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Summary - Best linear unbiased prediction (BLUP) can be applied to marker-assisted
selection. This application requires computation of the inverse of the conditional covariance
matrix (Gv) of additive effects for the quantitative trait locus (QTL) linked to the
marker locus (ML), given marker genotypes. This paper presents theory and algorithms to
construct Gv and to obtain its inverse efficiently. These algorithms are suf&ciently general
to accommodate situations (1) where paternal or maternal origin of marker alleles cannot
be determined and (2) where the marker genotypes of some individuals in the pedigree
are unknown.
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Résumé - Covariance entre apparentés pour un locus de caractère quantitatif
marqué. La meilleure prédiction linéaire sans biais (BL UP) s’applique à la sélection
assistée par marqueur. Cela demande d’inverser la matrice (Gv) des covariances entre
apparentés des effets génétiques additifs du locus quantitatif lié au locus marqueur,
covariances conditionnelles aux génotypes du marqueur. Cet article présente la théorie
et les algorithmes pour établir Gv et pour obtenir son inverse d’une manière ef!îcace. Ces
algorithmes sont assez généraux pour prendre en compte des situations i) où l’origine
paternelle ou maternelle des allèles marqueurs ne peut pas être déterminée, ii) où le

génotype marqueur de certains individus dans le pedigree n’est pas connu.

marqueur génétique / sélection assistée par marqueur / meilleure prédiction linéaire
sans biais / covariance entre apparentés / parenté gamétique



INTRODUCTION

Theory for covariance between relatives provides the basis for use of data from rel-
atives in genetic evaluation. At present, genetic evaluations in animal populations
are primarily obtained by best linear unbiased prediction (BLUP; Henderson 1973)
using trait phenotypes (T-BLUP). Due to advances in molecular biology, genetic
markers are becoming increasingly available for use in genetic evaluation. Several
approaches for use in genetic evaluation using marker genotypes and trait pheno-
types have been discussed (Geldermann, 1975; Soller, 1978; Soller and Beckmann,
1982; Smith and Simpson, 1986; Kashi et al, 1990). In addition, Fernando and
Grossman (1989) described how BLUP can be used for genetic evaluation using
marker genotypes and trait phenotypes (TM-BLUP). Some strategies have been
proposed to make TM-BLUP computationally efficient (Cantet and Smith, 1991;
Hoeschele, 1993; van Arendonk et al, 1994). TM-BLUP has also been extended to
accommodate multiple markers (Goddard, 1992; van Arendonk et al 1994).
TM-BLUP requires computation of the inverse of the conditional covariance

matrix (Gv) of additive effects for the quantitative trait locus linked to the marker
locus, given marker genotypes. To compute this inverse, Fernando and Grossman
(1989) provided an algorithm that required information on the parental (paternal or
maternal) origin of marker alleles, in addition to information on marker genotypes.
The parental origin of marker alleles in an individual, however, is not always known.
For example, if 2 parents and their offspring each has genotype AlA2 at the same
marker locus, marker allele A1 in the offspring could have descended from either of
the parents, thus the parental origin of A1 in the offspring is unknown.

The objective of this paper is to present theory and algorithms to compute the
conditional covariance matrix and its inverse when parental origin of the marker
alleles may not be known. Theory and algorithms are developed for pedigrees
where the marker genotype of each individual is known (complete marker data).
Application of this theory is given for pedigrees where the marker genotype of some
individuals is unknown (incomplete marker data).
Wang et al (1991) presented, without proof, a recursive equation to construct
Gv and an efficient algorithm to compute its inverse. This recursive equation has
been used by van Arenonk et al (1994) and Hoeschele (1993). In the present paper,
we prove that the recursive equation holds when marker data are complete, but
does not hold generally when marker data are incomplete.

Chevalet et al (1984) have described a method to compute Gv given marker
phenotypes. This method does not require knowing the parental origin of marker
alleles and can accommodate missing marker phenotypes. The method, however, is
not computationally feasible for the large pedigrees typically encountered in animal
breeding. Computation of the conditional covariance matrix and its inverse become
feasible by conditioning on marker genotypes instead of marker phenotypes.

