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Abstract: In this paper, we present a novel approach for reconstructing 3D geometry from a stream
of images captured by a consumer-grade mobile RGB-D sensor. In contrast to previous real-time
online approaches that process each incoming image in acquisition order, we show that applying a
carefully selected order of (possibly a subset of) frames for pose estimation enables the performance
of robust 3D reconstruction while automatically filtering out error-prone images. Our algorithm
first organizes the input frames into a weighted graph called the similarity graph. A maximum
spanning tree is then found in the graph, and its traversal determines the frames and their processing
order. The basic algorithm is then extended by locally repairing the original spanning tree and
merging disconnected tree components, if they exist, as much as possible, enhancing the result of 3D
reconstruction. The capability of our method to generate a less error-prone stream from an input
RGB-D stream may also be effectively combined with more sophisticated state-of-the-art techniques,
which further increases their effectiveness in 3D reconstruction.

Keywords: mobile RGB-D camera; 3D geometry reconstruction; similarity graph; 6-DOF pose
estimation; 3D scene modeling; mixed reality

1. Introduction

The reconstruction of 3D worlds from 2D images has been a fundamental challenge in computer
graphics and vision for decades. Its importance is equally apparent in the fields of virtual, augmented,
and mixed reality where real geometry must be naturally mingled with virtual geometry. Since the
Microsoft Kinect sensor became available in 2010, the direct dense methods of visual odometry
and simultaneous localization and mapping (SLAM) have shown their potential for extracting
3D geometry models from RGB-D image streams captured by consumer-grade cameras (refer to
the recent survey article [1] for notable results). The traditional visual odometry and SLAM
approaches used for 3D reconstruction have mostly focused on real-time online computation. When
a current frame is taken to estimate its camera pose, it is generally registered against the previous
frame (frame-to-frame) or the geometry accumulated thus far in the form of signed distance fields or
surfel maps (frame-to-model). The global relationships between captured frames may be considered
through either bundle adjustment [2] or pose-graph optimization [3,4], optimizing the pose estimation
errors across frames or distributing them across the graph.

In this work, we basically assume the use of a color-depth sensor with low spatial resolution and
limited depth precision, such as the mobile sensor on the Google Tango-enabled smartphone, which
suffers easily from sensor errors, noises, blurs, and distortions. Under this situation, if high-quality
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geometry reconstruction is of more concern, it is quite desirable for a user to first scan along areas
of interest rather densely enough to acquire sufficient RGB-D data, and carefully select a set of (not
necessarily all) image frames from the scan that would allow faithful reproduction of 3D objects. In
particular, if the real-time online camera tracking is not mandatory, there is no need to process the
RGB-D stream in its given order or for all frames to participate in reproducing the 3D geometry despite
any possible defects in the images.

In this paper, we experiment with a different approach for 3D geometry reconstruction that is
free from these restrictions. Given an input RGB-D stream, in an aim to extract the best-possible
sequence of (possibly a subset of) input frames for stable camera tracking and 3D reconstruction, we
build a graph, called the similarity graph, each of whose edges indicates the similarity of the pair of
incident frames with respect to pose estimation. Then, a set of pairs of frames that enable a robust 3D
reconstruction are carefully selected from the graph along with the pose estimation order by traversing
a maximum spanning tree in the graph.

In addition to the generation of an effective set of input frames and their registration order,
the presented similarity graph scheme also automatically removes from consideration those frames
that may introduce intolerable errors in the results of pose estimation and 3D reconstruction. This may
disconnect the similarity graph, resulting in multiple separate components. Therefore, we perform
an additional process, called the component-to-component camera tracking, to connect them as much
as possible.

To evaluate the effect of the similarity graph clearly, our method currently employs a simple
frame-to-frame tracking model for the pose estimation, which can be easily modified to include
advanced mechanisms, such as the frame-to-model tracking, bundle adjustment, and pose-graph
optimization. This does not mean that the presented similarity graph technique is orthogonal to these
sophisticated mechanisms because our method may also be easily combined with them to enhance
their effectiveness by providing them with fewer error-inducing input streams.

2. Previous Work

The introduction of the Microsoft Kinect camera led to the possibility of using commodity RGB-D
cameras for effective 3D reconstruction. In their seminal work, Newcombe et al. [5] presented a
frame-to-model camera tracking system that successfully manipulated the captured depth information
to reproduce 3D geometry in a volumetric signed distance field. Since then, several follow-up studies
have scanned large-scale areas [6,7] and devised an efficient representation of the memory-intensive
volume data structure [8,9]. Unlike the Kinect system, different pose estimation models were proposed
that use photometric information [10,11] and both photometric and geometric information [12] to
formulate the cost function for direct dense visual odometry. Since then, variants of these approaches
were applied to build the RGB-D camera-based tracking and reconstruction systems.

