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Abstract
Ventilator-associated pneumonia (VAP) is the most common and fatal nosocomial infection in intensive care units (ICUs). Existing
methods for identifying VAP display low accuracy, and their use may delay antimicrobial therapy. VAP diagnostics derived from
machine learning (ML) methods that utilize electronic health record (EHR) data have not yet been explored. The objective of this study
is to compare the performance of a variety of ML models trained to predict whether VAP will be diagnosed during the patient stay.
A retrospective study examined data from 6126 adult ICU encounters lasting at least 48hours following the initiation of mechanical

ventilation. The gold standard was the presence of a diagnostic code for VAP. Five different ML models were trained to predict VAP
48hours after initiation of mechanical ventilation. Model performance was evaluated with regard to the area under the receiver
operating characteristic (AUROC) curve on a 20% hold-out test set. Feature importance was measured in terms of Shapley values.
The highest performing model achieved an AUROC value of 0.854. The most important features for the best-performing model

were the length of time on mechanical ventilation, the presence of antibiotics, sputum test frequency, and the most recent Glasgow
Coma Scale assessment.
Supervised ML using patient EHR data is promising for VAP diagnosis and warrants further validation. This tool has the potential to

aid the timely diagnosis of VAP.

Abbreviations: ARDS = acute respiratory distress syndrome, AUROC = the area under the receiver operating characteristic
curve, BUN = blood urea nitrogen, CAP = community acquired pneumonia, CDC = centers for disease control, CPIS = clinical
pulmonary infection score, GCS = Glasgow Coma Scale, EHR = electronic health record, ICD = International Classification of
Diseases, ICU = intensive care unit, MIMIC = Multiparameter Intelligent Monitoring in Intensive Care, ML = machine learning, MV =
mechanical ventilation, PIRO = predisposition, insult, response, organ dysfunction, ROC = receiver operating characteristic, RR =
respiratory rate, SHAP = Shapley additive explanation, SpO2 = oxygen saturation, VAP = ventilator-associated pneumonia.
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1. Introduction

Pneumonia is one of the deadliest infections across the globe.[1] It
can be acquired in the community or hospital settings, as well as
through the use of invasive mechanical ventilation.[1,2] Ventila-
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tor-associated pneumonia (VAP) is notoriously difficult to
diagnose due to the absence of a diagnostic gold standard,
which can be attributed to the diversity of disease-causing
pathogens, lung cultures that limit sampling to anatomical
surfaces, clinical interpretation of pathogens extracted in lung
samples, underlying health issues in individuals, and agreement
of radiological scans with centers for disease control (CDC)
diagnostic criteria.[1–5] VAP, which is defined as pneumonia that
develops after more than 48hours following the initiation of
invasive mechanical ventilation,[4] is estimated to occur in 5% to
67% of intubated patients, with the highest rates among those
who are hospitalized due to physical trauma.[6,7] Mortality
estimates range from 24% to 76%.[8] VAP is also associated with
an estimated $47,238 in additional healthcare costs per stay in
the United States.[9]

Given the highmortality rate with VAP and the vulnerability of
the patient population at risk for VAP, prevention is crucial for
clinical management to reduce the prevalence of VAP.[6,7] The
CDC’s evidence-based recommendations to prevent VAP
encompass in-hospital safety protocols that limit the introduction
of microbes into the lungs of intubated patients, such as opting
for non-invasive mechanical ventilation methods and avoiding
intubation when feasible, keeping levels of subglottic secretions
low by frequent secretion removal, and maintaining intubated
patients at an elevated chest position.[10]

Diagnostic methods for VAP vary and rely on a combination of
factors, including clinical assessment for infectious signs and
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symptoms (eg, fever), chest radiology, lung biopsy, and/or
quantitative microbiological testing of respiratory secre-
tions.[8,11–13] However, diagnostic accuracy for VAP continues
to be poor. A recent meta-analysis by Fernando et al found that
eight common clinical criteria for VAP diagnosis lacked
specificity, highlighting the need for diagnostic tools which can
better inform the need for and timing of antibiotic treatment
while respecting antibiotic stewardship.[14]

