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A major goal of psycholinguistic theory is to account for the cognitive constraints
limiting the speed and ease of language comprehension and production. Wide-ranging
evidence demonstrates a key role for linguistic expectations: A word’s predictability, as
measured by the information-theoretic quantity of surprisal, is a major determinant of
processing difficulty. But surprisal, under standard theories, fails to predict the difficulty
profile of an important class of linguistic patterns: the nested hierarchical structures
made possible by recursion in human language. These nested structures are better
accounted for by psycholinguistic theories of constrained working memory capacity.
However, progress on theory unifying expectation-based and memory-based accounts
has been limited. Here we present a unified theory of a rational trade-off between
precision of memory representations with ease of prediction, a scaled-up computational
implementation using contemporary machine learning methods, and experimental
evidence in support of the theory’s distinctive predictions. We show that the theory
makes nuanced and distinctive predictions for difficulty patterns in nested recursive
structures predicted by neither expectation-based nor memory-based theories alone.
These predictions are confirmed 1) in two language comprehension experiments in
English, and 2) in sentence completions in English, Spanish, and German. More
generally, our framework offers computationally explicit theory and methods for
understanding how memory constraints and prediction interact in human language
comprehension and production.
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Language expresses recursive thoughts via linear strings of words (1). Therefore, a central
part of language comprehension is recovering a hierarchical structure from a linear
sequence. While we do this seemingly without effort, it has long been observed that
humans’ ability to do so can run against limitations of short-term memory (2). Such
limitations are of central importance to understanding the nature of human language
processing, and have been an important subject of study (3–8). Human processing
limitations often give rise to measurable, localized differences in comprehension difficulty
between otherwise similar sentences, and modeling those difficulty differences has been
a key aim of psycholinguistic research (3–8). However, it has proven challenging to
develop a unified account of what makes different sentences easier or harder for humans
to comprehend.

Research has identified two seemingly disparate perspectives on what makes sentences
hard to comprehend. Expectation-based models (9, 10) describe how context generates
expectations about likely future input. According to such models, words are harder to
process when they are harder to anticipate from preceding context. In contrast, memory-
based models hold that difficulty of processing stems from limits on the ability to store
representations of preceding context and to retrieve and integrate them with new input
(4, 5, 7). Both perspectives are supported by substantial bodies of empirical evidence (11–
16), and it has remained an open question how they can be theoretically and empirically
reconciled (14–16).

Here, we develop a theory and implemented model reconciling expectation-based and
memory-based theories, building on recent research that has proposed a key role for noise
and uncertainty in modeling human mental representations of linguistic input (17–19).
Whereas traditional models of language processing generally assume veridical context
and input representations—the problem of sentence-level comprehension is cast as one
of analyzing a known sequence of words to determine its structure and meaning and to
predict future input—“noisy channel” language processing theory treats these represen-
tations as uncertain, and hypothesizes that analysis and prediction in human language
processing approximates normative principles of Bayesian inference given these uncertain
representations (20, 21). These ideas have led to the proposal of unifying expectation-
based and memory-based theories of processing difficulty through lossy-context
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surprisal (22). Lossy-context surprisal posits that human process-
ing difficulty is determined by expectations derived not from
veridical context but from probabilistic inference over imperfect
memory representations of the context. In principle, this approach
could account for the predictions of both expectation-based and
memory-based models: Words are easy to process when they are
easy to anticipate—as predicted by expectation-based models—
but if the relevant contextual information is poorly represented in
memory, upcoming words may be difficult to anticipate correctly,
yielding processing difficulty as predicted by traditional memory-
based theories. However, to date, many parts of this theory remain
to be specified. The theory lacks an implemented specification
of which aspects of preceding context are prone to memory
loss, which is key to deriving testable predictions. Ideally, this
specification should be based on deeper theoretical principles.
Furthermore, no scaled implementation of noisy channel process-
ing, which is necessary to make fine-grained predictions on the
difficulty profiles of specific sentences, has been available.

In this work, we present theoretical and empirical advances
that address these limitations. On a theoretical level, we propose a
resource-rational model (23) of fine-grained memory representa-
tions, based on the hypothesis that memory representations are
optimized to minimize expected downstream processing effort
given cognitive resource constraints. Combining this idea with
lossy-context surprisal as a processing difficulty metric leads to
wide-ranging empirical predictions. In order to evaluate those
predictions and understand them in detail, we implement the
proposed model using contemporary neural network modeling,
and fit it on large-scale text data, enabling the theory to make
detailed predictions regarding human comprehension behavior
for arbitrary natural language input.

