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Abstract
The redox equilibrium is crucial for the maintenance of immune homeostasis. Here, we summarize recent data showing that
oxidation regulates T-cell functions and that alterations of the redox equilibrium may play an important role in the
pathogenesis of inflammatory conditions affecting the kidneys. We further discuss potential links between oxidation, T cells
and renal diseases such as systemic lupus erythematosus, renal ischaemia/reperfusion injury, end-stage renal disease and
hypertension. The basic understanding of oxidation as a means by which diseases are directly affected results in unexpected
pathophysiological similarities. Finally, we describe potential therapeutic options targeting redox systems for the treatment of
nephropathies affecting humans.
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Introduction
Recently, redox homeostasis has been the focus of intense
investigations, especially in inflammatory conditions [1], and
most recently in research of regulated necrosis [2–4]. An altered
inflammatory response is the basis of many diseases, including
allergy and systemic autoimmunity, which often affect the
kidneys. Under particular circumstances, which are not yet
completely understood, inflammation is not properly termi-
nated, resulting in continuous activation of the immune
cells and prolonged inflammation and tissue damage mainly
mediated by T cells and macrophages. In this review, we
summarize recent advances on how the redox balance regulates
T-cell functions and we discuss the possible interplay between
oxidation and T cells in inflammatory diseases affecting
kidneys.

T-cell activation and differentiation
T cells are key orchestrators of the response against pathogens
and are also fundamental in maintaining self-tolerance. A num-
ber of clinically important conditions have been described in
which T-cell functions are altered, as in AIDS or upon immuno-
suppression for solid organ transplantation. T-cell progenitors
differentiate in the thymus into immature T cells that acquire
the expression of the T-cell receptor (TCR), which recognizes
antigen peptides from pathogens presented along with major
histocompatibility complex (MHC). In addition to the TCR,
T cells are characterized by expression of the co-receptor
molecules CD4 and CD8 on their cell surface. CD4+ T cells, also
called T helper (Th) cells, recognize antigen/MHC-II complexes
on antigen presenting cells (APCs) and coordinate the activation
of other immune cells including B cells, macrophages, etc.

Received: May 27, 2015. Accepted: November 9, 2015

© The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

Clinical Kidney Journal, 2016, vol. 9, no. 1, 1–10

doi: 10.1093/ckj/sfv135
Advance Access Publication Date: 13 December 2015
CKJ Review

1

C
L
IN

IC
A
L
K

ID
N
E
Y
JO

U
R
N
A
L

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.oxfordjournals.org


Therefore, CD4+ T cells are crucial for coordination of the im-
mune response and for the elimination of invading pathogens.
On the other hand, CD8+ T cells, referred to as T cytotoxic cells,
recognize antigen/MHC-I complexes and are responsible for the
killing of pathogen-infected cells.

Recognition of MHC/peptide complexes by the TCR and the
co-receptors results in T-cell activation (for a review, see [5]). Sig-
nalling via the TCR is further supported by co-stimulatory (e.g.
CD28) and accessory (e.g. integrins) molecules. Upon TCR liga-
tion, members of the Src family kinases Lck and Fyn phosphoryl-
ate the immunoreceptor tyrosine-based signalling motifs
(ITAMs) located within the TCR-associated CD3 and ζ chains.
This event results in the recruitment of the tyrosine kinase
ζ chain–associated protein kinase of 70 kDa (ZAP-70) to the recep-
tor. ZAP-70 is in turn activated and further phosphorylates the
linker for activation of T cells (LAT), a transmembrane adaptor
molecule that further assembles a complex leading to Ca2+ flux,
Ras and protein kinase C (PKC) activation (Figure 1). These events
ultimately culminate in gene transcription, proliferation and dif-
ferentiation of T cells.

T-cell activation and differentiation depends on APCs such as
dendritic cells (DCs), macrophages and B cells. Among them, DCs

are highly specialized in antigen presentation and in T-cell prim-
ing [6]. DCs act as sentinels in the body where they capture anti-
gens. Danger signals such as microbial products or cytokines
from injured tissue activate DCs, which in turn migrate to
secondary lymphoid organs, where they allow initiation of the
immune response [7]. The nature of the stimulus dictates
which kind of immune response will be set in motion [8]. There-
fore, depending on the insult affecting a given tissue, different
subsets of DCs can be generated that in turn are able to coordin-
ate the differentiation of a particular Th subset.