Despite the shortcomings of existing clinical indicators and
scoring tools for VAP diagnosis, there is minimal research on the
application of machine learning (ML) methods using electronic
health record (EHR) data to diagnose VAP. Studies of ML
applications for pneumonia have focused largely on mortality
prediction among known pneumonia cases. ML has been
proposed as a component of other diagnostic tools, such as to
assist with chest radiography interpretation,[15] to predict
pneumonia outcomes,[16] or work with electronic sensors to
detect pneumonia in exhaled breath.[17] Yet ML has not been
robustly investigated to develop stand-alone diagnostic tools.[18–
22] The dearth of suchML researchmay reflect the very reason for
its urgent need – the lack of a clear diagnostic gold standard. The
absence of such a standard complicates the identification of
pneumonia onset in retrospective EHR data, making it difficult to
develop a supervisedML approach to pneumonia prediction. For
VAP, the difficulty in identifying onset time in retrospective data
is partially alleviated by the constraints on onset time relative to
the start of mechanical ventilation, as per the definition of VAP. It
is possible to determine when inpatients have reached the 48th
hour from the initiation of mechanical ventilation, the minimum
required time for pneumonia to be designated as “ventilator-
acquired.” Using this definition, it is possible to develop and
assess the ability ofML technology to accurately diagnose VAP in
retrospective intensive care unit (ICU) data.
2. Objective

This exploratory analysis examined the suitability of ML
methods for the prediction of VAP. To meet this goal, we
developed and assessed a variety of ML approaches for the
following two prediction tasks:

Intubation task. Among ICU encounters lasting at least 48hours
following the initiation of mechanical ventilation, predict
whether or not the given encounter will be associated with a
diagnosis of VAP at any later time during the patient’s stay, with
predictions generated at the 48th hour following intubation.
Admission task. Among all ICU encounters lasting at least k
hours, classify whether or not the given encounter will be
associated with a diagnosis of VAP at any time, with
classifications made at the kth hour following admission. Note
that, for this task, classifications could be made prior to the
initiation of mechanical ventilation.

3. Materials and methods

3.1. Data processing

For all models, data were extracted from the Multiparameter
Intelligent Monitoring in Intensive Care (MIMIC)-III version 1.3
dataset collected from the ICU at Beth Israel Deaconess Medical
Center in Boston, Massachusetts.[23] MIMIC-III contains EHR
data (including lab results) and clinical notes on over 40,000
2

individual patient encounters. All MIMIC-III data were passively
extracted from the patient EHR, were de-identified, and collected
in compliance with the Health Insurance Portability and
Accountability Act.
3.2. Intubation task

Data were included from encounters of patients aged 18years or
older, with a minimum of one
observation of each of the following vital signs and lab tests:

diastolic blood pressure, creatinine, Glasgow Coma Scale (GCS),
heart rate, oxygen saturation (SpO2), platelet count, respiratory
rate (RR), systolic blood pressure, temperature, hematocrit, and
white blood cell count. Hematocrit has been shown to improve
other pneumonia-related predictions.[24] Community-acquired
pneumonia patients were identified by the presence of a
pneumonia diagnosis at admission and were excluded. All
encounters for this task were required to involve at least one
period of invasive mechanical ventilation. As VAP is defined as
pneumonia developing after 48hours following intubation,
encounters were required to last at least 48hours after intubation.
All mechanically ventilated patients in this dataset met this
requirement. ML models were compared against the CURB-
65,[25,26] VAP predisposition, insult, response, organ dysfunction
(PIRO),[27] and clinical pulmonary infection score (CPIS) scoring
systems.[28] To facilitate the comparison with CURB-65, we
required encounters to include at least one measurement of blood
urea nitrogen (BUN). These exclusion steps are summarized in
Figure 1. For this task, the windows of data used to generate
predictions were calculated backward from the 48th hour
following the initiation of ventilation. That is, a 12-hour
intubation task model used the 12hours of data up to and
including 48hours after initiation of mechanical ventilation, or
hours 37 to 48 after the initiation of mechanical ventilation. All
windows for this intubation task included data from an identical
number of patients.