Our theory derives predictions for difficulty patterns in human
processing of recursive structures that neither expectation-based
nor memory-based theories individually could account for. Re-
cursive structures, in particular, cases of center embedding where
sentences are nested inside one another, are crucial for psycholin-
guistic theory because they reveal human limitations in processing
the hierarchical structures of language (2–4, 24–26). Consider
Fig. 1A. In these sentences, varying numbers of sentences are
embedded within each other. More center embedding leads to
structures that are more difficult to process: Whereas items 1 and
2 in Fig. 1A are readily understood, item 3 is considerably harder.
Adding further levels of embedding would increase difficulty to
the point of incomprehensibility. More levels of center embedding
are rarer in language use (27), so purely expectation-based theories
correctly predict that they are difficult overall, but fail to predict
where this difficulty manifests in human processing: when exiting
the embedding, at the word “was” in the examples of Fig. 1A. If
context were veridically represented and used to predict upcoming
input, then exiting the embedding at this point should be exactly
what is expected, and easy for human language processing.

Some memory-based theories predict that exiting the embed-
ding is difficult, on the basis that the complexity of the preceding
context makes retrieval of the correct site for structural integration
challenging (4, 5, 7). Here, however, we present experimental
work showing that this difficulty is modulated by fine-grained
differences in the context: for example, changing report to fact
in the sentences of Fig. 1A turns out to make exiting the center
embedding easier. This phenomenon is not predicted by existing
memory-based theories.

Our model is capable, in principle, of accounting for all
these patterns. When memory representations are imperfect, ra-
tional comprehenders should reconstruct the context based on
their knowledge of the statistics of the language. Comprehenders’

structural expectations of inputs should thus be biased toward
contexts with high a priori probability that are similar in form
to the true contexts. In a resource-rational model, this will par-
ticularly affect variants that differ in words that are normally
easy to reconstruct from other parts of the context, such as
high-frequency function words. For instance, we expect that a
context such as “the report that the doctor annoyed the patient. . . ”
will compete with variants such as “the report by the doctor
annoyed the patient. . . ,” where “annoyed” is the verb belonging
to the initial noun “report.” For such a nonveridical variant, no
third verb is expected. Rational comprehenders with imperfect
memory should thus be more likely to expect the final verb when
such nonveridical versions with lower embedding depth have a
lower a priori probability. In contrast, when nonveridical variants
have high a priori probability, comprehenders should not expect
the final verb, and comprehension will be disrupted when it is
encountered.

These expectations can be measured via native speakers’ reading
times when they encounter the final verb after the preceding
context, or, alternatively, by providing native speakers with the
preceding context and asking them to complete the sentence.
We use both to test our theory. First, we show that a scaled-
up implementation of our model indeed derives the predictions
intuitively described above. Next, in two reading time experi-
ments, we systematically vary the a priori probability of the true
context relative to structurally different variants. We find that,
when the prior favors nonveridical variants, humans experience
increased difficulty on processing the final verb. This contrast is
a signature prediction of our proposed unifying model, and does
not follow from existing models from either the expectation-based
or the memory-based paradigms. Finally, in a production study in
three languages (English, German, and Spanish), we then show an
analogous pattern in production, whereby humans are more likely
to produce the correct number of verbs when structurally different
variants have a lower a priori probability.

Formalization and Implementation

We describe the proposed model, resource-rational lossy-context
surprisal, in Fig. 2. The model computes a retention probability
(28, 29) for each word in the past context, determined by 1) the
word’s identity and 2) how many words have been observed after
observing it. The overall memory representation c′ then consists
of the available words, and a placeholder symbol for those words
that have not been retained. Via Bayes’ rule and knowledge of
the a priori statistics of the language, c′ gives rise to a posterior
P(c|c′) over possible contexts and thus a predictive distribution
P(w |c′) over the next word. Processing difficulty on a word is
determined by its degree of unpredictability from c′, as measured
by the information-theoretic quantity of surprisal,

− logP(w |c′) =− log
∑

c

P(w |c)P(c|c′). [1]

We represent the a priori statistics of English using GPT-2
(30), a large-scale neural network model that provides one of
the strongest existing statistical models of English text. Retention
probabilities are parameterized using a neural network acting on
a context-independent vector representation of the word and its
distance. We optimize retention probabilities to minimize the
average model surprisal [1] over large-scale text data, subject to an
upper bound on the average number of retained context words.
We fitted the model for integer values of this bound from 0 to 20.
Optimization uses text data from the English Wikipedia, unre-
lated to the center embeddings stimuli of interest (see Materials
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Fig. 1. (A) Sentences exhibiting nested recursive structures (“center embeddings”), with one, two, or three noun–verb pairs. Difficulty differences between the
sentences manifest as reading time differences on the underlined verbs. (B) Varying the probability of true contexts and surface-similar variants: We show a
context requiring a verb in order to form a complete sentence, with surface-similar variants that do not require a verb in order to be complete (item 1). The
relative prior probability P(c) of the true context and the surface-similar variants can be modulated by changing the identity of the second-to-last verb (item 2)
or the first noun (item 3). Our model predicts that the final verb is easier to process when the true context has higher prior probability when compared to the
variants. (C) Conceptual predictions of our model for difficulty at the last verb: First, higher difficulty is predicted for the THREE condition (blue) than the TWO
condition (green). Second, higher difficulty is predicted when the second-to-last verb is semantically compatible (“annoyed” as opposed to “cured”) with the first
noun. Third, higher difficulty is predicted when the first noun has a lower embedding bias (“report” as opposed to “fact”). In the ONE condition, an effect in the
opposite direction is predicted. (D) Predictions are sharply different from existing theories: The DLT predicts that increasing levels of embedding should increase
difficulty, but predicts no effects of embedding bias or compatibility. Surprisal theory predicts that embedding bias impacts difficulty in the ONE condition, but
not in the other conditions.