NOTATION AND ASSUMPTIONS

Consider a single polymorphic marker locus (ML) closely linked to a quantitative
trait locus ((aTL), which will be referred to as the marked QTL (MQTL). Assume
linkage equilibrium between the ML and MQTL. For individual i, let M21 and M2



denote 2 alleles at the ML, and let QI and Q; denote MQTL alleles linked to M/
and Ml as shown below

If the 2 marker alleles for individual i are known, then they will be arbitrarily
labelled as Mi and M2. For example, suppose individual i has marker alleles A3
and Al, then A3 can be labelled as Mi and A1 as M?, or A1 can be labelled as M!
and A3 as M?. If the 2 marker alleles for individual i, however, are unknown, Mi
can be any of the marker alleles segregating in the population, and M2 can also be
any of the marker alleles. For example, suppose there are 3 marker alleles (Al, A2,
and A3) segregating in the population, then M21 can be Al, A2, or A3, and M2 can

also be A1, A2, or A3.
Further, let vl and v? be the additive effects of Q! and Q2, and let w =

Var( vI) = Var(v!) be their variance, for i = 1, ... , n. Observed marker genotypes
are denoted by Gobs.

COVARIANCE OF MQTL EFFECTS GIVEN COMPLETE MARKER
DATA

The conditional covariances of additive effects of MQTL alleles will be derived
separately for alleles between individuals and for alleles within an individual.

Covariance between individuals

Suppose s and d are parents of i, and j is not a direct descendant of i (fig 1).
The conditional covariance of the additive effects of MQTL alleles Qki and Q in
individuals i and j, given the observed marker genotypes (Gobs), is

where ki and kj can be 1 or 2, and Pr(Q7i == Q)&dquo; ) Gobs) is the conditional probability
that Q7i is identical by descent to Q/ given Gobs (eg, Fernando and Grossman,
1989).

Because individuals s and d are parents of i, Q7i can be identical by descent to

Q in 1 of 4 ways:
1. Q7i descended from Q! and Q; was identical by descent to Q)! , denoted by

(Q7i {= Q;, Q; == Q!j)
2. Q7i descended from Q! and Q; was identical by descent to Q!j, denoted by

(Q7i {= Q;, Q; == Q!j)
3. Q7i descended from Qà and Qà was identical by descent to Q!j, denoted by

(Q7i {= Qà, Qà == Q!j)



Fig 1. Chromosome fragments containing the ML and the MQTL for individuals s, d, i
and j.

4. Q!i descended from Q! and Q§ was identical by descent to Q!j, denoted by
!!..<- r)2 r)2 &mdash; r)!-’’)
Therefore, the probability in [1] can be written as

Because individual j is not a direct descendant of individual i, and marker
genotypes of s and d are known, the conditional sampling of Q7i from s or d is

independent of alleles in j being identical by descent to alleles in s or d (fig 1),
given Gobs. Thus, the probability in [1] can be computed recursively as

Equation [3] was first given by Wang et al (1991). It will be shown later that [3]
does not hold generally when marker data are incomplete.

Generalizing in (3!, Pr(Q7i « Q;PIGobs) is the conditional probability that allele
Q/° in offspring i descended from allele Qp in parent p = s or d for ki, kP = 1 or 2.
This conditional probability will be referred to as the probability of descent for a
QTL allele (PD(,!). There are 8 PD(!s for each individual, as shown in Appendix B,
and each PDQ can be expressed as



for ki = 1 or 2 and p = s or d, where p = r when kP = 1 and p = 1 - r
when kP = 2, and where r is the recombination rate between the ML and MQTL.
Further, Pr(Miki ! M;P ¡Gobs) is the conditional probability that marker allele Mk’
in offspring i descended from marker allele M!’ in parent p, given the pedigree and
marker genotypes. This conditional probability will be referred to as the probability
of descent for a marker allele (PDM). There are 8 PDMs for each individual, and
their computations are explained in Appendix A. Note that the PDMs and PD(as
associated with the unknown parent(s) are undefined.