3.3. Admission task

Identical exclusion criteria were applied for the admission task as
were applied to the intubation task, with the exception of the
initiation of mechanical ventilation requirement, which was not
applied. For this task, the windows of data used to generate
predictions were calculated forward from the time of ICU
admission. For example, a 12-hour admission task model used
the first 12hours of data after a patient was admitted to the ICU,
after which point a VAP risk prediction was generated. Patients
were required to have a length of stay as long as or longer than the
prediction window being examined; the number of patients
included in the experiments therefore varied by prediction
window (Fig. 1).
For both tasks, we extracted patient baseline and time-varying

clinical measurements for each encounter. Baseline data included
age, and a boolean value for the presence of any relevant
comorbidities or symptoms at the time of admission (bacteremia,
cirrhosis, congestive heart failure, fever, intracranial hemorrhage,
renal failure, respiratory distress, respiratory failure, sepsis,
subarachnoid hemorrhage, and shortness of breath). We
additionally included an indicator for acute respiratory distress
syndrome (ARDS), as pneumonia is associated with ARDS.[29]

Time-varying clinical measurements included the required vital
signs and laboratory tests, as well as urine output (evaluated as



Figure 1. Patient exclusion numbers for the intubation task. BUN=blood urea nitrogen, CAP=community acquired pneumonia, MV=mechanical ventilation.
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the number of urine measurements over the duration of stay) and
blood culture information (evaluated as the order of any tests
during the relevant window, and as the total test count during the
window). We further included the hour of the initiation of
mechanical ventilation and the number of accumulated mechani-
cal ventilation hours at the time of prediction.
Raw measurements were binned into 1-hour intervals and

averaged within bins to produce a single, representative value for
each hour. Missing values were imputed based on median values,
which were determined using only data in a training set. This
process did not allow information from the hold-out test set to
influence the imputation. We calculated six summary statistics
(minimum, maximum, median, first, last, and average) of each
vital sign and laboratory test over a variable-length window
(Table 1). Specifically, for each window length k ∊ {6,12,24,48},
we calculated the statistics for the k hours preceding and
3

including the 48th hour after the initiation of mechanical
ventilation (in the case of the intubation task) or the 48th hour
after admission. Age, the number of total urine output events, and
the number of blood culture tests were kept in their raw form.
Boolean indicators were added for the presence of antibiotics,
sputum labs, blood culture labs, comorbidities and symptoms
listed above, and ARDS (Table 1). All variables were then
concatenated into one vector for each encounter.
3.4. Gold standard

The International Classification of Diseases (ICD) Revision 9
code 997.31 was the gold standard definition of VAP. Literature
assessing the accuracy of ICD codes for VAP identification
remains limited.[30] However, studies have suggested that, while
the sensitivity of administrative coding may be only moderate for

http://www.md-journal.com


Table 1

Data included as input to the algorithm.

Required vitals
and labs Boolean indicators Optional measures

– Systolic BP
– Diastolic BP
– HR
– Respiratory rate
– Temperature
– Hematocrit
– SpO2
– BUN
– GCS
– Platelet count
– WBC
– Creatinine

– Antibiotics
– Sputum labs
– Blood culture labs
– Any of cirrhosis, congestive
heart failure, fever,
bacteremia, intracranial
hemorrhage, renal failure,
respiratory distress,
respiratory failure, sepsis,
subarachnoid hemorrhage,
shortness of breath