and Methods). The optimized retention probabilities prominently
exhibit two key properties: Words are more likely to be preserved
when they are recent, and when they have lower word frequency
(SI Appendix, Fig. S2). Both biases are well documented in exper-
imental research on human linguistic memory (31–33).

Predictions

We used resource-rational lossy-context surprisal to derive three
predictions about the processing of nested recursive structures
(Fig. 1 B and C ). First, recovering from more levels of embedding

Fig. 2. Resource-rational lossy-context surprisal. We show the model as applied to a context (c∗) exhibiting a center embedding, and requiring a subsequent
verb phrase (e.g., “was surprising”) to form a complete sentence. The model determines retention probabilities for every word, varying with the number of
intervening words. These, together, determine a distribution over lossy representations c′, for which we show one sample where three words have been lost.
Combining knowledge of the retention probabilities with the a priori statistics of the language, Bayesian inference determines a posterior distribution over likely
true contexts, given the lossy representation. Each possible context leads to a distribution over possible next words. For example, the first context is likely to be
followed by a verb; the second and third ones are not. The model posits that human comprehenders’ expectations of the next word arise from marginalizing
out the possible contexts c. In this example, substantial probability is assigned to continuations without a verb, increasing comprehension difficulty when a verb
is encountered.
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should be harder (blue vs. green lines in Fig. 1C ). This simple
prediction is common to most models of memory in sentence
comprehension, going back to the 1960s (2, 4, 7, 24). Our model
generally predicts it because more levels of embedding are less
likely a priori, so that nonveridical variants with fewer levels tend
to have higher a priori probability.

Second, recovering should be easier when semantic cues rein-
force the correct dependency structure for the preceding embed-
ding context. We tested this prediction by manipulating whether
the second-to-last verb was compatible with both the first and sec-
ond nouns as its subject, as in Fig. 1B, item 1 (report . . . annoyed
and doctor . . . annoyed are both plausible), or with only the second
noun, as in Fig. 1B, item 2 (report . . . cured is implausible, whereas
doctor . . . cured is plausible). When this verb is incompatible with
the first noun as its subject, it disfavors nonveridical context repre-
sentations such as “the report by the doctor cured the patient. . . ”
and thus reinforces the veridical context. Therefore, changing the
verb “annoyed” to “cured” should decrease processing effort on
the final verb. Early work on center embedding already noted that
semantic match between nouns and verbs made comprehension
easier (25, 26, 34), but, as far as we know, this effect has not been
demonstrated in word-by-word reading times. While such an effect
may be compatible with some memory-based theories (7, 35), it
does not arise in existing computationally explicit models (7).

Third, recovering should be easier when the nouns provide
supporting statistical cues (Fig. 1B, item 3). Nouns vary strongly
in the a priori probability that they are followed by a “that”-clause;
this probability ranges from ≈70% (“fact”) to ≈0.7% (“report”).
We use the term “embedding bias” to denote the log-probability
that a noun is followed by “that.” In Fig. 1B, item 3, changing the
noun “report” to “fact” decreases the probability of the nonveridi-
cal variants, which is again predicted to decrease processing effort
on the final verb. In the TWO and THREE conditions, the third
verb should be predicted more accurately when embedding bias is
higher, as it increases the a priori probability of the true context
(descending blue and green lines in Fig. 1C ). This prediction
does not follow from existing models but is a straightforward
consequence of our model. In the ONE condition, we expect the
opposite pattern (ascending red line in Fig. 1C ), as nouns that
embed a clause with a very high probability are less likely to be
immediately followed by a verb.

The resulting pattern of difficulty is sharply different from what
is predicted by existing memory-based and expectation-based

models (Fig. 1D and SI Appendix, section S7.1). We exemplify
these using the dependency locality theory (DLT) (36), which
asserts that difficulty stems from integrating long syntactic depen-
dencies, and surprisal theory (9, 10), which asserts that processing
effort is proportional to surprisal derived from fully veridical
context representations. The effect of the number of embedding
levels, and the behavior of the ONE condition, are predicted
by existing memory-based and expectation-based theories, re-
spectively. However, neither group of previous models predicts
effects of semantic compatibility or embedding bias in the TWO
and THREE conditions. See SI Appendix, section S7 for more on
previous models.

