigate whether it is necessary to take the number of a
selected features as an objective in the wrapper stage.
Moreover, the average classification error rate of a selected
feature subset is defined as the second objective function,
which is evaluated by 5-fold cross-validation on the training
data. A more detailed description of how the 5-fold cross-
validation is performed on training data is given in [45].

3.5. Two Single-Objective Feature Selection Methods. Two
single-objective feature selection methods based on DE are
also proposed in the wrapper stage for comparison. 1e
main difference between the two methods is the choice of
fitness functions. 1e fitness function of one method (DE1)
is the same as the second objective function of MODE in the
wrapper stage, which is defined as follows:

fDE1 � ErrorRate. (18)

1e aim of DE1 is to minimize the classification error
rate during the training process. However, the other method
(DE2) considers the number of selected features. 1e fitness
function of DE2 is defined as follows:

fDE2 � α∗
Num. of selected features

Num. of all features
+(1 − α)∗ErrorRate,

(19)

where α is a scaling parameter determining the relative
importance of the two terms and ErrorRate is the average
classification error rate of 5-fold cross-validation on the
training data.

To meaningfully devise a fair comparison with the pro-
posed MODE, the procedure of the two DE-based methods is
chosen to be similar to that of the proposed MODE men-
tioned above. 1e differences between the MODE-based
method and the DE-based methods are the selection process
and the updating strategy of the external archive. 1e se-
lection process of the two DE-based methods is the same as
the standard DE, as shown in equation (9). 1e updating

Input: X(i)(t), feature set H, and threshold λ.
Result: feature subset S

begin
S � ∅
for integer j ∈ [1, M] do
if xj > λ then
S⟵ S∪ hj􏽮 􏽯;

ALGORITHM 3: A binary scheme to transform continuous values to binary values for feature selection.
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strategy of the external archive of the two DE-based methods
is based on tournaments with limited size Na.

4. Experimental Studies

All the algorithms in this study are implemented in C and
Python languages.1e programs are executed on a Linux 64-
bit system with a 3.4GHz Core i5 CPU and 8GB RAM. In
addition, the parameters of MODE used in the two stages are
listed in Table 1, which have been discussed above. To assess
the performance of the proposed two-stage feature selection
method, six widely used benchmark microarray datasets are
selected in our experiments. 1e details of these datasets are
summarized in Table 2. Note that all of the datasets are
binary. 1e reason for excluding the multiclass datasets is
that binary microarray datasets are more common in the
field of gene selection [46].

Because the numbers of samples in microarray datasets
are relatively small, 5-fold cross-validation is applied to each
dataset to evaluate the effectiveness of feature selection [46].
Specifically, the samples of each dataset are randomly
partitioned into five equal subsamples. Four subsamples are
used as the training data, and the remaining subsample is
used as the test data. 1en, the cross-validation process is
successively repeated five times. 1e flowchart of the 5-fold
cross-validation experiment is presented in Figure 3. 1e
training data are used by feature selectionmethods to select a
feature subset. 1en, the selected feature subset is used to
reduce the dimensions of the training data and the test data.
Finally, the goodness of the selected feature subset is eval-
uated by using the test data.

4.1. Results of the Filter Stage. 1e proposed MODE on these
benchmark datasets is first implemented in the filter stage.
1e threshold λ is problem-specific and is set properly for
each dataset. Since MODE obtains a set of nondominated
solutions in each independent run, five independent sets of
nondominated solutions with three objectives are generated.
We collect five sets of nondominated solutions into a union
set and report its statistics in Table 3. It is clear that fruitful
solutions are obtained because the values of the three ob-
jectives fluctuate significantly. In addition, the small values
of |S| indicate that few features are selected, and the effec-
tiveness of the filter stage is demonstrated.

Figure 4 shows the nondominated solutions of the Colon
dataset in one experiment. 1ese solutions are mapped onto
(R(S); −D(S; c)) space. Similar results can also be obtained
for the remaining datasets. Figure 4 shows that R(S) and
−D(S; c) strongly conflict along a curve.1is strengthens the
rationality of decomposing them as two objectives for op-
timization. Moreover, a common dominance pattern can be
found in Figure 4. For example, the solutions A and B are
nondominated, and R(S)A <R(S)B, −D(S; c)A < − D(S; c)B.
It is easy to conclude that |S|A > |S|B. 1is finding supports
our premise that simply reducing the number of features of a
subset may diminish its compactness. 1erefore, it is nec-
essary to use different criteria to measure the quality of a
feature subset.