– ARDS

– Age
– Total urine output events
– Number of blood culture tests
– Number of sputum tests
– Number of MV hours

ARDS= acute respiratory distress syndrome, BP=blood pressure, BUN=blood urea nitrogen, GCS=
Glasgow Coma Scale, HR=heart rate, MV=mechanical ventilation, SpO2=oxygen saturation
WBC=white blood cell.
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VAP identification, specificity, and negative predictive value are
quite high.[31,32]
3.5. ML methods and comparators

Due to the absence of VAP prediction literature, a variety of ML
methods were chosen to identify the most appropriate ML
methods to address these novel tasks. TheMLmethods evaluated
included both simple linear models and complex, non-linear
models, to evaluate the potential effectiveness of different ML
models for VAP prediction.
For each prediction task and each window length, we

evaluated 5 ML methods: logistic regression, multilayer
perceptron, random forest, support vector machines, and
gradient boosted trees. The logistic regression and support
vector machines methods were chosen as representative linear
models and the random forest and gradient boosted trees
methods were chosen as representative ensemble learning and
tree-based methods. The multilayer perceptron model was
included in lieu of neural network methods with more layers,
as there were too few training examples to effectively train such
models. Except for the gradient boosted trees model, which was
created using the XGBoost Python package, the models were
implemented using the scikit-learn Python package.
For both the admission and intubation prediction tasks, each of

the aboveMLmethodswas used to train predictionmodels for each
predefined window length (6, 12, 24, and 48hours). The use of five
methods at each of four predictionwindows resulted in a total of 20
models being evaluated for each prediction task.
We compared the performance of the ML algorithm to the

CURB-65, VAP PIRO, and CPIS scores for evaluating pneumonia
severity. CPIS performance was estimated as described in the
literature[14] as it could not be calculated in our dataset. We
implemented CURB-65 and VAP PIRO in our dataset.[25,33]

CURB-65 values were calculated for each hour according to the
number of the following which was true: BUN>19mL/dL, RR ≥
30, systolic BP<90mmHg/diastolic BP� 60mmHg, and age≥65.
We tried several variations of assigning a CURB-65 score to a
temporal window, including using its maximum, average, and last
values over thewindow.As the resultswere similar in each case,we
reported its average over thewindow.PIRO is a four-variable score
4

based on predisposition, insult, response, and organ dysfunction.
The score ismeasured by assigning 1 point in 4 areas: detection of a
comorbidity (chronic obstructive pulmonary disease, immuno-
compromised, heart failure, cirrhosis, or chronic renal failure),
bacteremia, a systolic BP<90mmHg, and ARDS.
The data were partitioned uniformly at-random into a set for

training and hyperparameter tuning (80%) and a 20% hold-out
test set, against which all trained models were evaluated for final
performance metrics in the last step. For each task and for each
window length k, each model was trained using four-fold grid
search cross-validation on the 80% training set. After searching
the space of model hyperparameter values, the hyperparameters
that produced the best cross-validation performance in terms of
area under the receiver operating characteristic (AUROC) curve
were chosen. Class weights were used as a hyperparameter in all
ML algorithms to improve the performance on the imbalanced
dataset. Final hyperparameter ranges used for all models are
presented in Supplementary Table 1, http://links.lww.com/MD/
G175. Each model was then tested on the 20% hold-out test set.
Feature importance was measured through Shapley additive
explanation (SHAP) values to assess similarities or differences in
the features used to generate predictions across model types.

3.6. Minimal input models

In both admission and intubation tasks, we conducted feature
selection on the overall best performingmodel (ie, combination of
ML method and time window) for each task using the full set of
features. As the best performing model was XGBoost in both
cases, we selected the most important features from the SHAP
plots to eliminate a large subset of features. In the first step, the
top 10 most important features as measured by SHAP values
were kept and the performance of the models were re-evaluated
on these features. We observed that the performance of the
models remained relatively unchanged using only the top 10
features in each case. A further reduction of the number of
features was also done by assessing the correlations among the
remaining 10 features and removing the features that are highly
correlated. This resulted in a five feature model for the intubation
task and a nine feature model for the admission task.
For each minimal input model, we assessed model AUROC.