Experiment 1: Effect of Statistical Cues

We tested resource-rational lossy-context surprisal by comparing
model surprisal (Eq. 1) against human processing difficulty on the
final verb, as reflected in reading times.

We constructed 32 stimuli of the form in Fig. 1A, each in
three conditions (ONE, TWO, and THREE), and crossed these
with 58 different nouns varying in embedding bias (e.g., report,
fact, . . . ). We first derived predictions for surprisal theory and
DLT for difficulty on the final verb (Fig. 3A); we implemented
surprisal theory using the same statistical model used for the prior
in our model (GPT-2). We then computed resource-rational lossy-
context surprisal, varying the average number of context words
retained during optimization of the retention probabilities from 0
to 20. Across the range of this parameter, the model traverses three
distinct phases (SI Appendix, Fig. S4): When many (�17) words
are retained, behavior is very similar to surprisal theory. When
very few (�4) words are retained, model surprisal is indistinctly
flat in TWO and THREE. In between, the model exhibits the qual-
itative predictions described above; we show results for an average
retention rate of 10 words in Fig. 3A (see SI Appendix, Fig. S4 for
results at other retention rates): Model surprisal is higher in the
THREE condition than in TWO, increases with embedding bias
in the ONE condition, and decreases with embedding bias in the
TWO and THREE conditions.

We compared these predictions to human reading times, which
we measured using the maze paradigm (37–39). In this paradigm,
participants read sentences word by word, and choose between the
correct next word and a distractor word that is matched in length

A B

Fig. 3. Model predictions and reading times in Experiment 1 (A) and Experiment 2 (B). We compare human reading times with predictions from our model, and
with the predictions of previous theories of processing difficulty. For the human data, we show empirical per-noun means, and estimated reading times obtained
from a trial-by-trial Bayesian mixed-effects analysis (see Materials and Methods), with posterior SDs for reading times at “report” (left end, low embedding bias)
and “fact” (right end, high embedding bias). The difficulty pattern predicted by the model, distinct from the predictions of previous theories, is borne out in the
human reading time data.
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and frequency but is very bad in the given context. The dependent
variable of interest is the time it takes to make a choice (reaction
time). The maze paradigm enables higher temporal resolution
and sensitivity than the traditional self-paced reading paradigm,
which suffers from poor localization due to spillover effects and
from noise due to inattentive participants, in particular, in web-
based experiments (38, 39). Different methods exist for creating
distractor words; we use the A-maze variant in which distractors
are automatically generated using large-scale statistical language
models (39) (see Materials and Methods for details).

We recruited 100 English native speakers, collecting data from
10 critical trials for each participant, interspersed with 30 fillers
(see Materials and Methods for details).

The median participant made an error on 1.9% of words
across both fillers and critical trials. The predetermined exclusion
criterion for participants (incorrect response on ≥20% of words)
affected 1.0% of participants. We excluded trials from reading
time analyses when the response on the critical word was wrong;
this affected 5.2% of the data (primarily in the difficult THREE
condition). See SI Appendix, section S3.6 for analyses of errors
and of reading times conditioned on errors.

We show reading times on the last verb in Fig. 3A. We analyzed
these, after log-transformation, in a Bayesian linear mixed-
effects regression, entering participants, items, and nouns as
random effects (see Materials and Methods for details). The results
exhibit the effects predicted by the resource-rational model. First,
reading times were higher in THREE than in TWO (β = 0.18,
95% credible interval [CrI] [0.13, 0.25], P(β < 0)< 0.0001,
effect in raw reading times: 217 ms, 95% CrI [144, 297] ms).
Second, there was an interaction between embedding bias and the
presence of a “that”-clause (β =−0.09, 95% CrI [−0.15,−0.03],
P(β > 0) = 0.0015). Consistent with both our model and
surprisal theory, the effect of embedding bias was positive in the
ONE condition (difference between “fact” and “report”: 297 ms,
95% CrI [34, 566] ms). However, as predicted by our model, this
effect turned negative in the presence of a “that”-clause (difference
between “fact” and “report”: −166 ms, 95% CrI [−297,−41]
ms). This effect agrees with model predictions, and is inconsistent
with DLT or surprisal theory. An interaction between embedding
depth and embedding bias can be demonstrated when pooling
data across experiments (SI Appendix, sections S2.1 and S6.6).
See SI Appendix, section S3 for further analyses.

We found that resource-rational lossy-context surprisal
improves over surprisal theory and DLT in predicting reading
times not only in center embeddings but also in the filler trials
(SI Appendix, section S9).