1e first objective |S| is used to direct the search pro-
cedure and reduce the number of selected features. To
observe the changes of the first objective during the evo-
lutionary procedure, Figure 5 shows the convergence curves
of the average value of |S| of the solutions stored in archive
Arc for each dataset. We find that the average number of
selected features converges quickly and finally stabilizes near
a certain value. 1is means that the filter results are not
sensitive to the iteration if the maximum number of iter-
ations Ite has been set sufficiently large. In addition, the
convergence speed and the stable number of selected fea-
tures rely on the intrinsic characteristics of each dataset. For
example, Leukemia and Prostate have similar scales but
converge to different values. Prostate has the largest number
of features, but its convergence speed is the fastest.

4.2. Results of theWrapper Stage. Next, the proposed MODE
is adopted in the wrapper stage. Inspired by recent works
[22, 47], the threshold λ is set to 0.5 for all datasets. Finally, five
independent sets of nondominated solutions with two ob-
jectives are generated. In addition, to analyze the performance
of the proposed multiobjective approach, two single-objective
approaches mentioned above are executed in the same setting.
1ey also generate five independent sets of solutions for each
dataset. Note that for DE2, the classification performance is
more important; thus, α is set to 0.2 in equation (19).

Since each method generated five sets of nondominated
solutions, it will be difficult to compare the performances of
these methods. We use the comparison method adopted in
previous works [22, 27]. It is worth noting that the classi-
fication performance is evaluated and compared on the test
data rather than the training data. Specifically, five sets of
nondominated solutions that are achieved by the proposed
MODE in 5-fold cross-validation are first collected into a
union set. 1en, the test classification error of each solution
is calculated, and the test classification error of the solutions
that have the same number of features is averaged. More-
over, the set of “average” solutions is defined as the “average”
front. 1e set of nondominated solutions with the objectives
|S| and the test classification error in the union set is defined
as the “best” front. Furthermore, for the two single-objective
methods, we also collect these solutions into a union set, and
the same processing method is applied to the union sets.
Finally, the performance of the three methods on these three
union sets can be compared.

1e experimental results of the three methods on the
benchmark datasets in the wrapper stage are shown in
Figures 6 and 7.1e horizontal axis represents the number of
selected features of a solution, and the vertical axis repre-
sents the test classification error rate. 1e dashed line
crossing each chart represents the average classification
error rate of 5-fold cross-validation using all features.
Moreover, in each chart, the label “-Avg” in the legends
refers to the average front obtained by each method, and the
label “-Best” refers to the best front.

According to Figures 6 and 7, the average fronts of the
three methods are under the dashed line in most cases. 1is
suggests that all the methods work effectively because their
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solutions achieve a lower test classification error rate and
select fewer features. Moreover, the fluctuation in the curves
of the average fronts means that the solutions with a similar

number of features can have different test classification error
rates. 1is implies that the feature subset search space is
relatively complex.

Table 1: 1e parameters in the two stages of the proposed method.

Parameters Filter stage Wrapper stage Description
NP 100 50 Population size
F Controlling Controlling Mutation scale factor
Cr Self-adapted Self-adapted Crossover rate
Na 200 100 1e size of archive
λ Tuning 0.5 1reshold for binarization
Ite 10000 400 Max number of iterations

Table 2: 1e details of the benchmark datasets.

Dataset Total Num. of genes (features) Num. of instances Num. of classes Num. of instances for each class
Colon 2000 62 2 40, 22
DLBCL 5469 77 2 58, 19
Leukemia 7129 72 2 47, 25
Prostate 10,509 102 2 52, 50
Prostate2 2135 102 2 52, 50
TCellLymphoma 2922 63 2 43, 20

Data with all features Data with selected features

Test data

Training
data

Test data
Performance

evaluation

Training
data

Training
Feature

Selection
Feature subset

Estimated
accuracy

Classifier

Figure 3: 1e flowchart of the 5-fold cross-validation experiment.

Table 3: 1e statistical information of the solutions obtained in the filter stage (calculated over the five cross-validation runs).