To date, the following Th subsets have been described: Th1,
Th2, Th9, Th17, Th22, Tfh (follicular helper T cells), Tr1 (type 1
regulatory T cells) and Treg (regulatory T cells), each possessing
a specific function in the elimination of pathogens. The develop-
ment, the function and the involvement of Th subsets in human
diseases are summarized in Figure 1 (for a review, see [9, 10]).

Redox equilibrium: an emerging new player
in the regulation of T-cell differentiation
Reactive oxygen species (ROS) include the superoxide anion rad-
ical (O2

��), hydroxyl radical (HO·), hydrogen peroxide (H2O2) and

Fig. 1. T-cell activation and T-cell subsets differentiation. Upon TCR ligation byMHC/peptide complexes on APCs, an activating signal is triggeredwithin T cells leading to

transcriptional activation, IL-2 production and proliferation. Additional receptors (e.g. CD4, CD28, integrins and cytokine receptors) also participate in this process. The

orchestration of these signals results in Th differentiation into various effector and regulatory subsets. Cytokines inducing Th differentiation, lineage-defining

transcription factors, effector cytokines, physiological function and implication in pathological conditions are indicated. RA, rheumatoid arthritis; MS, multiple

sclerosis; SLE, systemic lupus erythematosus; T1D, diabetes mellitus type 1; IBD, inflammatory bowel disease; DM, juvenile dermatomyositis; SjoS, Sjogren’s

syndrome; EAE, experimental autoimmune encephalomyelitis.
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hypochlorous acid [11]. It has been known for many years that
ROS may have, in high concentrations (oxidative stress), deleteri-
ous effects on living organisms, as they can damage all major
cell constituents, including lipids, proteins and DNA. Conversely,
at lower concentrations, ROS participate in the regulation of sig-
nalling processes and cellular responses such as proliferation
anddifferentiation [11, 12]. Therefore, in order tomaintain the ap-
propriate redox state, cells require a regulation system for the pre-
cise generation and elimination of ROS (redox homeostasis).

Superoxide is generated in the mitochondria when electrons
‘accidentally’ leak from the transport chain and reduce molecu-
lar oxygen (Figure 2) [12]. Additionally, cells also possess enzym-
atic sources of superoxide such as nicotinamide adenine
dinucleotide phosphate (NADPH) oxidases (NOX) and xanthine
oxidase (XO) [11]. Superoxide is highly unstable and rapidly
dismutates toH2O2, a processmediated by the superoxide dismu-
tase (SOD) (Figure 2). H2O2 can further participate in the gener-
ation of HO· during Fenton reactions [12].

In order to protect cell constituents from oxidative damage
and/or to ensure the appropriate intracellular concentration of
ROS required for cell functions, cells have developed a complex
defence system comprising a variety of substances (antioxi-
dants), which neutralize the excess ROS (Figure 2). Antioxidants
include enzymes such as SOD, glutathione peroxidase, catalase

and non-enzymatic agents such as vitamin C, vitamin E, the
tripeptide glutathione (γ--glutamyl--cysteinyl-glycine, GSH),
carotenoids, flavonoids and also free amino acids, which can
easily react with ROS (e.g. cysteine) [11, 12]. Whereas reduced
GSH is one of the major intracellular redox buffers, the cyst-
eine/cystine couple plays an important role in the regulation of
extracellular redox homeostasis [13].

It is well established that TCR triggering results in the gener-
ation of ROS (for a review, see [14]). Different sources of ROS in
T cells have been described, including NOX enzymes and mito-
chondria. Despite the fact that the mechanisms by which ROS
regulate T-cell activation are not yet completely clear, an appro-
priate redox state is absolutely required for T-cell activation.
Alterations in the redox equilibrium induced by TCR-generated
ROS may influence the activation of several molecules and sup-
port signalling [14]. However, high levels of ROS (oxidative stress)
are detrimental for T cells, as they may inhibit signalling or
induce apoptosis. In fact, a decrease in intracellular GSH blocks
TCR-mediated calcium flux and proliferation in human periph-
eral T cells [15, 16].