We also examined predictions for a uniform memory model
where each context word is retained with equal probability, as-
sumed in prior work on lossy-context surprisal (22). This model
predicts the effects of embedding bias but not the effect of depth.
We further compared to a window-based model where exactly
the last K words are available; this model predicts the effect
of depth but not the negative effect of embedding bias. See
SI Appendix, section S2.2 for details.

Experiment 2: Effect of Semantic Cues

We next replicated experiment 1 on a second set of items,
and simultaneously tested the predicted effect of semantic
compatibility.

Beyond the two manipulations from experiment 1, in the
TWO and THREE conditions, we additionally varied the second-
to-last verb phrase: In the COMPATIBLE condition, the first
noun was a plausible subject (e.g., “annoyed the patient”); in the

INCOMPATIBLE condition, it was not (e.g., “cured the patient”).
In the COMPATIBLE condition, nonveridical versions such as
“the report by. . . ” should have a higher a priori probability,
making prediction of the last verb less accurate. We constructed
42 stimulus items.

Fig. 3B shows predictions from the resource-rational model
and previous theories for these items. In addition to the effects
from experiment 1, the model predicts higher difficulty in the
COMPATIBLE condition, particularly within THREE. Neither sur-
prisal theory nor DLT predict any effect of compatibility.

We collected reading time data from 200 participants,
including both COMPATIBLE and INCOMPATIBLE variants in the
TWO and THREE conditions. In all other respects, experiment
and data analysis were identical to experiment 1. Reading
times are shown in Fig. 3B. The results of experiment 1 were
replicated: First, reading times were higher in THREE than in TWO
(β = 0.29, 95% CrI [0.24, 0.35], P(β < 0)< 0.0001; effect in
raw reading times: 337 ms, 95% CrI [267, 411]ms). Second, there
was an interaction between embedding bias and the presence
of a “that”-clause (β =−0.06, 95% CrI [−0.10,−0.024],
P(β > 0) = 0.0007). As in experiment 1, the effect of embedding
bias was positive in the ONE condition (difference between
“fact” and “report”: 193 ms, 95% CrI [37, 357] ms), and
negative across the TWO and THREE conditions (difference
between “fact” and “report”: −105 ms, 95% CrI [−194,−18]
ms). Third, in agreement with the model predictions, reading
times were higher in the COMPATIBLE condition than the
INCOMPATIBLE condition (β = 0.083, 95% CrI [0.031, 0.136],
P(β < 0) = 0.0014; effect in raw reading times: 96 ms, 95% CrI
[36, 156] ms). See SI Appendix, section S3 for further analyses.
Note that the effects of embedding bias and compatibility
are numerically larger in the THREE condition than in the
TWO condition; a metaanalysis shows that these differences are
statistically meaningful in both reading times and in parts of the
model’s parameter space (SI Appendix, sections S2.1 and S6.6).
Numerical differences in the slope of embedding bias between
COMPATIBLE and INCOMPATIBLE were not statistically meaning-
ful (SI Appendix, Fig. S23), nor were numerical differences in the
intercept of the model predictions between the two experiments
(SI Appendix, Fig. S6).

See SI Appendix, section S6 for converging evidence from pre-
ceding reading time studies (total n = 501). We further replicated
the effect of embedding bias on comprehension in two ratings
studies (total n = 335; SI Appendix, section S5).

Experiment 3: Production Study

So far, we have confirmed the model predictions in reading times.
Difficulty measured in reading times indicates that humans’ ex-
pectations are violated, but does not directly indicate what human
expectations are. To provide a second test of human expectations,
we turned to a production paradigm—Cloze completion (40,
41)—that has been used in language research in order to evaluate
what words are expected immediately following a preamble. We
use this method in order to evaluate the complexity of multiply
nested structures, in order to measure how many verbs humans
expect following a complex preamble.*

We asked participants to complete contexts of the form “The re-
port that the doctor who the diplomat. . . ” to a complete sentence.
We expected participants to either produce grammatical comple-
tions with three verbs, such as “. . .mistrusted cured the patient

*E. Gibson, E. Fedorenko, “The domain-generality of working memory resources for
language” in Architectures and Mechanisms for Language Processing (AMLaP) (2011).
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Fig. 4. Production experiments. (A) Conceptually, the model predicts that incomplete responses are most common for nouns with low embedding bias. In
contrast, neither surprisal theory nor DLT predict any effect of embedding bias. (B–D) While languages differ in the overall rate of ungrammatical responses, the
prediction is borne out in each language. Blue lines indicate linear fits; gray shading indicates 95% confidence bands.

was surprising,” or ungrammatical versions with fewer verbs, such
as “. . .mistrusted was surprising.” Resource-rational lossy-context
surprisal predicts that the rate of such ungrammatical completions
should be lower for nouns with high embedding bias (e.g., “fact”),
as these make it easier to recover the true context from imperfect
memory representations (Fig. 4A). Existing expectation-based and
memory-based models do not predict that the rate of grammatical
completions depends on embedding bias.