Equation [4] explicitly shows the relationship between PDQs and PDMs in scalar
notation. For convenience, it is rewritten in matrix notation as

where

Covariance within an individual

The conditional covariance between additive effects vi t and v? of MQTL alleles (! z
and Q? in individual i with parents s and d, given Gobs, can be written from [1] as

where fi = Pr(Ql > Q/ )Gobs) is the conditional probability that 2 homologous
alleles at the MQTL in individual i are identical by descent, given Gobs. Thus, fi is
the conditional inbreeding coefficient of individual i for the MQTL, given Gobs. This
is different from Wright’s inbreeding coefficient, which is the conditional probability
that 2 homologous alleles at any locus in individual i are identical by descent, given
only the pedigree.

The pair of 2 homologous alleles at the MQTL, Ql and Q?, in individual i
descended from 1 of the following parental pairs: (Qs, Qd), (Q9, Qd), 8 Q’) or
s Q§) . Let T,!skd denote the event that the pair of alleles in i descended from the
parental pair (<3!°,<3!’’) for ks, kd = 1 or 2. Now, fi can be written as



Because (QI = Q2!Tks!d> Gobs) implies (QSS - Qdd !Gobs), [10] becomes

The Pr(TkgkdIGobs) can be expressed in terms of PD(as (see Appendix G! as

For example,

where Bi(l, k) are elements of Bi in (5!. If 1 of the denominators in !12! is zero, then
the entire corresponding term is set to zero.

Tabular method to construct covariance matrix Gv

The conditional covariance matrix (Gv) between additive effects of MQTL alleles
can be written, from [1] and !9!, as

where A is the matrix of conditional probabilities that the 2 homologous alleles
at MQTL are identical by descent, given Gobs. The matrix A includes a row and
column for each of the 2 MQTL alleles in each individual. Thus the order of A is 2n,
where n is the number of individuals in the pedigree. This matrix is the conditional
gametic relationship matrix (Smith and Allaire, 1985), given Gobs. It follows that
each diagonal element of this matrix is unity. The tabular method to construct A
is explained below.

Following Henderson (1976), individuals are ordered such that parents precede
their progeny, and individuals 1 through b are considered to be unrelated and non-
inbred. Thus, the upper left submatrix of A is an identity matrix of order 2b, which
is expanded sequentially by the 2 rows and 2 columns corresponding to individual
i, for i = b + 1, ... , n, as follows:

Let 81 = 2(i &mdash; 1) + 1 and 6f = 2(i &mdash; 1) + 2 be the row indices of A corresponding
to the 2 MQTL alleles Ql and Q2 of individual i. From !3!, the elements of the 2
rows 6/ and 6i , corresponding to the 2 MQTL alleles of individual i with parents s
and d, are computed as



for j = 61 - 1, where Bi(L, k) were defined in !6!. Element Àp 61 = fi, where

fi is given in !11!. Elements of columns 6! and 8; are obtained by symmetry. If 1
parent is unknown, terms involving the unknown parent are dropped from !14!.

For convenience, the tabular algorithm described above can be written in matrix
notation. Let Ai-i be the upper left submatrix of A expanded up to i - 1. For
individual i, with parents s and d, Ai_1 is expanded to Ai as

where

and

In (17!, q’ is a 2 x 2(i-1) matrix with at most 8 non-zero elements, which are from
Bi and are located in columns 6s, 8;, 6d and 6d.

The above tabular algorithm to construct A is similar to that used to construct
the numerator relationship matrix (Emik and Terrill, 1949; Henderson, 1976).
Further, A plays the same role in prediction of MQTL effects as the numerator
relationship matrix, A, does in prediction of breeding values.

ALGORITHM TO INVERT COVARIANCE MATRIX OF MQTL
ALLELE EFFECTS

Theory

Tier and S61kner (personal communication, 1994) and van Arendonk et al (1994)
used partitioned matrix theory to develop rules to invert the numerator relationship
matrix efficiently for populations with unusual relationships. A similar approach is
used here to invert A efficiently.

From [13], Gj! = A -1 /a!. In general, the inverse of Ai, partitioned as in !15!,
can be obtained as

where Di = Ci - q§Aj- i qi is 2 x 2 matrix (Searle, 1982). From !18!, the contribution
of individual i to Ai is given by the second term on the right-hand side of this
equation, for which, as shown below, there are at most 36 non-zero elements.