We additionally assessed model specificity when sensitivity was
fixed at 0.80.

4. Results

In total, 6126 patients were included in the intubation task
experiments. Of those, 524 received a diagnosis of VAP during
their stay, resulting in a VAP prevalence in the intubation task
patient population of 8.55% and of 4.97% in the admission task
patient population. Those who were diagnosed with VAP had a
higher prevalence of ARDS, a greater number of sputum labs
performed and were on average older when compared to those
without VAP (Table 2). Additional comorbidity information for
the intubation task population is presented in Supplementary
Table 2, http://links.lww.com/MD/G175.

4.1. Prediction of VAP 48hours after intubation

For this task, the gradient boosted trees models demonstrated
better performance than other model types, except when using
summary statistics from a 24-hour window (Table 3), in which
case a random forest model demonstrated the highest perfor-
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Table 2

Demographic and comorbidity information for the experimental
population.

Characteristic VAP positive n=524 VAP negative n=5602

Age
<30 27 (5.15%) 215 (3.84%)
30–49 81 (15.46%) 735 (13.12%)
50–59 105 (20.04%) 972 (17.35%)
60–69 120 (22.90%) 1383 (24.69%)
70–79 107 (20.42%) 1185 (21.15%)
80+ 71 (13.55%) 984 (17.57%)

ARDS
Yes 35 (6.68%) 284 (5.07%)
No 489 (93.32%) 5318 (94.93%)

Sputum test performed
Yes 497 (94.85%) 2644 (47.20%)
No 27 (5.15%) 2958 (52.80%)

Gender
Male 313 (59.73%) 3172 (56.62%)
Female 211 (40.27%) 2430 (43.38%)

Ethnicity
White 354 (5.15%) 4072 (72.69%)
Black/African-American 44 (8.40%) 484 (8.64%)
Asian 16 (3.05%) 134 (2.39%)
Hispanic/Latino 11 (2.10%) 209 (3.73%)
Unknown/other 99 (18.89%) 703 (12.55%)

ARDS= acute respiratory distress syndrome, VAP= ventilator-associated pneumonia.
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mance. The best AUROC was recorded by XGBoost using
summary statistics from a 6-hour window.Multilayer perceptron
models demonstrated lower performance than all other models,
particularly when using 48hours of data. All models out-
performed the CURB-65 and PIRO scores at all prediction times.
Receiver operating characteristic (ROC) curves for all

intubation task models at the time windows k=6 and k=48
are presented in Figure 2; these models are annotated with the
performance of several common clinical criteria in the diagnosis
of VAP, as determined by a meta-analysis.[14] All models meet or
exceed the reported performance of all of the clinical criteria.
ROC curves for the remaining time points are presented in
Supplementary Figure 1, http://links.lww.com/MD/G175.
An assessment of SHAP plots for the intubation task models

showed a high degree of overlap in the features identified as most
important for generating predictions (Supplemental Figures 2–6,
http://links.lww.com/MD/G175), with key recurrent features
Table 3

AUROC results on the hold-out test set ofmodels trained to predict
VAP 48hours after intubation, using summary statistics from the
previous k hours of patient data.
k (hours) 6 12 24 48
Logistic regression 0.744 0.751 0.739 0.776
Multilayer perceptron 0.731 0.740 0.722 0.741
Random forest 0.771 0.767 0.780 0.777
Support vector machines 0.765 0.769 0.764 0.775
XGBoost 0.799 0.794 0.775 0.791
CURB-65 0.503 0.498 0.498 0.498
PIRO 0.565 0.555 0.566 0.557