In order to cope with the pose estimation errors that are inevitably accumulated significantly
over time, more sophisticated global optimization mechanisms such as bundle adjustment [2] and
pose-graph optimization [3,4] were applied to maintain the global consistency between camera pose
estimates. The spatial relation between a selection of keyframes was estimated using the image features
in the input RGB-D images (e.g., using randomized ferns [13]), which allowed a pose graph to be
incrementally optimized for a consistent pose estimation [14,15]. Statistical methods, such as the
surfel-based matching likelihood measure [16] and the entropy-based likelihood estimate [17], were
also explored to evaluate the spatial relations between the input frames.

The geometric relationships between submaps respectively constructed from chunks of
temporarily adjacent frames in the input stream were explored for more accurate large-scale
reconstruction [18–23]. Several surfel-based, frame-to-model tracking methods were also proposed
(e.g., [16,24]) to efficiently represent the 3D models incrementally accumulated during the camera
tracking. This approach was then combined with various nonrigid dense map deformation techniques
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for maintaining globally consistent maps [25–27]. All these research efforts have culminated into the
recent development of several open-source camera tracking systems (e.g., [22,27,28]).

Note that, similarly to our method that builds a maximum spanning tree from the similarity
graph, some previous works also constructed a minimum spanning tree over the pose graph but in the
context of global optimization or loop closures for selecting appropriate keyframes [28–30]. On the
other hand, the maximum spanning tree is used in the presented method to reorder frames in the input
sequence for stable pose estimations.

3. Preliminaries: 6-DOF Camera Pose Estimation

As input data, we assume an RGB-D sequence such that each frame at time i (i = 0, 1, 2, . . . )
provides a pair of aligned images Fi = (Ii,Di), consisting of an intensity image Ii(u) and a depth map
Di(u), respectively seen through every pixel u ∈ U ⊆ R2. For a set of valid pixels um (m = 1, 2, . . . , np)

of the ith frame that are used in the 6-DOF camera pose estimation, let pm ∈ R3 (m = 1, 2, . . . , np) be
the nearest 3D point in the ith frame’s camera space that is visible through um.

Given the 3× 3 intrinsic matrix K of the depth sensor, each point can be described as pm =

Di(um)K−1(u>m 1)>. Reversely, the perspective projection from an arbitrary 3D point p in the camera
space to a pixel u becomes u = µ(p) = π(Kp), where π(x, y, w) = ( x

w , y
w )
> is the dehomogenization

operator in R2. Let ξ = (ω> υ>)> denote the 6-vector of coordinates in the Lie algebra se(3) with
ω ∈ R3 and υ ∈ R3 respectively determining the rotation and the translation. Then, the motion
parameter ξ generates a rigid transformation matrix T(ξ) ∈ SE(3) through the exponential map

T(ξ) = exp(ξ̂), where, for the skew-symmetric matrix operator [·]×, ξ̂ =

[
[ω]× υ

0> 0

]
.

The goal of the frame-to-frame pose estimation is to estimate the rigid transformation Tij ∈ SE(3)
from the camera space of the ith frame to that of the jth frame based upon Fi and Fj. This is done by,

from an initial guess T(0)
ij , iteratively improving the current estimate T(k)

ij until convergence such that

T(k+1)
ij ← T(ξmin)T

(k)
ij , where ξmin is obtained by solving a minimization problem that is defined shortly.

Consider the image warping function that maps the mth pixel um of the ith frame to a pixel vm of the
jth frame via a given rigid-body motion T(ξ)T(k)

ij . Then, it can be expressed as vm = (µ ◦ hm)(ξ), where

hm(ξ) = T(ξ)T(k)
ij (p>m 1)>. (Note that the warping process, defined with respect to each pixel um, is a

function of ξ.) If we define the error vector function g(ξ) = ( . . . gm(ξ) . . . gm+np(ξ) . . . )> ∈
R2np , where

gm(ξ) =
√

wI (um)
{
(Ij ◦ µ ◦ hm)(ξ)− (Ii ◦ µ)(pm)

}
(1)

and
gm+np(ξ) = λ

√
wD(um)

{
(Dj ◦ µ ◦ hm)(ξ)− [hm(ξ)]z

}
(2)

for m = 1, 2, . . . , np, then the new estimate T(k+1)
ij can be obtained by optimizing the cost function

g(ξ)>g(ξ):
ξmin = arg min

ξ
g(ξ)>g(ξ). (3)

In this objective function, wI (·) and wD(·) are the respective weights obtained to reduce the
negative effect of outliers, λ is the relative gain for the depth component, and the operator [·]z
returns the z coordinate of a 3D point. While any feasible method (such as the one presented in,
for instance, [5,10,11]) may be applied to implement the motion estimation process, we use a slight
variant of the method by Tykkälä et al. [12], in which the weights in the iteratively re-weighted least
squares formulation are computed using the t-distribution as proposed by Kerl et al. [17].
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4. Similarity Graph-Based Camera Pose Estimation

The proposed algorithm proceeds in four steps: (i) estimation of similarity measure between
frames, (ii) construction of similarity graph, (iii) extraction of maximum spanning tree, and (iv) pose
estimation via tree traversal. In this section, we first explain each step in detail, and show how this
basic algorithm can be extended to improve its performance further in the next section.