The same regulatorymechanismapplies to avariety of cells in
which ROS function as signalling molecules by inhibiting phos-
phatases, modulating the activity of kinases and regulating the
activation of transcription factors [1, 11]. Nevertheless, the

Fig. 2. Redox homeostasis in T cells. Themain sources of ROS are themitochondrial electron transport chain, NOX and XO,which produce O2
��. O2

�� either spontaneously

orwith the help of specific enzymes (i.e. SOD) is catalysed toH2O2. The latter can be further reduced towater by Cat or converted to OH· in the presence of transitionmetals

(Fenton reaction). Different antioxidant systems have also been depicted. GSH is the most important cellular antioxidant. GPXmediates GSH oxidation by H2O2, which is

converted to GSSG. GSSG is reconverted to GSH by GR via oxidation of NADPH. The TRX system is involved in cellular redox homeostasis aswell. In this case, H2O2 oxidizes

TRXr to TRXo,which is subsequently re-reduced byNADPH. H2O2 functions as a regulator of T-cell signalling via inhibition of PTPs ormodulating the activity of PTKs. NOX,

NADPH oxidase; XO, xanthine oxidase; O2
�� , superoxide anion; SOD, superoxide dismutase; Cat, catalase; GSH, glutathione; GSSG, glutathione disulfide; TRX, thioredoxin;

PTP, protein tyrosine phosphatase; PTK, protein tyrosine kinase; TRXr, reduced thioredoxin; TRXo, oxidized thioredoxin; PRX, peroxiredoxin, GR, glutathione reductase;

GPX, glutathione peroxidase.
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exact molecular mechanisms of how ROS regulate signalling are
only partially understood, and we are far from understanding
these mechanisms in disease settings of stress, sepsis, auto-
immunity and acute kidney injury.

Accumulating evidence now suggests that T-cell differenti-
ation is strongly redox dependent. Several in vitro experiments
performed on isolated T cells have shown that the redox state
regulates interleukin 2 (IL-2) and IL-4 production. Antioxidants
inhibit IL-2 and IL-4 expression [17–19]. In agreement with
these findings, a pro-oxidant situation induces the expression
of IL-2 and IL-2R and also enhances proliferation [20–22]. Interest-
ingly, inhibition of mitochondria-generated ROS in T cells
isolated from patients suffering from atopic dermatitis also
blocked TCR-mediated IL-4 production [17]. Therefore, in recent
years, treatment with antioxidant has become a therapeutic
option to cure inflammatory diseases (discussed below).

The data reported above suggest that IL-2 and IL-4 production
in T cells requires ROS. The molecular mechanisms of ROS-
mediated regulation of cytokine production are not yet clear.
Although ROS have been directly implicated in the regulation of
the activation of transcription factors, it appears that, in T cells,
oxidative processes likely regulate proximal TCR signalling,
which in turn affects the signal strength and the execution of
the transcriptional programme [14].

In addition to the effects on cytokine production, different
studies have assessed the role of the redox balance on Th differ-
entiation in vitro. It appears that a pro-oxidation state induces
T-cell polarization into the Th2 lineage. In fact, an increase in
superoxide generation correlates with augmented IL-4, IL-5 and
IL-13 production [23]. Importantly, antioxidants inhibit this
effect. Similarly, treatment with N-acetyl cysteine (NAC), a GSH
precursor, or GSH suppresses Th2 differentiation [24, 25]. In
agreement with the latter studies, higher free thiol levels correl-
ate with a skewed Th1/Th2 balance towards the Th1 lineage [26].
Also, data from NOX2-deficient mice suggest that naive CD4+

T cells with defective generation of ROS are biased towards the
Th1 lineage [27, 28]. In the absence of NOX2, T cells display
enhanced T-bet and reduced STAT5 and GATA3 activation and,
accordingly, secreted more interferon γ (IFN-γ) but less IL-4 [29].