Because of the sparse structure of qi as shown in (17!, qiAi_lqi can be written
as Bics,dB§, where Cs,d is the 4 x 4 conditional gametic relationship matrix for
parents of i, s and d, the elements of which are in AZ_1, and Bi is the matrix of

PDQs defined in (6!. Thus

If fi, fs and fd are nulle, then

where 12 is a 2 x 2 identity matrix.
The submatrix qiDilq! in [18] is a square matrix of order 2(i &mdash; 1) that contains

only 16 non-zero elements, which are given by BiDz lBi. The submatrix Di lqi is
a matrix of order 2 x 2(i - 1) that contains only 8 non-zero elements, which are
given by DilB!. Thus, there is a total of 36 non-zero elements contributing to Ail i
from individual i. For convenience, these 36 non-zero elements are collected into a
6 x 6 matrix:

Because Wi contains all contributions to Ail from individual i, we refer to it as
the ’contribution matrix’. The position of contribution element Wi(l, k) is given by
element Ili (1, k), so we define the corresponding ’position matrix’ for Wi as

where 6b = 2(a-1)+b for a = s, d, or i and b = 1 or 2. If both parents of individual
i are known, then all elements in Iii are defined. If at least 1 parent is unknown,
then elements in IIi associated with the unknown parent(s) are not defined.

Because qi has at most 8 non-zero elements, and the positions of these elements
are simple functions of s and d, [18] leads to an efficient algorithm to invert A, where
the number of arithmetic operations for inverting is proportional to 2n, the size of
A. It is noteworthy that any symmetric positive definite matrix can be inverted
using !18!. Unless qi is sparse and the positions of the non-zero elements can be
determined easily, this approach will not be efficient. Note that [19] requires Cs,d,
which is from Ai_1. Thus for an inbred pedigree, Cs,d needs first to be computed,
similar to the situation where inbreeding coefficients need first to be computed
when Henderson’s rapid algorithm (Henderson, 1976) is used to invert a numerator
relationship matrix.



Algorithm

1. Set A-1 equal to the null matrix.
2. For individual i, i = 1, ... , n:

(a) if both parents are unknown, then add Is to A6ilbi and Aai162
(b) if at least 1 parent is known, then:

i) compute Bi according to [5]
ii) compute Di according to [19] for inbreeding or [20] for non-

inbreeding
iii) compute Wi according to [21]
iv) for each ’defined’ element in IIi, add element Wi(l, k) to A-’

at the position given by Hi (I, k)

NUMERICAL EXAMPLE WITH COMPLETE MARKER DATA

Consider the pedigree of 5 individuals in table I. These 5 individuals are numbered
sequentially so that parents precede their offspring, and are assumed to be from
a population with marker allele frequencies of p(Ad = 0.7, p(A2) = 0.1, and
p(A3) = 0.2. For convenience, we assumed that Jfl = 1.0 and r = 0.1. For this
example, genotype AZA2 is assigned to individual 2, so that marker data are

complete.

Computing PDMs

The PDMs are undefined for individuals 1 and 2, because their parents are unknown.
Individual 3 has parents 1 and 2. Thus, as shown in Appendix A, the 8 PDMs for
individual 3 can be computed as

for k3, kp, p = 1 or 2, where Gl, G2, and G3 represent marker genotypes of
individuals 1, 2, and 3. The right-hand side of [23] can be computed from Mendelian
principles (see example after equation [A. 1] in Appendix A), and the resulting PDMs
are stored in matrix S3, defined in !7!, as



For individual 4, the paternal parent is unknown. Thus, PDMs for individual 4 can
be computed as

for k4, k2 = 1 or 2 where Gu = AiA! is the ordered marker genotype for the
unknown paternal parent. The upper limit of the summation is the number of
marker alleles segregating in the population. The resulting PDMs are

The first 2 columns in S4 are undefined because the paternal parent is unknown.
For individual 5, both parents are known. Thus, computation of PDMs for

individual 5 is similar to that for individual 3, and the resulting PDMs are

Constructing A

Individuals 1 and 2 are unrelated and non-inbred (table I), thus the upper left
submatrix of the conditional gametic relationship matrix A is an identity matrix of
order 4. This submatrix will be expanded by the tabular method for individuals 3,
4, and 5, as shown below.