4.1. Similarity Measure between Two Frames

Given two images Fi and Fj captured at two arbitrary times i and j, we are to estimate the relative
rigid-body motion Tij, which maps the camera space of the ith frame (source frame) to that of the
jth frame (target frame), by optimizing the cost function described in Section 3. As is well known,
the stability and accuracy of the solution process are greatly influenced by how close the initial guess
T(0)

ij is to the solution Tij. In general, the identity matrix I ∈ SE(3) is selected as an initial value because
there is no obvious better alternative. When a frame-to-frame tracking method is applied between two
temporarily consecutive frames, however, such a choice may lead to a poor estimation when the camera
has moved fast at a high angular velocity between the frames, resulting in abrupt view changes and
annoying motion blurs in the captured images. This is mainly because, in such case, the unknown
rigid-body motion Tij is located far from the null motion I in the search space SE(3).

If we are free to choose the pairs of frames to be registered to each other, it is very advisable to select
the pairs whose images are as similar as possible. For such pairs, whose relative rigid transformation
would be close to the initial guess (which is set to the null motion), we observe that even the simple,
drift-prone, frame-to-frame tracking tends to produce quite satisfactory pose estimations. Under this
observation, we define the similarity between the two frames Fi and Fj over a rigid-body motion T as the
ratio between the cardinalities of two pixel sets Pvalid(Fi) and Pmatched(Fi,Fj, T):

σ(Fi,Fj, T) =
| Pmatched(Fi,Fj, T) |
| Pvalid(Fi) |

, (4)

where σ(Fi,Fj, T) ranges from 0 to 1 as explained immediately below. First, Pvalid(Fi) indicates the set
of pixels of Fi that are found valid and thus may participate in the process of camera pose estimation.
Note that problematic pixels often appear in various forms in the captured RGB-D images. Above all,
depth sensors in general generate pixels of invalid values for out-of-range readings, which should
be eliminated from consideration. In addition, we get rid of pixels further that may cause numerical
instability during the pose estimation computation. In particular, to remove those pixels with possibly
faulty depth values, the normal and contour filtering techniques, proposed by An et al. [31], are applied
after the usual bilateral filtering.

Second, Pmatched(Fi,Fj, T), which is a subset of Pvalid(Fi), represents the set of valid pixels of
Fi that after warped from Fi to Fj through T, have both similar intensity and depth values in Fj.
Ideally, the pixel values of u ∈ Pvalid(Fi) must be the same as those of the corresponding pixel vu of
Fj if T = Tij, where vu = µ(T(p>u 1)>) and pu = Di(u)K−1(u> 1)>. In reality, however, since the
captured RGB-D images often contain noisy and faulty pixel values, the rigid transformation T is only
an approximate for Tij, and the 3D objects in the scene are not ideally diffusive, they usually do not
coincide exactly. If T is a rather good estimate, however, there is a good chance that there exists a pixel
in the neighborhood of vu in the pixel space of Fj whose intensity and depth values are very similar to
those of u.

To reflect this uncertainty, we regard that a pixel u in Fi matches some pixel in Fj with respect to
T and an image kernel of fixed odd size nker, that is, u ∈ Pmatched(Fi,Fj, T), if, for vu = v(x, y), there
exists at least one neighboring pixel v(x + k, y + l) in Fj with − nker−1

2 ≤ k, l ≤ nker−1
2 such that

• v(x + k, y + l) ∈ Pvalid(Fj), i.e., v(x + k, y + l) is valid in Fj,
• | Ij(v(x + k, y + l))− Ii(u) | < τI for some threshold τI , and
• | Dj(v(x + k, y + l))− [T(p>u 1)>]z | < τD for some threshold τD.
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It is known that the convergence of the Gauss–Newton method, which is used to implement our
optimizer, can suffer when the optimal objective value is relatively large [32]. Note the resemblance
between the residual errors in the cost function of Section 3 and the similarity criteria. When a pair of
frames with high similarity are chosen, the iteration will tend to start with a relatively small objective
value g(ξ0)

>g(ξ0), ensuring numerically more stable optimization. See Figure 1 for some examples of
the similarity measure.