In addition to Th1/Th2 differentiation, ROS have also
been implicated in the generation of Th17 cells. A recent
study has shown that T cells from immediate early response
gene X-1 (IEX-1)-deficient mice have increased mitochondrial
ROS production upon CD3/CD28 stimulation and enhanced
generation of Th17 cells [30, 31]. The specific involvement of
ROS in the generation of Th17 cells was shown by the treatment
with antioxidants that suppress Th17 differentiation in IEX-1-
deficient mice. In addition, these mice are highly susceptible to
develop collagen-induced arthritis.

Understanding how oxidation regulates Th polarization is an
understudied area that needs further investigation. Indeed, re-
cent studies emphasize that reprogramming of Th differentiation
may have important therapeutic implications for the treatment
of inflammation [32, 33].

Redox-dependent regulation of APC functions:
the effects on Th differentiation
T cells are primed in lymphoid tissues and their differentiation
depends on cytokines and signals provided by neighbouring
cells, in particular APCs. Also APC functions can be regulated in
a redox-dependent manner. Therefore, alterations of the redox
state of APCs or of the microenvironment may affect the ability

of APCs to support T-cell differentiation. In this section, we sum-
marize recent data highlighting the importance of the redox state
of APCs for T-cell differentiation and its potential implication in
the development of human autoimmune diseases.

The role of GSH

It has been observed that an increase in intracellular GSH levels
in LPS-stimulated human monocyte-derived DCs and thymic
stromal lymphopoietin-activated myeloid DCs promoted Th1
(IFN-γ) but inhibited Th2 (IL-4, IL-13) responses [34]. When GSH
levels are elevated, DCs release more IL-27 and IL-12, which in
turn support Th1 differentiation. Indeed, blocking IL-12 by the
addition of neutralizing anti-IL-12 monoclonal antibody or sup-
pressing IL-27 by siRNA results in suppressed production of the
Th1 cytokine IFN-γ. In addition, GSH levels are critical for the
regulation of IL-12 production by APCs such as DCs and macro-
phages [35–38]. Collectively, these studies suggest that an
oxidized intracellular milieu in APCs decreases the secretion of
IL-12, thus skewing Th polarization to the Th2 lineage, whereas
a reduced intracellular state in APCs favours Th1 differentiation.

Analysis of the molecular mechanisms involved in the ex-
pression of IL-12 revealed that GSH regulates IL-12 expression
by inducing p38-MAPK but suppressing JNK-MAPK activation
[39, 40]. GSH is not only involved in the regulation of redox
homeostasis, but it also appears to control other aspects of cellu-
lar functions, including gene transcription and proliferation [40].
Therefore, it is not yet clear whether GSH regulates cytokine
release in a redox-dependentmanner. However, a study suggests
that ROS produced upon LPS stimulation of human monocyte-
derived DCs is required for cytokine production by DCs [41].

Altered GSH levels have been found in a variety of auto-
immune diseases [42]. A correlation between decreased GSH
levels and anti-thyroperoxidase antibodies has been found in
Hashimoto’s thyroiditis [43]. Moreover, amutation in glutathione
S-transferase, an enzyme facilitating the elimination of ROS by
catalysing their conjugation to GSH, has been found to correlate
with an elevated risk of developing anti-citrullinated protein
antibody and rheumatoid arthritis (RA) [44]. Therefore, reduced
GSH levels in autoimmunity may skew Th differentiation to the
Th2 subset or even to the Th17 lineage [45], thus favouring auto-
antibody production.