Dataset |S| −D(S, c) R(S)

Colon Min 195.0 9.29E− 02 −1.03E− 01
Avg± std 242.3± 20.3 1.01E− 01± 4.00E− 03 −8.93E− 02± 5.88E− 03

Max 300.0 1.11E− 01 −7.66E− 02
DLBCL Min 273.0 4.52E− 02 −9.95E− 02

Avg± std 388.9± 61.4 5.15E− 02± 3.46E− 03 −8.00E− 02± 8.20E− 03
Max 554.0 6.03E− 02 −6.17E− 02

Leukemia Min 195.0 3.54E− 02 −7.18E− 02
Avg± std 702.1± 229.7 4.02E− 02± 4.61E− 03 −5.61E− 027.98E− 03
Max 1406.0 6.09E− 02 −3.52E− 02

Prostate Min 241.0 6.15E− 02 −1.16E− 01
Avg± std 351.5± 51.4 7.19E− 02± 4.98E− 03 −9.52E− 02± 6.75E− 03
Max 458.0 8.54E− 02 −7.92E− 02

Prostate2 Min 175.0 1.25E− 01 −1.25E− 01
Avg± std 248.9± 54.4 1.49E− 01± 1.14E− 02 −1.04E− 01± 8.58E− 03
Max 362.0 1.74E− 01 −8.86E− 02

TCellLymphoma Min 310.0 5.52E− 02 −8.36E− 02
Avg± std 386.8± 30.4 5.94E− 02± 2.17E− 03 −7.29E− 02± 4.67E− 03
Max 469.0 6.56E− 02 −6.22E− 02

Computational Intelligence and Neuroscience 9



0.1000.098 0.1060.104 0.1100.096 0.102 0.108
R (S) (See Eq. 16)

–0.100

–0.095

–0.090

–0.085

–0.080

–0.075

-D
 (S

,c)
 (S

ee
 E

q.
 1

5)
A

B

Figure 4:1e obtained nondominated solutions (200 data points in one experiment) in the filter stage of the proposed method on the Colon
dataset map onto (R(S); −D(S; c)) space.
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When we compare DE1 with the other two methods, it is
obvious that the classification performance of DE1 is similar
to the other two methods on most datasets, but the number
of selected features in DE1 is quite larger than that of the
other two methods. 1is is because there is no term in the

fitness function of DE1 (equation (18)) that considers the
number of selected features. 1e experimental results
strongly suggest the necessity of considering both the
classification accuracy of a classifier and the number of
features in feature selection.
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Figure 6: Experimental results of the three methods on the three benchmark datasets ((a) Colon, (b) DLBCL, and (c) Leukemia) in the
wrapper stage.
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BothMODE and DE2 consider the number of features in
the fitness functions. However, the former method uses a
multiobjective technique, while the latter method uses a
single-objective technique. As shown in the left charts of
Figures 6 and 7, both methods successfully achieve low

classification error rates and select fewer features. When we
compare these two methods, it can be observed that MODE
outperforms DE2. MODE achieves significantly lower test
classification error rates on most datasets except Leukemia
in terms of the “average” fronts. Furthermore, MODE
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Figure 7: Experimental results of three methods on the three benchmark datasets ((a) Prostate, (b) Prostate2, and (c) TCellLymphoma) in
the wrapper stage.
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obtains fewer features. In terms of the “best” fronts, the
performance of MODE is also better than that of DE2 be-
cause fewer features and a lower test classification error rate
are obtained by MODE. Although a fine-tuning parameter α
in equation (19) can improve the performance of DE2, it
requires prior knowledge and should be predefined properly.
1e results demonstrate the advantage of the proposed
MODE in the wrapper stage.

4.3. ComparisonwithOtherMethods. To further evaluate the
performance of the proposed two-stage method based on
MODE, we compare it with seven widely used feature se-
lection methods. GainRatio [48] and ReliefF [49] are two
univariate feature selectionmethods.1ese methods provide
each feature an order ranking according to the relevance
between the feature and the target class. We retain the top
10, top 20, and top 40 features to evaluate the performance of
these two methods. mRMR [13] is a classical feature method
based on mutual information that returns a subset of fea-
tures with a predefined size. We set the returned number of
features to 10, 20, and 40. Correlation-based feature selec-
tion (CFS) [50] is also a classical multivariate feature se-
lection method and returns a subset of features. WrapperNB

[45] is a wrapper method coupled with the NB classifier. 1e
search strategy of this method is greedy hill climbing aug-
mented with a backtracking facility. In addition, two
wrapper methods based on GA and PSO are compared.
Based on the parameter settings in the literature [51, 52], the
population size NP and the maximum iteration T of the two
methods are set to 50 and 100, respectively. 1e key pa-
rameters of GA are set as follows: the crossover rate pc � 0.9,
the mutation rate pm � 0.1, and the number of elites
Ne � 10. 1e key parameters of PSO are set as follows: the
inertia weight w � 0.5 and the acceleration constants
c1 � 1.5, c2 � 1.5.