(a) Source frame F130 (b) Target frame candidate
F129

(c) σ(F130,F129, I) = 0.214

(d) Target frame candidate
F247

(e) σ(F130,F247, I) = 0.886

Figure 1. Selection of a target frame for a given source frame. While capturing a stream of RGB-D
images of 320× 180 pixels using a Google Tango-enabled smartphone, there happened to be a jerky
motion between the 129th and 130th frames, which was confirmed by the low similarity measure (c).
The presented method found that the 247th frame is in fact the best candidate as a target frame,
for which the similarity measure increased markedly (e). By registering the source frame F130 against
the upcoming frame F247, not the preceding frame F129, we could actually avoid a significant pose
estimation error. In (c) and (e), the green and red colors indicate the valid pixels of the source frame
F130 that respectively matched and did not match some pixels of the corresponding target frame
candidates. On the other hand, the blue color in the target frame candidates represents the pixels
that were matched by some source frame pixels. In our experiments, we set the similarity measure
parameters as follows: nker = 5, τI = 10/255, and τD = 4 (mm).

4.2. Construction of Similarity Graph

Now, for a given stream of n f r frames Fi = (Ii,Di) (i = 0, 1, . . . , n f r − 1), we build a
weighted undirected similarity graph G = (V(G), E(G)), where V(G) is the set of vertices respectively
representing the n f r frames, E(G) is the set of edges connecting each pair of frames, and the weight
of an edge (Fi,Fj) (i > j) is the similarity value σ(Fi,Fj, T) for a given rigid transformation T.
Two things need to be noted about the similarity graph. First, strictly speaking, the similarity measure
on a pair of frames is not commutative in general, i.e., σ(Fi,Fj, T) 6= σ(Fj,Fi, T−1), implying the
graph must be directed. However, in order to reduce the computational burden of constructing the
similarity graph, we confine ourselves to registering frames to the temporarily precedent frames only,
which still produces sufficiently good results.

Second, whereas evaluating the weight function requires the matrix T, which must ideally be
Tij, there is no information at all on the rigid-body motion in particular when the image sequence
has just been inputted. When the similarity graph is constructed for the first time, we use the null
transformation I as T. In this case, the pairs of frames whose corresponding cameras have closer
positions and orientations in the global space tend to have higher similarity measures. Therefore, when
edges with larger weights are selected for pose estimation, as will be explained shortly, they usually
produce less error-prone estimates for the wanted rigid transformations.
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4.3. Extraction of Maximum Spanning Tree

Recall that when the camera pose is tracked along the usual, temporarily linear trajectory, a single
substantial error involved in registering a specific pair of consequent frames may cause severe drifts for
all subsequent frames (frame-to-frame tracking) or accumulate incorrect geometry information into the
model being built (frame-to-model tracking). Under the intuition that selecting higher weighted edges
will result in more reliable registrations for the corresponding frame pairs, we are naturally led to the
greedy strategy in which the edges are selected from the similarity graph on the order of non-increasing
weights until all vertices (frames) are included without forming a cycle. Such a choice can be made by
constructing a maximum spanning tree in the graph, which is done by negating the edge weights and
finding a minimum spanning tree. In this work, we implemented the priority-queue-based version of
Kruskal’s algorithm that finds a desirable tree in O(|E(G)|+ α log |V(G)|) time, where α is the number
of graph edges not longer than the longest edge in the minimum spanning tree [33].

After a maximum spanning tree is obtained, we select the root frame whose camera space becomes
the global space common to all frames. It is highly probable that the longer the distance from a frame
to the root frame is, the more numerical errors are accumulated while transforming the frame’s camera
space to the global space. Therefore, we find a center Fc of the tree whose greatest distance to other
frames in the maximum spanning tree is minimal: c = arg mini maxj 6=i dTG (Fi,Fj), where dTG (·, ·) is
the distance (i.e., the number of edges) between two frames in the tree T. Refer to Figure 2 to see an
example of maximum spanning tree that was built from an RGB-D sequence.

(a) An example RGB-D stream (b) A maximum spanning tree for the input stream

Figure 2. Construction of a maximum spanning tree from an input RGB-D stream. From the similarity
graph that was built for the stream shown in (a), our method found a maximum spanning tree whose
root frame is marked in thicker lines in (b). Note the difference in the general appearance of the camera
trajectories estimated through the linear path and the maximum spanning tree, respectively.

4.4. Pose Estimation through Tree Traversal

Finally, we traverse the maximum spanning tree in depth-first search manner, performing the
frame-to-frame pose estimation for each visited edge which represents a pair of source-target frames.
During the tree traversal, the camera space of each frame is converted to the global space through
the transformation obtained by accumulating the relative camera motions from the frame to the root.
Here, since the pairs of frames for which the camera poses are sought are known a priori, the camera
tracking computation can easily be parallelized.