AUROC= the area under the receiver operating characteristic curve, ICU= intensive care unit, PIRO=
predisposition, insult, response, organ dysfunction, VAP= ventilator-associated pneumonia.
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including length of time for mechanical ventilation, sputum
culture measures, and clinical measures related to SpO2 andGCS.
4.2. Prediction of VAP after admission

Of themodels trained for the admission task, each performed best
when using summary statistics from 48 hours between admission
and the time of prediction (Table 4). Overall best performance
was obtained by the XGBoost model using 48hours of data.
Figure 3 provides comparisons of ROC curves for these windows,
with annotated comparisons to common clinical criteria. Most
models meet or exceed the reported performance of existing
clinical criteria at 6hours, and all did at 48hours. The k=12 and
k=24 cases are shown in Supplementary Figure 7, http://links.
lww.com/MD/G175.
As with the intubation task, SHAP plots demonstrated that

features most important for generating VAP predictions were
similar across model types and prediction windows (Supplemen-
tary Figures 8–12, http://links.lww.com/MD/G175), with me-
chanical ventilation hours, GCS, and sputum again being
important features across many models. This finding further
supports that a wide range of models may be suitable for this
prediction task.
4.3. Minimal input models

The best performing model for the intubation task was XGBoost
using sixhours of data and for the admission task was XGBoost
using 48hours of data. After all feature selection based on feature
importance (Supplementary Figures 6 and 12, http://links.lww.
com/MD/G175) and correlation, the minimal input intubation
task model included five features (last GCS, last temperature,
mechanical ventilation duration, antibiotics indication, and
count of sputum cultures). The minimal input admission task
model included nine features (last measure of GCS, last systolic
blood pressure, last RR, last white blood cell count, mechanical
ventilation duration, count of sputum cultures, count of blood
cultures, count of urine cultures, and age).
The AUROC of both of these minimal input models were very

close to the initial all feature models, with AUROC of 0.80 and
0.83 for the intubation and admission tasks, respectively. With
sensitivity fixed at 0.80, the minimal input intubation and
admission task models achieved specificity values of 0.69 and
0.73, respectively.
5. Discussion

Our retrospective results demonstrate the success of ML models
trained to predict VAP in use cases (Tables 3 and 4). Due to the
novelty of the task, a variety of models and prediction windows
were explored, all of which demonstrated strong predictive
performance. In both use cases, the test set performance of ML
models significantly exceeds the reported performance of classic
clinical indicators of VAP[14] and does so with the potential of
advance warning (Figures 1 and 3, Supplementary Figures 1 and
4, http://links.lww.com/MD/G175). Additionally, simple, inter-
pretable models such as logistic regression demonstrate strong
performance for both tasks. Given the morbidity and mortality
associated with VAP[34] and with VAP treatment delays,[35] these
models may have important implications for improving patient
care and outcomes, subject to future external and prospective
validation.
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Figure 2. ROC curve comparison for intubation task models, with summary statistics calculated from the (A) 6hours and (B) 48hours of data preceding the time of
prediction. K=number of hours used to make prediction, MIMC=multiparameter intelligent monitoring in intensive care, ROC= receiver operating characteristic.
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ML methods were explored due to the need for methods that
improve upon the discriminatory ability of existing VAP
prediction and detection methods. Existing methods include
the PIRO score, which was originally developed for sepsis and
has since been utilized for VAP risk stratification in hospitalized
patients.[27,36] The CPIS tool is also used as a VAP diagnostic tool
for hospitalized patients.[28] However, prior research has shown
these tools exhibit poor diagnostic performance. In a recent
study, PIRO achieved an AUROC of 0.605.[33] A recent meta-
analysis found that CPIS demonstrated a sensitivity and
specificity of 73.8% and 66.4%, respectively, for VAP detec-
tion.[14] The CURB-65 score, utilized for risk stratification and to
predict 30-day mortality, has better accuracy than PIRO and
CPIS with a c-statistic of 0.761.[25,26] However, the sensitivity of
CURB-65 varies with the severity of pneumonia. A 2016 study
showed that 36% of patients who were classified as low risk
based on their CURB-65 score were ultimately hospitalized as a
result of pneumonia.[26]