The matrix B3 of PD(as for individual 3 with parents 1 and 2 is computed using
S3 according to [5]:

Now, from [14], elements A5,j and A6,j, for j = l, ... , 4, which correspond to
individual 3, are computed as linear functions of elements in the first 4 rows, which
correspond to the parents 1 and 2:

Diagonal elements A5,5 and A6,6 for individual 3 are unity. Off-diagonal element .!6,5,
which is defined as the conditional inbreeding coefficient in !10!, is null because the
parents of individual 3 are unrelated. For individual 3, therefore, numerical values



of elements A5,j for j = 1, ... , 5 and !6,! for j = l, ... , 6 are

The corresponding column elements are obtained by symmetry.
The PD(as for individual 4 are computed using !5!:

For individual 4, numerical values of elements A7,j for j = 1, ... , 7 and )..8,j for

j = 1,...,8 are

The PD(as for individual 5 are computed using !5!:

To compute f5 defined in !10!, we need Pr(Q33 - Q!4IGobs) and Pr(Tkak4IGobs) for
k3, k4 = 1 or 2. Probabilities, Pr(Q33 - Q!4IGobs), have already been computed as

Probabilities, Pr(r!![Go6s); can be obtained according to [12] as

Similarly, Pr(Tl2!Gobs) = 41/100, Pr(T2l!Gobs) = 41/100, and Pr(T22IGobs) -
9/100. Therefore,



For individual 5, numerical values of elements >’9,j for j = 1, ... , 9 and Alo,j for
j = 1,...,10 are

The conditional gametic relationship matrix (A) is

Inverting A

Set A-1 to the null matrix. For each of the 5 individuals, the contribution matrix
Wi and corresponding position matrix Hi are computed as described below. The
inverse of A is obtained by adding elements Wi(l, k) to A-1 at positions indicated
by elements IIi(l, k).

For the first 2 individuals, the parents are unknown. Thus, add Is to AIL A2!,
A3! and A4!. For individual 3, PD(as (B3) can be obtained as shown earlier.
Because individual 3 is not inbred, D3 = I2 - B3B!, from (20!. Matrix W3 is in
table II and II3 is in table III.

Similarly, for individual 4, matrices W4 and 114 are in tables II and III. Note
that 1 parent of individual 4 is unknown. Those elements in W4 and 114 associated
with the unknown parent are undefined.

From the previous section, individual 5 is inbred ( f5 = 0.045). Thus, [19] is used
to obtain D5 = C5 - B5C3,4B!, where C5 and C3,4 were computed in the previous
section:

Matrices W5 and II5 are given in tables II and III.





The A-1 matrix is

COVARIANCE OF MQTL EFFECTS GIVEN INCOMPLETE
MARKER DATA

Algorithms to construct and invert the conditional gametic relationship matrix (A),
given complete marker data, are based on the recursive equation !3). In deriving [3]
from !2!, it was assumed, given complete marker data, that events Q7; {:::: Q§ and
Qs - Qi kj for example, are independent. They may not always be independent,
however, when marker genotypes of the parents are unknown. Thus, although [2]
holds for complete and incomplete marker data, [3] may not hold for incomplete
marker data. Therefore, algorithms developed for complete marker data cannot
be directly applied, in general, to pedigrees with incomplete marker data. In this
section, we first demonstrate that [3] may not hold when marker genotypes of
parents are unknown. A strategy to accommodate pedigrees with incomplete marker
data is then presented.

The pedigree in table I is used to demonstrate that [3] may not hold when
marker genotypes of the parents are unknown. In this pedigree, marker genotype
of individual 2, the maternal parent of individuals 3 and 4, is unkown. Thus, as
shown below, Pr(Q4 - Q2) cannot be computed using !3!.

From !2!, .

The last 2 terms in [26] are null because the QTL alleles in the unknown parent
of individual 4 cannot be identical by descent to QTL alleles in individual 3. In
deriving [3] from !2!, it was assumed, given Gobs, that Q4 ! Q’ and Qz = Q2, for
example, are independent, ie

Because the marker genotype for the maternal parent of individual 4 is unknown,
however, the above equality does not hold. This is illustrated numerically.