Note that the edges with low similarity measures may introduce intolerable pose estimation errors
although they may happen to be selected during the tree construction, depending on how the input
stream was captured. In that case, we often witness poor pose estimations between the corresponding
pairs of frames, resulting in visually annoying artifacts in the resulting 3D reconstruction. Therefore,
when the tree is built, our method allows for limiting the edges in the similarity graph to have edge
weights greater than a minimum threshold value τgood (e.g., τgood = 0.8). Depending on the input
stream, this restriction may disconnect the similarity graph, producing a forest of trees, each of which is
itself a maximum spanning tree. We discuss how to handle the multiple connected components of the
similarity graph in Section 5.2. See Figure 3 for a branch of an example tree generated by our method.
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(a) From the original input sequence: F241
0.130−→ F242

0.115−→ F243
0.160−→ F244

0.205−→ F245
0.406−→ F246

0.408−→ F247

(b) From the rooted maximum spanning tree: F272
0.658−→ F205

0.895−→ F191
0.830−→ F230

0.794−→ F259
0.769−→ F130

0.902−→ F247

Figure 3. Extraction of a frame sequence that is more effective for camera tracking. Compare
the two frame sequences that respectively reach the same frame F247. While the frames were
captured, the camera was moved rather fast between the 241th and 247th frames as shown in (a),
for which a naïve application of the frame-to-frame tracking technique was destined to fail. In contrast,
the similarity graph method was able to suggest a frame sequence, displayed in (b) that enabled the
same frame-to-frame pose estimation method to track the camera more accurately. In each figure,
the similarity measures between the respective frame pairs are shown.

5. Extending the Idea of a Similarity Graph

5.1. Local Repair of a Maximum Spanning Tree

Despite the selection of frame pairs having as high similarity as possible during the construction
of the maximum spanning tree, it is often that the rigid transformations estimated for some edges are
not sufficiently accurate. One reason for this finding is that some edges connecting irrelevant frames
were wrongly chosen because of the inaccurate approximations of the similarity measure. Recall that,
when the similarity is evaluated for a given pair of frames, the identity matrix is initially used as
the rigid transformation between them because there is no better choice. However, this may cause a
serious problem when there was a nontrivial translational and/or rotational motion between the two
frames, reducing the reliability of the similarity measure. On the other hand, the rigid transformation
estimated for each tree edge during the tree traversal is usually a better approximation for the wanted
transformation than the identity matrix.

In our method, we (optionally) traverse the tree again and repair it, if possible, using the more
reliable estimates of the rigid transformations. Given a maximum spanning tree, let Fi and Fj be the
child (source) and parent (target) frames, respectively, of an edge currently being visited. To estimate
the appropriateness of using this pair of frames in the pose estimation, we evaluate the similarity
measure σ(Fi,Fj, T̂ij) again using the rigid transformation T̂ij estimated in the first round. If the new
similarity measure is less than a given threshold τrepair, we examine the proper ancestors Fk of Fj
up to, say, three levels, evaluating the respective similarity measures σ(Fi,Fk, T̂ik), where T̂ik can be
approximated by accumulating the rigid transformations along the path from Fi to Fk (refer to (a) and
(b) of Figure 4).

If the largest one among the reevaluated measures is greater than τrepair, we delete the edge
between Fi and Fj from the maximum spanning tree, and instead insert a new one between Fi and
the corresponding ancestor Fk∗ (e.g., F312 in Figure 4b). When the rigid transformation Tik∗ is to be
estimated for the new edge, we use the rigid transformation accumulated from Fi to Fk∗ as an initial
value for the iterative optimization process, which usually results in a more accurate pose estimate
than using the identity transformation. Once the repair process is done, we use only those edges with
similarity measures greater than τgood for 3D reconstruction, as explained in Section 4.4. See Figure 4
for an example of the tree repair.
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306

346

312

270

271

0.563

0.645

0.841

0.450

0.913

0.867

0.904

(a) Before the tree repair

306

346

312

270

2710.645

0.841

0.450

0.913

0.867

0.904

(b) After the tree repair

(c) After the initial tree traversal (d) The root’s component (before) (e) The root’s component (after)

Figure 4. Repair of the maximum spanning tree. The rigid transformations estimated using the initial
maximum spanning tree can increase the reliability of the similarity evaluation, which in turn allows
for selecting more similar pairs of frames in the tree repair process. (a) and (b) illustrate the situation
where the currently visited edge (F346,F271) is replaced by a new one (F346,F312). Then, (c) displays
the point cloud initially produced with respect to the entire 662 frames of an input RGB-D stream.
The visually annoying artifact was mainly due to the inaccurate approximations of the similarity
measure, causing some irrelevant pairs of frames to be selected. When those edges with similarity
measures greater than τgood = 0.75 were used for 3D reconstruction, only two frames were left in the
connected component containing the root frame (d). This was because most edges near the root node
happened to have a low similarity measure. When the tree was repaired with the repair parameter
τrepair = 0.8, a more robust 3D reconstruction was possible where the size of the connected component
grew to 56 frames (e).

5.2. Component-Wise Camera Tracking

When the parameter τgood is set to a high value, say, 0.85, and the edge set of the similarity graph
is restricted to those with weights above τgood, the graph tends to get disconnected into multiple
connected components. In such case, the quality of the point cloud generated for each component is
quite high, and thus it is desirable to align the major components to each other to form a larger one.