We recruited 80 participants. Fig. 4 shows the rate of in-
complete completions (less than three verbs) as a function of
embedding bias. As predicted, there was an effect of embedding
bias on the rate of ungrammatical responses (β =−0.32, 95% CrI
[−0.60,−0.05], P(β > 0) = 0.0123) in a trial-by-trial logistic
mixed-effects analysis.

We replicated this study in two more languages (Spanish and
German), including one (German) where the difficulty of center
embeddings has been found to be substantially weaker than in En-
glish (42). In Spanish, we targeted subject relative clauses (el hecho
de que el director que, “the fact that the director who”) to avoid
less natural subject–initial object relative clauses, simultaneously
testing generalization to a different syntactic configuration. In
German, we targeted embedded structures (e.g., Klaus hat erzählt,
dass die Behauptung, dass der Student, den der Professor, “Klaus said
that the claim that the student who the professor”), as they are
known to increase difficulty to levels closer to English (35).

We recruited 60 participants in each language. In both lan-
guages, the effect of embedding rate was estimated to be negative,
with estimated effect sizes comparable to the English result
(Spanish: β =−0.23, 95% CrI [−0.34,−0.12], P(β > 0)<
0.0003; German: β =−0.28, 95% CrI [−0.56,−0.03],
P(β > 0) = 0.01738). These results suggest that the—previously
undocumented—effect of embedding bias on human expectations
holds across different languages, even when they vary in the overall
difficulty of center embeddings.

Discussion

We have introduced a model of human language processing
as resource-rational prediction, scaled to arbitrary input using
contemporary machine learning methods. Aiming to reconcile
memory- and expectation-based perspectives on human syntactic
processing, the model not only recovers predictions of those prior
theories where they are correct but also predicts previously un-
documented interactions between memory limitations and prob-
abilistic expectations, which we confirmed in three behavioral
experiments probing human processing of recursive structures.

Our results reveal that the well-documented difficulty of in-
tegrating long linguistic dependencies, which is at the heart of

existing memory-based models (5, 7, 36), is substantially mod-
ulated by probabilistic expectations: The comparison between the
ONE and THREE conditions shows that such locality effects can be
weakened or even reversed when the nonlocal syntactic structure
has high a priori probability, a prediction that falls out naturally
from our proposed unification of memory- and expectation-
based perspectives. Our work further documents three prominent
families of effects from the psycholinguistic literature in a single
experiment and with a single model: locality effects (increased
difficulty of THREE), predictability effects (effect of embedding
bias in the ONE condition), and semantic interference effects
(effect of semantic compatibility). There has been considerable
interest in a unified theoretical treatment of these families of
effects; our work showcases how a single model can describe, in
detail, how they interact. One group of phenomena not targeted
by our experiments is similarity-based interference (43, 44). Inves-
tigating whether it can also be accounted for with this modeling
framework is an interesting problem for future research.

Our resource-rational model is formally related to models in
various domains. Classical work has shown that rational analysis
of retention probabilities can account for fundamental properties
of human memory (28, 29). Recent work (45–48) has formalized
rational models of human working memory in some domains,
such as visual working memory, using rate–distortion theory, an
information-theoretic framework deriving high-fidelity encodings
under resource constraints. The key difference between rate–
distortion theory and our model is that the measure of economy
is the fraction of available words here, while it is the number of
encoded bits in rate–distortion theory. Applied to sentence com-
prehension, rate–distortion theory would lead to fully compressed
“gist” representations of past context. Such fully compressed rep-
resentations do not lead to the difficulty patterns observed in our
experiments (see SI Appendix, section S8 for details). On the other
hand, our model is also a simplification in that it models the recent
context as a sequence of words, which may underestimate the
role of memory representations of longer context where individual
words may have been forgotten but memory of meaning remains.
Further advances in machine learning may allow inferring a more
sophisticated format of memory representations from resource-
rational optimization.

In computer science, recursive structure is typically processed
using stack-based data structures. Correspondingly, early models
of human syntactic processing assumed bounds on the size of the
stack, or the number of nodes that can be held in memory at the
same time (2, 24). Such models predict that deeper embedding is
more difficult, but do not predict that difficulty is modulated by
statistical or semantic cues. Unlike stack-based architectures, our
theory assigns a major role to probabilistic cues in establishing
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recursive structure. In this respect, it agrees with more-recent
memory-based theories assuming that humans do not maintain
data structures such as stacks, and, instead, establish syntactic
structures using associative cue-based retrieval (5, 7, 49, 50).
Models of associative retrieval as currently implemented (7) do
not account for the distinctive difficulty patterns predicted by
our model and observed in our experiments. Nonetheless, we
view our theory as compatible with ideas from that literature.
Our theory provides a computational-level model that makes pre-
dictions compatible with existing memory-based models, but—
unlike those models—is rationally attuned to the rich statistical
structure of language, enabling it to predict how memory limita-
tions interact with probabilistic expectations. Our results suggest
that identifying probabilistic versions of associative retrieval mod-
els, as algorithmic-level implementations of the resource-rational
model described here, is an interesting problem for psycholin-
guistic research. See SI Appendix, section S7.2 for more on the
implications of our results for retrieval-based memory models.