The role of NOX2

ROS have also been directly implicated in antigen processing and
in the generation of the MHC-II-restricted peptide repertoire in
APCs. NOX2 appears to be involved in this process [46–48].
NOX2-mediated ROS inactivate cysteine cathepsines in the
phagosome, thus modulating their activity. In the absence of
ROS, cysteine cathepsines have altered substrate specificity that
affects the processing of proteins. It has been shown that inmye-
lin oligodendrocyte glycoprotein (MOG)-induced experimental
autoimmune encephalomyelitis (EAE), NOX2-deficient APCs are
unable to prime Th cells because of inefficient presentation of
the MOG immunodominant epitope [46]. Consequently, NOX2-
deficientmice are protected from EAE. However, these effects ap-
pear to be specific for certain proteins and for EAE. In fact, NOX2
deficiency results in the development of inflammatory diseases
in both humans and mice (for a review, see [49–51]). As ROS
production is strongly decreased in cells lacking a functional
NOX2, the above findings contradicted the general idea that
ROS promote inflammation. It is now clear that ROS have differ-
ent effects depending on their levels, their source and when they
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are produced and, hence, under particular conditions, may
promote hyperinflammatory responses, whereas in other cases
they suppress autoimmunity. The molecular mechanisms
regulating these two different outcomes remain unclear, but a
necro-inflammatory auto-amplification loop may contribute to
the pathogenesis [3]. One study has shown that NOX2-generated
ROS are required to activate p38-MAPK signalling in IFN-γ/LPS-
stimulated murine DCs [52]. This pathway in turn suppresses
IL-12 expression. NOX2-deficient DCs secrete more IL-12 and
skew CD4+ T-cell differentiation to the Th1 subset. It also
appears that NOX2-generated ROS in Tregs is required for their
suppression function [53]. In the absence of a functional NOX2
or upon antioxidant treatment, Tregs are less efficient in the
suppression of effector cells. These data demonstrate that
NOX2-derived ROS may regulate tolerance at different levels.

The role of oxidized lipids

Recent data have clearly highlighted that oxidation of low-
density lipoproteins (LDLs) influences DC functions and plays a
crucial role in atherosclerosis and autoimmunity. Atheroscler-
osis is a chronic inflammatory disease affecting the functionality
of blood vessels [54]. It is also established that a correlation exists
between autoimmunity [e.g. RA and systemic lupus erythemato-
sus (SLE)] and the risk of developing cardiovascular disease [55].
Now possible links between atherosclerosis and autoimmunity
have been proposed [56, 57]. LDLs function as lipid carriers in
the blood [58]. When LDLs diffuse into the subendothelial area
of the artery, they can undergo ROS-mediated oxidation. Oxi-
dized LDLs (oxLDLs) function as inflammatory mediators via dif-
ferent pathways [59]. It is now evident that oxLDLs regulate DC
function and Th polarization. In fact, oxLDLs stimulate DCs to po-
larize T cells into the Th1 lineage in both humans and mice [56].
Th1 cells in turn support and promote the disease, likely via IFN-γ
[60]. In addition to promoting Th1 differentiation, new findings
suggest that oxLDLs also support Th17 polarization both in vitro
and in vivo [61]. oxLDLs induce IL-6 secretion byDCs upon binding
to CD36 andTLR4 viaMyD88, thus in turn favouring Th17-cell dif-
ferentiation. Furthermore, this study demonstrates that oxLDLs
enhance the pathogenicity of MOG-specific T cells and the
severity of EAE. What is the exact temporal relation between
atherosclerosis and autoimmunity is still unclear. It has been
proposed that elevated levels of inflammatory cytokines in auto-
immunity promote atherosclerosis [55]. However, on the basis of
the above data, it is possible to speculate that increased levels of
oxLDLs under atherosclerosis conditionsmay favour Th1 or Th17
differentiation, thus driving the progression of autoimmunity.
How oxLDLs promote both Th1 and Th17 cells is not yet clear.
It is possible that the discrimination between Th1 versus Th17
may depend on the chemical composition of the oxLDLs. DCs
are able to recognize different species of modified lipids via dif-
ferent receptors (e.g. CD36, LOX-1) [56, 58]. Therefore, the integra-
tion of different signals downstream of these receptors will likely
dictate the outcome of the DC-mediated Th developmental
programme.

An additional study further emphasizes the importance of
lipid oxidation inDCmaturation and in turn onThdifferentiation
[62]. Mice lacking lipoxygenase (LO), an enzyme oxygenating free
and esterified polyunsaturated fatty acids, show enhanced DC
maturation and increased Th17 differentiation. Moreover, these
mice also display a more severe EAE, thus indicating the import-
ance of LO and LO-derived oxidized lipids in autoimmunity.
Mechanistically, LO participates in regulation of the activation
of the transcription factor NRF2, which in turn inhibits DC

maturation. LO also seems to inhibit IL-23 transcription, which
is required for Th17 polarization.