We use 5-fold cross-validation and follow the workflow
in Figure 3 to perform the experiments. 1e final classifier is
the NB classier. To provide a fair comparison, for the
proposed method, we select the solutions in the training
Pareto front of the union set because the test data cannot be
seen until the final performance evaluation. Specifically, the
training Pareto front of the union set is constructed
according to the training classification performance and the
number of features. 1e comparison is performed on test
data, and the results are listed in Table 4. Acc represents the
average test classification accuracy, and Gene represents the
number of selected genes (features). As illustrated in Table 4,

Table 4: 1e comparison results of different methods on the six benchmark datasets.

Colon DLBCL Leukemia Prostate Prostate2 TCell Lymphoma p value
All features Acc 58.08% 76.58% 71.33% 62.81% 76.57% 67.82% 0.000 011

Gene 2000.0 5469.0 7129.0 10,509.0 2135.0 2922.0
1e proposed method Acc 88.06% 87.67% 72.10% 94.41% 90.90% 84.47% —

Gene 6.2 12.7 12.4 10.0 7.0 10.1
GainRatio Acc 79.10% 83.08% 62.67% 91.24% 93.19% 74.87% 0.005106

Gene (top 10) 10.0 10.0 10.0 10.0 10.0 10.0
Acc 78.85% 87.08% 71.14% 92.24% 92.19% 77.95% 0.054 282

Gene (top 20) 20.0 20.0 20.0 20.0 20.0 20.0
Acc 82.31% 87.08% 64.10% 91.24% 92.14% 73.21% 0.015 658

Gene (top 40) 40.0 40.0 40.0 40.0 40.0 40.0
ReliefF Acc 82.44% 88.42% 69.62% 92.19% 92.14% 76.28% 0.362 370

Gene (top 10) 10.0 10.0 10.0 10.0 10.0 10.0
Acc 82.44% 88.33% 72.38% 92.24% 90.14% 76.15% 0.452 807

Gene (top 20) 20.0 20.0 20.0 20.0 20.0 20.0
Acc 83.97% 84.50% 69.90% 92.24% 92.19% 74.62% 0.236 936

Gene (top 40) 40.0 40.0 40.0 40.0 40.0 40.0
mRMR Acc 85.38% 82.92% 58.76% 89.33% 90.24% 74.74% 0.016 822

Gene 10.0 10.0 10.0 10.0 10.0 10.0
Acc 83.97% 85.67% 68.38% 92.24% 92.24% 68.46% 0.037 739
Gene 20.0 20.0 20.0 20.0 20.0 20.0
Acc 82.31% 86.92% 75.33% 93.24% 91.19% 70.13% 0.180 025
Gene 40.0 40.0 40.0 40.0 40.0 40.0

CFS Acc 82.18% 92.08% 68.48% 93.19% 91.19% 72.95% 0.456 408
Gene 26.8 92.0 90.0 78.8 33.8 44.0

WrapperNB Acc 76.15% 76.58% 60.00% 91.14% 88.33% 69.87% 0.002 557
Gene 6.2 4.2 6.6 5.2 5.4 6.2

GA Acc 71.03% 76.67% 70.00% 63.81% 86.33% 69.49% 0.000114
Gene 122.2 378.0 514.8 803.2 105.6 161.8

PSO Acc 65.90% 81.92% 68.29% 71.67% 82.48% 71.03% 0.000 026
Gene 134.0 371.6 455.6 506.2 115.2 150.4

1e best classification accuracy for each benchmark dataset is in bold.
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the proposed method obtains the best classification per-
formance on three (out of six) problems. Moreover, it can
select a small number of features and meet the target of gene
selection.

We further conduct the Wilcoxon signed-rank test to
determine the significant differences between the proposed
method and the other methods. 1e significance level is set
to 0.05, and the p values are listed in Table 4. It is clear that
the proposed method significantly outperforms eight (out of
fourteen) methods because the p values are smaller than
0.05. In addition, for the remaining six methods, the p values
are larger than 0.05.1is indicates that the proposed method
is not significantly better but still obtains competitive results.
1erefore, we can conclude that the proposed method can be
considered a very competitive method relative to classical
methods. 1e comparison results suggest that the proposed
two-stagemethod based onMODE is a promisingmethod to
solve the gene selection problem.