Our proposed unification of expectation-based and memory-
based models rests on the idea that imperfect working memory
representations are reconstructed rationally—although sometimes
incorrectly—using knowledge of the statistics of the language.
This idea has an important precedent in work on redintegration
in verbal working memory (e.g., refs. 51–55), a process whereby
degraded short-term memory is restored using knowledge from
long-term memory. This has been applied to memory for word
lists (e.g., ref. 52–55) and, more recently, memory for syntactic
patterns (56). Our model provides an account of such processes
grounded in Bayesian inference constrained by resource rational-
ity. There are also models where working memory is treated not
as a component of memory of its own but as emergent from
the interaction of processing and long-term memory (57, 58).
For such models, our results provide data on how long-term
knowledge informs processing.

Our experiments capitalize on statistical correlates of syntactic
structures in order to probe how probabilistic expectations interact
with memory constraints. This has some parallels in prior work
on expectation-based models that showed how correlations, such
as between animacy and relative clause type, impact processing
in ways not accounted for by existing memory-based accounts
(e.g., refs. 59–61). Our work expands on this line of work by
articulating an implemented theory of the interaction between
memory constraints and probabilistic expectation.

Our model has a free parameter δ, the average number of
retained words. We assumed a single value in deriving predictions
and comparing to human reading times. Fitting it for individual
subjects and understanding its relationship to established mea-
sures of individual differences is an interesting problem for future
research.

Connectionist models of human syntactic processing (8, 62–
64) aim to describe human processing using expectations derived
from neural network representations, and have been proposed to
model effects related to both memory limitations and probabilistic
expectations. However, the differences between plain surprisal as
computed by GPT-2 and resource-rational lossy-context surprisal
show that human-like memory limitations need not emerge auto-
matically in connectionist models.

We have shown how a model of resource-rational language
processing can be scaled to the rich statistical structure of natural
language. Our machine learning–based method may open the
door to fitting sophisticated rational models on natural input
statistics also in other domains of human cognition.

The generality of our model also suggests that similar phenom-
ena might exist outside of language: Whenever humans process

input that is too complex for all its parts to be attended to
simultaneously, processing should be impacted by the statistical
structure of similar inputs.

Materials and Methods

Nouns. We collected nouns that can take a sentential complement, using the
Penn Treebank (65), the English Web Treebank (66), the AnCoRA treebank (67) of
Spanish, and the HDT Treebank (68) of German. We estimated embedding bias
as the log-probability that “the NOUN” was followed by “that” using the English
Wikipedia (2.3 billion words), the German Wikipedia (800 million words), and the
Spanish Wikipedia (500 million words). See SI Appendix, section S11 for details.
We validated the English estimates using two other large corpora of American
and British English (SI Appendix, section S10.1).

Model. Resource-rational lossy-context surprisal is defined by a family of
retention probabilities θ = {qw,i : i, w}, where w ranges over words and
i = 1, . . . , N, where N = 20 is the maximum context length considered,
long enough to accommodate all contexts appearing in the experiments.
We parameterize qw,i using a neural network that combines a past word’s
identity and the number of intervening words, to output a retention probability
(SI Appendix, section S1.1). The model θ gives rise to the likelihood p(c′|c) and
thus the posterior p(c|c′). It is chosen to minimize average next-word surprisal
for the resulting next-word posterior p(w|c′):

min
θ

Ec∗wEc′∼p(c′|c∗)
[
− log p(w|c′)

]
, [2]

where c∗w are contexts in the corpus together with the next words, subject to
the constraint that the average number of retained words does not exceed some
bound δ ∈ R+,

Ec∗Ec′∼p(c′|c∗)
[
#{i : c′i �= ERASED}

]
≤ δ, [3]

where c′ = c′1 . . . c′N consists of the retained words and ERASED for the other
words.

For each integer 0 < δ < 20, we solved [2] and [3] on large-scale text
data from the English Wikipedia using machine learning methods based on
neural networks (SI Appendix, section S1.3). We fitted the model on contexts
c∗ of length N = 20 of continuous text, across sentence boundaries marked
by periods. We removed commas from the text data, as they might provide
confounding cues to hierarchical structure.

We show results at δ = 10 in Fig. 3; see SI Appendix, Fig. S4 for results at
other values of δ.

We estimated the a priori statistics of English with GPT-2, and used importance
sampling to compute model surprisal [1] (SI Appendix, section S1.4). Due to high
computational resource demands, we used the medium-sized version of GPT-2
(345 million parameters). Larger versions of GPT-2 provide equivalent predictions
in the zero-loss setting (SI Appendix, section S7.1).