On top of these molecularly defined pathways, cell death in a
form of regulated necrosis, referred to as ferroptosis, has recently
been associated with a defined lipid peroxidation signature [63]
that depends on glutathione peroxidase 4 activity and GSH levels
[64]. Since regulated necrosis triggers necroinflammation [65], it
is conceivable that also these processes of ROS-driven parenchy-
mal damage may contribute to overall organ damage, obviously
with a predominantly important function in the kidney [3, 63].
Very recently, ferroptosis has also been described in T cells in
immunity to infection [66]. Therefore, pharmacological targeting
of ROS differentiation and ferroptosis bymeans of the same com-
pounds, e.g. ferrostatins, may provide a promising therapeutic
option. Today, however, broad clinical application of such inhibi-
tors is precluded by the lack of mechanistic insights.

The interplay between oxidation, Th cells
and kidney diseases
The aetiology of many kidney diseases is still largely not well
understood. In particular, little is known about the interplay
between oxidation, Th cells and tissue damage. As mentioned
in the section “T-cell activation and differentiation”, under
some inflammatory conditions, alteration of Th differentiation
is one of the factors contributing to disease development or pro-
gression. In this paragraph, we summarize recent data inwhich a
link between oxidation, alterations of T-cell function and renal
disease has been proposed and we also discuss potential thera-
peutic implications (see Table 1).

SLE is one of the most well-known kidney diseases in which
oxidative stress is increased [93, 94]. Recent data point out that
oxidation inhibits T-cell signalling, leading to Erk activation
and DNA methyltransferase expression, thus in turn resulting
in DNA demethylation, overexpression of immune genes and
autoimmunity [95]. Additional studies have shown that oxida-
tion of PKCδ, which results in its inactivation, is responsible for
the defective Erk activation and lupus development in mice [96,
97]. Therefore, antioxidants may represent beneficial co-adju-
vants for the treatment of SLE. Indeed, a study has shown that
non-enzymatic antioxidants (e.g. NAC and cysteamine) improve
survival in a mouse model of SLE [68]. An important advance in
the therapy of SLE using dietary supplements has been recently
provided. It has been shown that a diet rich in transmethylation
micronutrients can ameliorate SLE in a lupus mouse model [70].
This study has further shown that the dietary methyl donor con-
tent directly correlates with increased methylation and de-
creased expression of the CD40lg gene. CD40L is expressed on T
cells and contributes to disease pathogenesis by stimulating anti-
body production upon engagement with CD40 expressed on B
cells [98].

The sources of ROS in SLE are not known. Nevertheless, a pos-
sible involvement of mitochondria in the generation of ROS in T
cells from SLE patients has been previously proposed [99]. T cells
from SLE patients exhibit mitochondrial dysfunctions such as
elevated mitochondrial transmembrane potential, reduced ATP
production and enhanced generation of ROS. It is believed that
these alterations diminish activation-induced apoptosis and
sensitize T cells for necrosis, a process that may contribute to
the establishment of the inflammatory milieu in SLE. Recently,
it has been shown that these alterations in the mitochondrial
functions activate mechanistic target of rapamycin (mTOR),
which in turn drives IL-4 production and necrotic T-cell death
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in SLE [100]. According to the data presented above, inhibition of
mTOR using rapamycin reduces disease activity and restores T-
cell activation in SLE patients [67]. Interestingly, a more recent
work has demonstrated that the antioxidant NAC blocks mTOR
activation in lupus patients, restores T-cell functions and amelio-
rates disease [69]. How NAC affects mTOR activation is not yet
clear. It is possible that NAC neutralizes excessive ROS ormay in-
fluence mitochondrial functions.

The effects of other antioxidants, such as vitamins A, C and E,
were also tested in SLE patients [101]. In these studies, it appears
that the nutrient intake of regular antioxidants is not associated
with a decreased risk of developing SLE [101]. Thus, NAC and
rapamycin, perhaps also used in combination, are promising
therapeutic interventions to reduce oxidative stress and restore
T-cell functions in SLE patients. Other compounds displaying
antioxidant and anti-inflammatory activities showed efficacy in
the treatment of glomerulonephritis in mouse models. For ex-
ample, antroquinonol inhibited the activation of conventional
T cells but enhanced the suppressive capability of Tregs and
also reduced renal inflammation [71]. Similarly, epigallocate-
chin-3-gallate treatment reduced oxidative stress in the kidney
and enhanced Treg function, thus preventing lupus nephritis
[72]. Finally, treatment with the well-known plant antioxidant

compound curcumin decreased renal inflammation and immune
complex deposition in the glomeruli via a mechanism likely in-
volving Tregs [73].