Given the parents’ genotypes, the genotypes of offspring are independent.
Therefore, Pr(Qi « Q’, Q’ = !w3I!’robs) can be computed by conditioning on the
genotype of individual 2 (parent of individuals 3 and 4) as

The probabilities required in the above computation are

From the above table, Pr(Q4 ! Q)]Gobs) and Pr(Q! = Q3IGobs) can also be
computed as



The values of Pr(<! 4= Q2!Gobs) = 1/24, Pr(Q2 = Q3IGobs) = 1/2, and
Pr(Q’ 4 - <- Q2, Q2 = Q3!Gobs) = 3/400 illustrate that

Pr(! 4= Ql, Ql - Q2 iGob,,) =A Pr(‘‘!4 ! Q2lGobs)Pr(‘w2 = Q2 3 ob.,)
Because [3] may not hold when marker genotypes of parents s and d are unknown,

the tabular algorithm for complete marker data cannot be applied directly to
construct A, given incomplete marker data. The tabular algorithm can be used,
however, to construct A given incomplete marker data, as described below..

Let S2 be the set of all possible marker genotype configurations for individuals
with unknown genotypes, and let Gobs be the observed marker genotypes for
individuals with known genotypes. The conditional gametic relationship matrix
given incomplete marker data, AIGobs’ can then be computed as

where Alw,GOb8 is the conditional gametic relationship matrix given marker geno-
types w for individuals with unknown genotypes and Gobs for individuals with
known genotypes, and Pr(wIGobs) is the conditional probability of individuals with
unknown genotypes having marker genotypes w, given marker genotypes Gobs for
individuals with known genotypes. The matrix Alw,GOb8 can be constructed using
the tabular method given complete marker data, and the probability Pr!Go!)
can be computed as

where Pr(w, Gobs) can be computed efficiently (Elston and Stewart, 1971; Bonney,
1984).
The conditional gametic relationship matrix (A) for the pedigree in table I,

computed using !27!, is

Computing A using [27] is not efficient when a large number of individuals have
unknown genotypes because the summation in [27] is over all combinations of the



unknown genotypes. Further, an efficient algorithm to invert AI Gobs has not been
found. Therefore, 2 approximate methods to compute A¡Gobs and its inverse are

presented:
1) We have already shown that [3] may not hold for incomplete marker data because,
given Gobs, Q7i ! Q! and Q9 = Q ki in [2], for example, may not be independent.
If we ignore this dependency, then [15] and (18!, which are based on (3!, can be
used to approximate A and its inverse. This approximation will require PDMs for
individuals with incomplete marker data. For individual i, with unknown marker
genotypes for parents s and d, PDMs can be computed as

where each summation is over all possible genotypes at the ML. If Gs, Gd, or
Gi is not missing, then the corresponding summation should be dropped from
!28!. The computation of Pr(G,,Gd,GilG!b,) can be very time-consuming when
a large number of individuals have unknown marker genotypes. An approximation
for Pr(Gs, Gd, Gi ] Gobs) can be obtained, however, by conditioning only on marker
information of ’close’ relatives of i, s and d, where, for example, a set of ’close’
relatives for an individual could be its parents, sibs and offspring. The conditional
gametic relationship matrix (A), for the pedigree in table I, using this approxima-
tion is

The consequence of this approximation is that the summation in [27] has been
brought into inside of A and performed on Bi (or Si, see [5]).
2) Let wmax be the genotype configuration in S2 with the largest probability. Given
wmax and Gobs, [15] and [18] can be used to approximate A and its inverse.
Sheehan et al (1993) proposed a sampling scheme to compute the probability of
genotype configurations. For the pedigree in table I, given Gobs, Gz = AiA2 has
the largest .conditional probability (2/3) among all possible genotypes for G2, ie
wmax = (Gz = AiA2). Thus, [15] can be used to construct A with GZ = AiA2. The
conditional gametic relationship matrix (A) using this approximation is:



The consequence of this approximation is that the resulting A is conditional on
wmax ·

A measure of how well an approximation compares to the exact method is the
correlations coefficient, r’exact,a.pprox; between upper off-diagonal elements of AI Gobs ,
computed exactly by !27!, and corresponding elements computed by approximate
methods. For the pedigree in table I, Texact,approxl = 0.9877 for approximation 1
and ?’exact,approx2 = 0.8735 for approximation 2.