Let Ci and Cj be two connected components of a similarity graph, for each of which the
3D geometry has successfully been reproduced using the similarity graph method (see Figure 5).
Assume further that Fi and Fj are the root frames of the minimum spanning trees that were built in
the respective components. Being separated as two components means that there was not a single
highly reliable edge between them that allows for deriving the rigid transformation Tij between the
two frames. However, there often exist edges that connect the two components with a fair, although not
sufficient, amount of similarity. Consider those edges whose similarity measures are greater than a
given threshold τf air, which is set to a value smaller than τgood (e.g., τf air = 0.7). Then, although each
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of them may not lead to a sufficiently accurate frame-to-frame camera tracking, they often, although not
always, can be collectively used to estimate the relative rigid-body motion Tij.

Figure 5. Component-to-component camera tracking. Given two connected components Ci and Cj

whose root frames in the respective maximum spanning trees are Fi and Fj, the rigid-body motion Tij

that will align the two components in the common space is estimated by collectively using the next
best available frame pairs (Fil

,Fjl ) connecting them. Note that the two rigid transformations Til ,i and
Tj,jl can be derived from the respective trees.

In this component-to-component tracking approach, for each such edge (Fil ,Fjl ) (l = 1, 2, . . . , nl),
every valid pixel um of the ilth frame contributes to the error vector g(ξ) in basically the same way
as the frame-to-frame tracking discussed in Section 3. Again, let pm be the point in the ilth frame’s
camera space that corresponds to um. Then, the only difference in the formulation of the error function
for finding Tij is the way of transforming pm to the jlth frame’s camera space, where the warping

function now becomes vm = (µ ◦ hl
m)(ξ) where hl

m(ξ) = Tj,jl T(ξ)T
(k)
ij Til ,i(p

>
m 1)>. It should be noted

that, during the minimization of the new cost function, the Jacobian matrix Jg(ξ) ∈ R2ntp×6, where ntp

is the total number of pixels collected from the nl frames in Ci, must be constructed slightly differently
using the modified 3× 6 Jacobian of hl

m(ξ), which can be expressed as

Jhl
m
(ξ) = R(Tj,jl )

[
I3×3 −[p̄m]×

]
. (5)

Here, R(Tj,jl ) is the 3× 3 rotation matrix of Tj,jl , I3×3 is the 3× 3 identity matrix, and p̄m ∈ R3

is the point mapped from pm via T(k)
ij Til ,i. See Figure 6 for an example of the component-wise

camera tracking.
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Figure 6. Merge of separate components. When the similarity graph method was applied to an
input stream of 843 frames with τgood = 0.75, we obtained 12 separate components. To combine them
as much as possible, we first repaired each component using τrepair = 0.8, and built a component
graph whose edges are those with the highest similarity measure between the components. Then,
after finding a maximum spanning tree each of whose vertices are shown in the small figure with its
frame number, we performed the component-wise camera tracking with τf air = 0.6 while traversing
the tree, computing the rigid transformations between the components. As a result, we could collect all
components into a common space as shown in the large figure. Note that only 319 frames out of 843
were actually used to reproduce the final geometry.

6. Experiments

To demonstrate its effectiveness and applicability, the presented similarity graph scheme was
tested with several RGB-D sequences, where all the test datasets, including those shown in the previous
sections, were produced by storing into files the live RGB-D streams of 320× 180 pixels, captured using
a Lenovo Phab 2 Pro smartphone. Compared to the Microsoft Kinect v2 sensor, the used mobile RGB-D
sensor tended to suffer more from the limited depth precision and low pixel resolution. In addition,
we often observed visually annoying temporal/spatial mismatches between the pixels of the intensity
and depth images presumably due to the difference in their image acquisition rates, making the 3D
reconstruction process more challenging. As mentioned in the Introduction section, for high-quality
3D reconstruction, our method is oriented to choose best possible frames and their camera tracking
order from input sequences. Therefore, it is better suited for the input streams in which areas of interest
are scanned rather densely so as to provide sufficient RGB-D information. Therefore, we found that
such standard benchmark datasets as the ICL-NUIM or TUM datasets [34,35] are not best suited to
evaluate our method.