5. Conclusion

1e gene selection problem is a specific feature selection
problem and remains challenging in bioinformatics. In this
paper, a two-stage feature selection method was proposed to
solve the gene selection problem. 1e first stage included a
multivariate filter method, and the second stage included a
wrapper method. Both stages were based on the same
MODE but with different objective functions. 1e objective
functions of the filter stage were mainly based on mutual
information. 1e classification error of the NB classifier and
the number of selected features were incorporated as the two
objective functions in the wrapper stage. In our experiments,
six common benchmark datasets were used to test and
analyze the performance of the proposed method. In ad-
dition, the effectiveness of the proposed method for solving
the gene selection problem was verified by comparing it with
five classical methods. Since the main differences between
the two stages (filter and wrapper) were the objective
functions, the proposed method is considered to be an easily
understood implementation.

1is study provided a new perspective for solving the
gene selection problem by using multiobjective optimi-
zation because the solution ideas are quite different from
the methods based on single-objective optimization. In
the future, we plan to apply the proposed method to more
gene expression datasets to verify its effectiveness. To
improve the performance of the method, the search
strategy and the evaluation criteria will also receive sus-
tained attention.
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[38] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating
mutual information,” Physical review. E, Statistical, nonlinear,
and soft matter physics, vol. 69, no. 6, Article ID 066138, 2004.

[39] X. Cai, Y. Li, Z. Fan, and Q. Zhang, “An external archive
guided multiobjective evolutionary algorithm based on de-
composition for combinatorial optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. 19, no. 4,
pp. 508–523, 2015.

[40] S. Song, J. Ji, X. Chen, S. Gao, Z. Tang, and Y. Todo, “Adoption
of an improved PSO to explore a compound multi-objective
energy function in protein structure prediction,” Applied Soft
Computing, vol. 72, pp. 539–551, 2018.

[41] S. Das and P. N. Suganthan, “Differential evolution: a survey
of the state-of-the-art,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 1, pp. 4–31, 2011.

[42] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential
evolution algorithm with strategy adaptation for global nu-
merical optimization,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 2, pp. 398–417, 2009.

[43] L. Yu and H. Liu, “Efficient feature selection via analysis of
relevance and redundancy,” Journal of Machine Learning
Research, vol. 5, pp. 1205–1224, 2004.

[44] G. I. Webb, J. R. Boughton, and Z.Wang, “Not so naive Bayes:
aggregating one-dependence estimators,” Machine Learning,
vol. 58, no. 1, pp. 5–24, 2005.

[45] R. Kohavi and G. H. John, “Wrappers for feature subset
selection,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324,
1997.

[46] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos,
J. M. Benı́tez, and F. Herrera, “A review of microarray datasets
and applied feature selection methods,” Information Sciences,
vol. 282, pp. 111–135, 2014.

[47] S. Gu, R. Cheng, and Y. Jin, “Feature selection for high-di-
mensional classification using a competitive swarm opti-
mizer,” Soft Computing, vol. 22, no. 3, pp. 811–822, 2018.

[48] J. R. Quinlan, “Induction of decision trees,” Machine
Learning, vol. 1, no. 1, pp. 81–106, 1986.

[49] K. Kira and L. A. Rendell, “A practical approach to feature
selection,” in Machine Learning Proceedings 1992, pp. 249–
256, Elsevier, Amsterdam, Netherlands, 1992.

Computational Intelligence and Neuroscience 15



[50] L. Yu and H. Liu, “Feature selection for high-dimensional
data: a fast correlation-based filter solution,” in Proceedings of
the 20th International Conference on Machine Learning
(ICML-03), pp. 856–863, Washington, DC, USA, August
2003.

[51] F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling real-
coded genetic algorithms: operators and tools for behavioural
analysis,” Artificial Intelligence Review, vol. 12, no. 4,
pp. 265–319, 1998.

[52] M. R. Bonyadi and Z. Michalewicz, “Particle swarm opti-
mization for single objective continuous space problems: a
review,” Evolutionary Computation, vol. 25, no. 1, pp. 1–54,
2017.

16 Computational Intelligence and Neuroscience