To further examine these approximations rexa!t,apProxi and rexa!c,appTOx2 were
computed for a pedigree of 99 individuals with 3 generations. The first generation
consisted of 3 grandsires, each mated with 12 granddams. The second generation
consisted of 2 sires and 10 dams from each grandsire for a total of 6 sires and
30 dams. Each sire was randomly mated with 4 dams, avoiding full-sib and halfsib
matings. The third generation consisted of 2 grandsons and 2 granddaughters from
each sire for a total of 12 grandsons and 12 granddaughters. Marker genotypes
were assumed missing for the 30 maternal granddams. Thus covariances were only
computed for the remaining 69 individuals in the pedigree. Marker genotypes for
these 69 individuals were generated randomly. Granddaughters and dams without
progeny were assigned missing marker genotypes with probability 0.6.

Exact and approximate covariances were computed for 20 randomly generated
marker genotype configurations. The average for rexact,approxi was 0.8923 and for
!’exact,approx2 was 0.8939. The effect of these approximations on marker-assisted
genetic evaluation needs to be studied.

DISCUSSION

Theory and algorithms are presented here to construct the conditional covariance
matrix between relatives for a marked quantitative trait locus (Gv = Au v 2) and
to obtain its inverse efficiently. These algorithms extend those of Fernando and
Grossman (1989) to accommodate situations (1) where paternal or maternal origin
of marker alleles cannot be determined and (2) where marker genotypes of some
individuals in the pedigree are unknown. The exact procedure presented here to



construct A!Gobs for incomplete marker data may not be efficient for large pedigree.
Therefore, we presented 2 alternative strategies to approximate A!Gobs and its
inverse. Simulation results indicate that the 2 approximations are similar because
they have similar correlations with the exact method (?’exact,approxi = 0.8923,
rexact,approx2 ! 0.8939). Approximation (1) is preferred, however, because it may
be difficult to search for wmax when a large number of individuals have unknown
marker genotypes.
We also presented an algorithm to compute the conditional inbreeding coefficient

( fi) for a QTL given Gobs, which is different from Wright’s inbreeding coefficient.
This conditional inbreeding coefficient is the probability that the 2 homologous
alleles at the MQTL in an individual are identical by descent given the pedigree
and marker information, whereas Wright’s inbreeding coefficient is the conditional
probability that the 2 homologous alleles at any locus in an individual are identical
by descent given only the pedigree. A numerical example is used to show that

equation !3!, which is the basis of tabular method to construct Gv, does not hold
generally when marker data are incomplete.

In most practical situations, marker information will not be available on distant
ancestors. Thus, TM-BLUP cannot be computed. One of the 2 approximations
presented in this paper, however, can be employed to compute AIGobs’ Thus
available marker information can be used to obtain improved genetic evaluations
by approximate TM-BLUP. Further, in general, information on distant ancestors
has little impact on genetic evaluations.

If the ML and MQTL are in linkage disequilibrium, marker data provide
information on the first moment of MQTL effects. In this situation, regression
techniques can be used for genetic evaluation using marker and trait information
(Lande and Thompson, 1990; Zhang and Smith, 1992). If the ML and MQTL are
in linkage equilibrium, marker data do not provide information on the first moment
of the MQTL effects. Even with equilibrium, however, marker data do provide
information on covariances of MQTL effects. In this situation, TM-BLUP can be
used for genetic evaluation by fitting MQTL effects as random effects within animal
(Fernando and Grossman, 1989; Cantet and Smith, 1991; Goddard, 1992; Hoeschele,
1993).

Genetic evaluation by TM-BLUP requires knowledge of genetic parameters,
such as r and o, v 2. This is also true for T-BLUP, which requires knowledge of
genetic variances and covariances. In practice, true values of genetic parameters
are unknown and estimates are used in their places. Both restricted maximum
likelihood and maximum likelihood approaches can be used to estimate parameters
required for TM-BLUP (Weller and Fernando, 1991).