6.1. Computational Costs

The effectiveness of the presented method only comes with the computational cost of finding
the sequence of frame pairs that enables the robust and accurate camera tracking. Table 1 reveals the
computational complexity of our method, where the timings were collected on a PC with an Intel
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Core i7-8700K CPU with 64 GB of main memory and an Nvidia GeForce GTX 1080 Ti GPU with
11 GB of graphics memory. To build a similarity graph for an input RGB-D stream of n f r frames,

the similarity measure should be evaluated for each of the
n f r(n f r−1)

2 pairs of frames, whose number
increases quadratically with respect to the input size. In fact, this evaluation process has a high
degree of parallelism, both frame-pair-wise and pixel-wise that allows efficient parallel processing.
Despite our GPU implementation using the OpenCL, however, most computation time was spent in
constructing the similarity graph as clearly shown in the table. Note that, for the stream of n f r frames,
the frame-to-frame pose estimation needs to be carried out n f r − 1 times whether the similarity graph
scheme is applied or not. Therefore, the naïve, drift-prone, frame-to-frame tracking can be regarded as
consuming roughly the same per-frame pose estimation time as that given in the parentheses of the
fifth column. Considering the substantially improved stability and accuracy achieved by our method,
we believe that the increase in the amortized per-frame camera tracking cost was quite acceptable.
In the final section, we discuss how the burdensome computation of the similarity graph construction
can be done progressively during image capture in the future work.

Table 1. Computational costs for the similarity graph-based pose estimation (unit: sec). For each stream
made of n f r RGB-D images of 320× 180 pixels, the four columns titled by “sim-gr”, “mst”, “paths”,
and “pose-est” respectively represent the total times consumed in the four major steps of our method:
the construction of similarity graph, the construction of maximum spanning tree, the extraction of
frame pair sequences via the tree traversal, and the actual frame-to-frame camera tracking. In the
parentheses in the fifth column, the average per-frame pose estimation times are given. Finally, the last
column “amortized” indicates the amortized per-frame tracking costs reflecting all computations.

n f r Sim-Gr Mst Paths Pose-Est Amortized

200 0.77 0.0068 0.0022 5.15 (0.0258) 0.0297
400 2.86 0.0332 0.0044 10.62 (0.0266) 0.0338
800 10.83 0.1879 0.0128 22.59 (0.0282) 0.0420

1600 40.52 1.0450 0.0520 46.50 (0.0291) 0.0551

6.2. Comparison to a Frame-to-Frame Tracking Method

In order to see how effectively the careful selection of source-target frame pairs from an input
stream improves the quality of pose estimation, we first compared our method to an extended
frame-to-frame tracking method of An et al. [31], which uses a multi-level pose-error correction
scheme. The experiments indicated that both methods worked well when the camera was moved
smoothly and rather slowly during image capture. When the camera movement exceeded an acceptable
level, however, moving irregularly in jerky motions, the An et al.’s method could no more handle
such adverse situations despite its effort to correct the pose estimation errors. On the other hand,
the similarity graph enabled us to find an effective set of source-target frame pairs, from which
quite acceptable frame-to-frame camera tracking results were obtained without needing to use such
sophisticated tools as the frame-to-model tracking and/or global pose optimization (see Figure 7).



Sensors 2019, 19, 4897 12 of 20

(a)Test stream #1 (τgood = 0.75, 903 frames out of 970 total)

(b)Test stream #2 (τgood = 0.75, 121 frames out of 600 total)

Figure 7. Comparison to an improved frame-to-frame tracking method. Each pair of images compare
the point clouds created by the An et al.’s method [31] (left) and our method (right), respectively.
As marked in ellipses in (a), the previous frame-to-frame technique often suffered from drifts around
planar surfaces even at a normal camera speed, whereas the presented one could automatically remove
the troublesome frames from consideration for camera tracking. When the camera movement was
beyond its capability of adaptive error correction, as shown in (b), the An et al.’s method caused
significant drifts of the camera poses. In contrast, when the pairs of source and target frames were
selected carefully as proposed by the presented method, the simple frame-to-frame camera tracking
produced quite robust results. Limiting the use of frames via the parameter τgood had a nice effect
of automatically filtering out those frames that may produce intolerable errors in the reconstructed
3D geometry. The frame number in the respective caption indicates the size of the largest connected
component of the similarity graph, which is displayed here.

6.3. Comparison to the ElasticFusion Method

We next compared our method to a state-of-the-art method, called the ElasticFusion. As proposed
by Whelan et al. [27], the camera tracking system employs a surfel map-based frame-to-model tracking
approach, augmented with several mechanisms like geometry deformation and local/global loop
closure. Unlike ours, it was developed as a real-time online system that performs all calculations on
the fly without any preprocessing. However, we carried out this analysis to understand how the effort
of selecting appropriate pairs of frames from the entire RGB-D stream compares to that of applying
various mechanisms to ensure the accuracy of the estimated poses while processing the input frames
in acquisition order. In doing the experiment, we used the codes courteously provided by [27].

As expected, under normal circumstances in which the camera movement allowed each input
frame to share sufficient geometry with the accumulated model, the ElasticFusion system always
completed its mission successfully. However, when we sporadically moved the camera sharply
or suddenly during image capture so that the camera for some input frames looked at the space
that hardly contained the accumulated model, it sometimes produced inaccurate pose estimates (see
Figure 8). On the other hand, our method could still find sufficient numbers of frame pairs for stable
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3D reconstruction, producing point clouds with fewer geometric errors. Note that since our method
used only those frame pairs whose corresponding edges had sufficient similarity, a sparser point cloud
was usually produced for the input stream containing more radical camera movements.