Experimental Setup for Reading Time Studies. For all studies, the exper-
imental protocol was approved by the Institutional Review Board at Stanford
University. Informed consent was obtained from all participants. Each participant
was presented with 10 critical trials. In both experiments, two trials were in ONE,
and four trials were in TWO and THREE each. In experiment 2, half of the TWO
and THREE trials were each in the COMPATIBLE (INCOMPATIBLE) condition. We chose
a small number of critical trials, to minimize any effect of statistical adaptation
to center embeddings during the task. To maximize statistical precision, we
selected 15 nouns with very high embedding bias and 15 nouns with very
low embedding bias (SI Appendix, Fig. S36). For each participant, we sampled
five nouns with high embedding bias and five nouns with a low value, and
matched these with the 10 critical trials. For each participant, we also sampled
30 fillers from a pool of 56 fillers from a prior reading time study of center em-
beddings (42). To remove semantic anomalies due to presupposition violations
(e.g., “the fact was wrong”), we classified the nouns into entailing (e.g., “fact”),
nonentailing neutral (e.g., “claim”), and nonentailing negative (e.g., “accusa-
tion”) nouns, and classified items for compatibility with each of these three classes
(SI Appendix, section S11). For each participant, we matched the 10 nouns with
semantically compatible items.
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For the maze task, we generated distractors automatically (39) using the
Gulordava language model (69): these distractors have extremely low contextual
probability, while being matched with the target word in frequency and length.
Distractors were matched across conditions, except within the second-to-last verb
phrase in the (IN)COMPATIBLE conditions in experiment 2. In particular, distractors
were matched on the critical word across all conditions.

When participants made a mistake (i.e., chose the distractor), they were
prompted to retry the current word (70). Reaction times on such trials were
excluded; this choice did not impact conclusions (SI Appendix, section S3.6).

For each subject, trials were presented in random order so that no two critical
trials were adjacent. Participants, recruited on the Prolific academic platform, took
a median of 13 min, and received £2.20 (≈3 USD).

Data Analysis for Reading Times. We excluded trials 1) with an incorrect
answer, 2) from participants who made errors on more than 20% of words, and
3) below or above 99% of all reading times. See SI Appendix, section S3.6 for
robustness to condition 1, and see SI Appendix, section S3.7 for robustness to
condition 3. We then analyzed log-transformed reading times on the final verb
using Bayesian mixed-effects models implemented in Stan (71) using brms (72).
See SI Appendix, section S3.3 for priors and robustness to prior choices. We used
contrast coding with the presence of a “that”-clause (ONE vs. TWO/THREE), depth
(TWO vs. THREE), and the compatibility manipulation (COMPATIBLE vs. INCOMPATIBLE)
as contrasts. Embedding bias was centered, and all nonvacuous binary inter-
actions were added as fixed effects (SI Appendix, section S3.2). We included
the maximal random effects structure justified by the experimental design,
entering items, nouns, and participants as random effects. In order to estimate
effects in raw reading times (milliseconds), we first computed the predicted log-
transformed reading time in both conditions (e.g., COMPATIBLE and INCOMPATIBLE),
then transformed both into milliseconds by exponentiating, and computed the
difference (see SI Appendix, section S3.4 for further details). In Fig. 3, we plot the
posterior mean of the predicted reading time in all conditions for nouns with
embedding bias matching “fact” or “report.” Error bars represent the posterior SD.

Details for Production Study. We constructed 28 items of the form “The XXX
that the diplomat who the senator,” and selected 12 nouns, 6 each with very high
or very low embedding bias. For each participant, we randomly paired items and
nouns. The 12 critical trials were presented in random order with 27 fillers. A
linguist manually annotated, for each completion provided, whether the correct
number of verb phrases (three) was produced. The annotator was blind to the
identity of the noun.

In Spanish and German, we selected 20 nouns with very high or very low
embedding bias in each language, sampling 6 high and 6 low embedding bias
nouns for each participant. As in the English version, we randomly matched 12
items with the 12 sampled nouns for each participant. Fillers were translated from
the English experiment.

In German, we further constructed 12 matrix sentences (e.g., “Klaus said
that”), and randomly matched them with items and nouns for each participant.

We conducted a Bayesian trial-by-trial logistic mixed-effects analysis with
embedding bias as a fixed effect, and random effects of nouns, items,
participants, and (in German) matrix sentences. See SI Appendix, section S4
for details.

Data, Materials, and Software Availability. Fitted retention probabilities
and model predictions have been deposited in Zenodo (https://zenodo.org/
record/6602698) (73), (https://zenodo.org/record/6988696) (74). Anonymized
reading times, language production data, and source code have been deposited
in GitLab (https://gitlab.com/ m-hahn/resource-rational-surprisal) (75).
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