Ideally, marker-assisted selection will be based on multiple marker loci. When
the linkage phase between flanking marker loci is known in addition to the parental
origin of marker alleles, the method presented by Goddard (1992) for multiple
markers can be used for TM-BLUP. Further research is needed for TM-BLUP using
multiple markers when both the linkage phase between flanking marker loci and the
parental origin of marker alleles are unknown.
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APPENDIX A

Theory for computation of PDMs

Let Gs = M; M;, Gd = MIM2 and Gi = Mi M2 be the marker genotypes of 2
parents s and d and their offspring i. Given Cs, Gd and Gi, the probability that

Miki descended from Mp! does not depend on other information in the pedigree.
Thus, Pr(Mf° « MpP!Go6s) = Pr(Miki ! M;P ICs, Cd, Ci), which can be obtained
as

The numerator and denominator of [All are easily computed from Mendelian
principles. For example, if 2 parents and their offspring each has marker genotype
AlA2, ie Gs = Ms Ms = AIA2, Gd = MlM2 - AlA2 and Gi = Mi M2 = AlA2,
then

Thus, Pr(M1 ! M; ICs, Gd, Gi) = 1/2.
Other examples are listed below. Eight PDMs for each individual i are collected

into matrix Si, which is defined in !7!.

APPENDIX B

Theory for computation of PDQs

The conditional probability that allele Q7i of individual i descended from allele QPP
of parent p (fig 1), given Gobs, will be denoted by Pr(Qf° « QPP I G,b,), which is
called PDQ. This conditional probability can be expressed as



Because Qf° and M ki are on the same chromosome of individual i, each must have
descended from the same parent. Thus, Pr M,&dquo; 4-- Mp&dquo;54,, Qk° ! QPP !Gobs) is null.
Now,

There are 2 probabilities on the right-hand side in !B2!. The first probability

is a PDM for individual i (see [All for its computation). The second probability

can be expressed in terms of PDMs and of the recombination rate r between the
ML and the MQTL as explained below.

Given Mf° « M:!, the probability that Qf° descended from QPP does not

depend on other information in the pedigree. Thus,

If k§ = kp, then recombination has not taken place, so that

If k’ p 54 kp, then recombination has taken place, so that

For each combination of ki, kp, k) = 1, 2, we have



The PD(as, Pr( Q7i {= Qk, !Gobs), for ki, kP = 1, 2, can be obtained by using the
above in !B2!:

where p = s or d.
In summary,

for ki = 1 or 2 and p = s or d, where p = r when kp = 1 and p = 1- r when kp = 2.
Note that PDC!s are now expressed in terms of PDMs and r.

APPENDIX C

Theory for computation ofPr(TkskdIGobs)

The event that the pair of alleles (<!,<3!) in individual i descended from parental
pair (Qss, Qdd) (fig 1), is denoted by Tkskd for ks kd = 1 or 2. This event can occur
in 1 of 2 ways:

1. Q¡ descended from Q!s and Q/ from Qdd, denoted (Q! 4= Q!8, Q7 .;= Q!d)
2. Ql descended from Qkd and Q2 from Qks denoted (Q$ « 0!,Q! != Qss)

Given the pedigree and marker genotypes, the probability of Tkskd’ which is

denoted by Pr(T!!!!Go!), can be written as

Consider the first probability on the right-hand side in [Cl], which can be
expressed as

where Pr(Q2 ! Q!!G!) is a PDQ and Pr(Q/ « Q!Q? ! Qad, Gobs) can be
expressed in terms of PDQs for individual i, as explained below.

Note that if Q; descended from Qdd of parent d, Q/ must have descended from
the other parent s; ie Q2 ! Qdd is equivalent to Q} ! s. Therefore,



Observe that event Q/ « s is implied by Q} {= Qss; therefore,

Further,

Thus, [C3] can be rewritten in terms of PD(as as

After substituting [C4] in !C2!, the first probability on the right-hand side in
[Cl] can be written in terms of PD(as. The same approach is applied to the second
probability in !C1!. Then, Pr(TkskJGobs) can be expressed in terms of PD(as as

If 1 of the denominators in [C5] is zero (indicating the event in 1 of the terms in
[Cl] is impossible), then the corresponding term in [C5] is set to zero.