Ischaemia/reperfusion kidney injury (IRI) is another well-
known disease leading to kidney failure. ROS also play an import-
ant role in the pathogenesis of this disease. Recent data suggest
that stanniocalcin-1 (STC1), an intracrine protein crucial for
tubular epithelial survival [102], inhibits IRI by regulating the
expression of mitochondrial uncoupling protein 2 by negatively
regulating superoxide generation and by reducing the infiltration
of macrophages and T cells in the kidney [103]. Thus, in addition
to superoxide scavengers such as SOD, which protects from IRI
[104], targeting STC1 may represent a therapeutic option for
this disease. Also, several antioxidants such as ligustrazine, β-
carotene, NAC/ebselen, EPC-K1 and green tea polyphenols have
been shown to be effective in attenuating IRI in different animal
models [74–79]. Long-term dialysis is a procedure required for the
treatment of patients suffering from end-stage renal disease
(ESRD). It is known that ESRD patients undergoing long-term dia-
lysis display increased oxidative stress [105]. Recent studies have
found an association between oxidative stress and altered levels
of essential trace elements in long-term dialysis patients [80,
106]. In particular, an elevated Cu/Zn ratio was observed in

Table 1. Potential therapeutic approaches targeting redox homeostasis in kidney diseases

Disease Treatment Effects Species Ref.

SLE lupus nephritis Rapamycin Restores T-cell activation, ameliorates disease Human [67]
NAC Suppresses anti-DNA antibody, modestly improves survival Mouse [68]
Cysteamine Inhibits renal insufficiency, markedly improves survival Mouse [68]
NAC Blocks mTOR, restores T-cell functions, ameliorates disease Human [69]
Transmethylation
micronutrients

Reduce CD40L expression on T cells, ameliorate disease Mouse [70]

Antroquinonol Inhibits conventional T-cell activation, enhances Treg
suppression, reduces inflammation

Mouse [71]

Epigallocatechin-3-gallate Reduces oxidative stress, enhances Treg suppression activity,
prevents renal disease

Mouse [72]

Curcumin Reduces immune complex deposition, decreases inflammation Mouse [73]
IRI Ligustrazine Reduces oxidative stress, reduces immune cell infiltration,

protects from kidney injury
Mouse [74]

β-Carotene Protects from oxidative stress Rat [75]
NAC/ebselen Reduce oxidation, prevent kidney damage Rat [76]
EPC-K1 Reduces oxidative stress, attenuates disease Rat [77]
Green tea polyphenols Reduce oxidative stress, reduce infiltration of CD8+ T cells,

reduce apoptosis, reduce renal injury
Rabbit [78, 79]

Ferrostatins Reduce lipid peroxidation in IRI in epithelial and immune cells Mouse [3, 63]
ESRD Zinc Reduces oxidative stress, decreases inflammation, improve

immune status
Human [80, 81]

Ginkgo biloba extract Partially reverse thrombogenic coagulation Human [82]
Renal diseases mediated
by oxLDLs

Quercetin Reduces NOX2 and NOX4 activation and oxidative stress In vitro [83]
Coenzyme Q10 Reduces NOX2 activation and ROS generation In vitro [84]
Ubiquinol Reduces ROS production, ameliorates renal function Rat [85]
Ellagic acid Inhibits NOX2-mediated superoxide production, enhances

antioxidant defences
In vitro [86]

Ginkgo biloba extract Inhibits NOX2 activation, the expression of inflammatory genes
and protein nitrosylation

In vitro [87]

Epigallocatechin-3-gallate Inhibits NOX2 activation, ROS generation and the expression of
inflammatory genes

In vitro [88]