Despite the urgent need for better VAP diagnostics and the
popularity ofML applications in healthcare, relatively little effort
has been devoted to the application of ML to EHR data for the
Table 4

AUROC results on the hold-out test set ofmodels trained to predict
VAP k hours after ICU admission.
k (hours) 6 12 24 48
Logistic regression 0.772 0.788 0.812 0.822
Multilayer perceptron 0.587 0.712 0.753 0.820
Random forest 0.706 0.762 0.822 0.838
Support vector machines 0.766 0.799 0.812 0.829
XGBoost 0.733 0.796 0.820 0.854
CURB-65 0.481 0.496 0.506 0.517
PIRO 0.584 0.595 0.599 0.622

AUROC= the area under the receiver operating characteristic curve, PIRO=predisposition, insult,
response, organ dysfunction, VAP= ventilator-associated pneumonia.
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purpose of predicting VAP. Several methods have been developed
for identifying community-acquired pneumonia using neural
networks and genetic algorithms[37–39] and one study predicted
hospital-acquired pneumonia in patients with schizophrenia.[40]

Concerning VAP, studies have examined the accuracy of
electronic nose (e-nose) sniffers for screening potential VAP
cases. These devices use ML methods to analyze exhaled breath
for metabolites that may be suggestive of VAP, and some have
demonstrated strong discrimination for identifying the presence
of VAP.[41,42] However, prospective validation of an e-nose tool
found that sensitivity and specificity were insufficient for general
clinical use.[43] In this context, our study provides a valuable
characterization of a variety of ML methods applied to two VAP
prediction use cases.
The first use case corresponds to the intubation task, which

predicted VAP at the first time VAP can be diagnosed, the 48th
hour following the initiation of mechanical ventilation. While the
highest overall AUROC was demonstrated by XGBoost using
data from the 6-hour window leading up to and including the
prediction time, all models met or exceeded the performance of
existing VAP identification methods. An alert at or before VAP
onset by any of these methods is likely to improve identification of
VAP, potentially overcoming limitations in diagnostic criteria
that may lead to both under- and over-treatment with anti-
biotics.[14,44,45] It is worth noting that XGBoost demonstrated
decreasing performance over longer data collection windows for
the intubation task. This may be due to the fact that, with
increasing time from the point at which predictions are made,
many of the model inputs lose clinical relevance to the current
patient state, decreasing the overall relevance of the inputs.
However, other methods, such as random forest, demonstrated
increased performance with longer data windows. The relatively
low performance of the multilayer perceptron model may be
because a single layer perceptron can only classify linearly
separable sets of vectors. Since the data used here have at least 82
dimensions, it is likely that the classes are not linearly separable.



Figure 3. ROC curve comparison for admission task models with summary statistics calculated from the (A) 6hours and (B) 48hours of data preceding the time of
prediction.
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Although we tried a multilayered neural network, we had
insufficient training data.
The second use case corresponds to the admission task, which

aims to predict VAP a fixed number of hours (6, 12, 24, or 48)
following admission to the ICU. In the first three of these cases,
alerts generated by the models give advance warning of VAP, as
patients cannot have been ventilated for the 48hours required for
a VAP diagnosis. Further, these models have no requirement that
patients be ventilated for algorithm alerts to be generated,
although they incorporate information about current ventilation
status. Therefore, these models may be able to identify patients at
high risk of developing VAP should they become ventilated
before ventilation occurs. For this task, the best-performing
model was XGBoost using summary statistics generated from the
entire 48-hour window after admission (Table 4, Figure 3). All
models demonstrated performance meeting or exceeding meth-
ods current methods for VAP identification. For this task, models
generally demonstrated increasing performance when using
larger windows of data and when generating predictions further
into the patient stay.
Models addressing these two use cases exhibit different

strengths, with potential implications for future clinical use.
The intubation task is, by definition, applied to a high-risk
population of patients. In many clinical settings, the positive
predictive value of an intubation task alert is therefore likely to be
high, and an intubation-based ML system likely to identify the
vast majority of VAP cases. Such a system could therefore
meaningfully improve the timeliness of antimicrobial adminis-
tration, improving patient outcomes. In contrast, the admission
task is designed for application to all ICU patients, regardless of
ventilation status. Therefore, in addition to providing early
identification of patients for whom additional monitoring is
warranted, the admission task alert may provide clinicians with
the opportunity to consider non-invasive methods of ventilation
for high-risk patients,[46,47] preventing VAP entirely. The success
of both approaches in this retrospective study supports the
7

potential for ML methods to meet a wide range of clinical needs
relating to VAP treatment, identification, and prevention.
For both use cases, the strong performance of simple linear

models (eg, logistic regression) has important implications.
Logistic regression models are readily interpretable, with the
relative importance of each input feature measurable as the
relative magnitude of its coefficient. While manyMLmethods are
viewed as “black boxes,” linear models are in contrast far more
transparent, with clear similarities to tabular scores already
commonly used in clinical practice. This feature of simple models
may increase trust in the model, increasing its utility.[48]

Additionally, the importance of commonly collected clinical
features, simple indicator variables, and readily available
information such as length of ventilation support the practicality
of a clinical application of these models. ML models may be
challenging to implement in clinical settings when specialized
testing is required. However, the strong performance found in
this study supports further work to develop models that use
accessible measurements. Such work may help enable the
practical implementation of ML tools in a clinical setting.
There are several limitations to this study. Because the exact

onset time of VAP could not be determined retrospectively from
this dataset, it was not possible to determine the degree of
advance warning provided by the models. For the best-
performing models, the cumulative duration of mechanical
ventilation, the presence of antibiotics administration, and the
ordering of a sputum test were the most important features, along
with statistics of GCS and creatinine (Supplementary Figures 2
and 4, http://links.lww.com/MD/G175). It may be that, while by
definition VAP may not be diagnosed until 48hours after the
initiation of mechanical ventilation, clinicians may suspect VAP is
developing and order sputum tests or administer antibiotics
within this time window. In these cases, while the classifications
made by the models may be technically considered predictions,
the alerts they would provide would not necessarily lead to a
significant change in care. Given this, it may be valuable to
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conduct future research on prediction tasks using data obtained
immediately after mechanical ventilation, so physicians have a
greater lead time to intervene prior to the 48th hour. These results
may also be limited by the use of ICD codes for the VAP gold
standard, which may fail to accurately capture all patients who
experienced VAP during their hospitalization. However, the
generally high specificity of codes for hospital-acquired infections
supports that our positive class consisted of true positive VAP
cases. Another limitation is that these models were trained and
tested on data from a single institution, which may limit
generalizability. Model performance on novel patient popula-
tions or specific subpopulations cannot be inferred. Finally, due
to the retrospective nature of this study, the impact that these
algorithms may have on patient care and outcomes in a live
clinical setting cannot be determined. These limitations under-
score the need for future additional and prospective validation. In
addition to prospective validation of model performance,
additional work is needed to determine the ideal data collection
and prediction windows. Incorporation of clinician feedback will
be essential to ensure that a prospectively implemented model
appropriately balances the need for early prediction with the
collection of sufficient patient data.

6. Conclusion

The development of accurate and timely diagnostic tools for
ventilator-associated pneumonia has been limited, despite the
prevalence, mortality, and costliness associated with VAP. ML
may be a key contributor for future management of VAP risk
associated with mechanical intubation, with a variety of ML
methods demonstrating suitability for this prediction task. Future
work is necessary for further validation of ML algorithms for
VAP prediction.
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