Resveratrol Protects from oxidative damage In vitro [89]
Lithiasis Coenzyme Q10 Improves renal function Human [90]
Hypertension NAC Enhances reduced GSH level, improves renal functions Rat [91]

Epoxyeicosatrienoic acid
analogue

Reduces oxidative stress and inflammation, protects kidneys Rat [92]
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these patients. Zn has antioxidants and anti-inflammatory prop-
erties and thus zinc supplementationmay represent a therapeut-
ic tool for the treatment of dialysis patients. Indeed, clinical
studies have shown that zinc supplementation intake amelio-
rates oxidative stress, inflammation and immune status in dialy-
sis patients [80, 81]. Among immune cells, Tregs isolated from
long-term dialysis display reduced suppressive capacity, cell-
cycle arrest and undergo apoptosis [107]. These alterations
appear to be mediated by increased levels of oxLDL in ESRD pa-
tients. oxLDLs strongly contribute to endothelial dysfunctions
and are responsible for secondary cardiovascular defects asso-
ciatedwith a variety of diseases characterized by oxidative stress,
including renal diseases [108]. As mentioned in the paragraph
above, oxLDLs induce alterations in Th differentiation and thus
oxLDLsmay further contribute to autoimmunity and tissue dam-
age. A number of in vitro studies have shown that different com-
pounds, including quercetin, coenzyme Q10, ellagic acid, gingko
biloba extract, epigallocatechin-3-gallate and resveratrol, are
capable of counteracting or attenuating oxLDL-mediated dys-
functions in vitro [83, 84, 86–89]. Some data regarding the in vivo
efficacy of these compounds are also available. For example, it
has been demonstrated that coenzyme Q10 administration
improves renal function in patients with lithiasis undergoing
extracorporeal shockwave lithotripsy [90]. Similarly, reduced co-
enzyme Q10 ameliorates renal function in animal models [85].
Moreover, gingko biloba extract also exerted beneficial effects
on the thrombogenic coagulation profile in ERSD patients [82].

It has been shown that in both animal models and humans,
T cells also participate in the pathogenesis of kidney disease
induced during hypertension (reviewed in [109]). In an animal
model of hypertension, T cells infiltrate the kidney where they
contribute to tissue damage, likely by releasing ROS (via NOX2)
and other inflammatory mediators [110]. Compounds with anti-
oxidant and anti-inflammatory properties such as NAC and an
epoxyeicosatrienoic acid analogue attenuate kidney damage
and hypertension in animal models [91, 92].

Future perspective
Changing the redox homeostasis of the microenvironment or
modulating more selectively the T cell and APC redox state may
represent a therapeutic approach for the treatment of inflam-
matory diseases. During recent years, studies have been
undertaken in an attempt to modulate DC functions or to repro-
gramme Th differentiation [111–113]. It will be important for the
future to assess whether reprogramming of DCs or Th cells upon
modulation of the redox equilibrium in vitrowill be helpful in the
treatment of inflammatory kidney diseases. As reported above,
alterations of redox homeostasis affect DC functions, thus in
turn altering the adaptive immune response. Surprisingly, little
is known about redox-mediated alterations affecting DCs in kid-
ney diseases. Therefore, further steps aimed at dissecting the role
of DCs in renal pathologies are required for the development of
new pharmacological strategies.

Anumberof studies, summarized inTable1, havealso assessed
the efficacy of different antioxidants and anti-inflammatory com-
pounds as potential therapeutic agents in the prevention and cure
of inflammatory kidney diseases. To date, the question remains
open as to whether available compounds, especially those having
antioxidant activity, are beneficial or not for patients suffering
from nephropathies. We hope that by improving the limited bio-
availability of these compounds, it will be possible to enhance
their efficacy and their therapeutic effects.

Of crucial importance will be identification of the molecular
targets of ROS in T cells and DCs. This will reveal important
new insights into ROS-regulated pathways and will lead to the
identification of oxidation targets. The aim of this avenue of re-
search is the development of immunomodulatory compounds
for the treatment of inflammation. During the last decade, ad-
vances in the field of proteomics have led to the development
of new tools to analyse protein thiol oxidation [114–116]. These
newmethods have been shown to be useful for the identification
of oxidation targets in cell lines [117–119].
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