(a)Test stream #3 (τgood = 0.75, 55 frames out of 300 total)

(b)Test stream #4 (τgood = 0.7, 10 frames out of 300 total)

Figure 8. Comparison to the ElasticFusion method [27]. To see how negatively the presence of
very abrupt and jerky camera motions in the RGB-D stream affects the pose estimation, we also
compared our method to the performance-proven ElasticFusion system. In the usual situation,
the ElasticFusion system, adopting a frame-to-model tracking, successfully reconstructed the scene.
When we sporadically moved the camera very irregularly so that some camera views went outside the
space of accumulated models, the ElasticFusion system (left) failed to correctly estimate the camera
poses for some frames despite its several mechanisms for robust camera tracking (a). The situation got
more aggravated as more radical camera movements were involved (b). In contrast, our method (right)
could find the appropriate sets of source and target frames, still allowing acceptable 3D reconstructions.

When the real world is scanned for 3D reconstruction, it might be necessary to generate additional
RGB-D streams to supplement the poorly scanned regions. The property of being independent of the
order of incoming frames implies that our method can also be used effectively to combine multiple
independently scanned streams if they contain frames to each other that have enough similarity.
Note that the pairs of source and target frames resulting from the similarity graph are aimed to reduce
the possibility of improper pose estimations. Therefore, if a robust 3D scanning is the primary concern,
the presented similarity graph scheme may also be used as a preprocessor that feeds refined RGB-D
streams into the other state-of-the-art techniques like the ElasticFusion.

6.4. Comparison to the BundleFusion Method

We also performed a comparison with another state-of-the-art method by Dai et al. [22], called
the BundleFusion that, based on the bundle adjustment framework, estimates globally optimized
camera poses and produces 3D polygonal models in real-time. Our experiment showed that this
global optimization framework generally performs very well in terms of both speed and scan quality.
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Nevertheless, for some input streams, it was desirable to filter out frames more aggressively that may
introduce pose estimation errors.

Figure 9 displays a test result carried out for an RGB-D sequence with some very jerky camera
movements. (The BundleFusion codes were courteously provided by [22]. As shown in Figure 9a,
the BundleFusion method successfully generated globally consistent pose estimates despite the
intractable camera motions. However, we observed that frames corresponding to the fast and abrupt
camera movements sometimes influence negatively on the quality of 3D reconstruction via the global
optimization process as revealed in Figure 9b. On the other hand, the similarity graph-based technique
focused more on finding a set of interrelated frames that would collectively create a better quality of
3D reconstruction (compare Figure 9b and Figure 9c).

(a) BundleFusion (587 frames)

(b) BundleFusion (enlarged) (c) Our method (τgood = 0.75, 337 frames out of 587 total)

Figure 9. Comparison to the BundleFusion method [22]. For the test dataset of 587 RGB-D images that
contained very fast and abrupt camera motion, the BundleFusion method scanned the scene robustly
as intended, ensuring global model consistency. As marked in ellipse in (a), however, it was not easy
to produce precise pose alignment against some regions corresponding to intractable camera motion
mainly due to insufficient information. We also observed that trying to handle such camera motions
sometimes affected local consistency negatively as marked in circle in (b). Rather than including as
many frames as possible, our method takes a different approach where only those frames that, together,
would lead to stabler 3D geometry reconstruction are selected for pose estimation; (c) shows the
result from the similarity graph technique where 337 interrelated frames, merged from eight separate
connected components of the similarity graph, were used. Note that the aliases in the point cloud
marked in ellipse in (c) were due to the intensity/depth pixel mismatches and noises often incurred by
the low-end mobile sensor, which could be removed in the postprocessing stage.

6.5. Towards 3D World Modeling in a Mixed-Reality Environment

Despite the effort to select good pairs of frames offering stable camera tracking, the pose
estimation errors from our method are inevitably accumulated over time. In general, this is true



Sensors 2019, 19, 4897 15 of 20

for most sophisticated state-of-the-art camera tracking models when the scan area grows beyond their
capability, sometimes with jerky camera movements. Note that, given a sequence of RGB-D images,
the similarity graph method uses only those frames that would result in robust camera tracking and 3D
reconstruction. Thus, depending on how a scene is scanned, it often produces a collection of separate
components that correspond to faithfully reconstructed, local surface regions. While additional
scanning would provide extra information for connecting them automatically, another approach worth
investigating is to let the user assemble the well-built components manually using the real world
for guidance.

Figure 10 shows the 3D modeling methodology that is currently being used to test our method
in an experimental mixed-reality environment. Here, we set up the Microsoft HoloLens system to
share physical space with the HTC Vive system so that the user wearing a HoloLens headset can
freely use Vive’s controllers. Then, the user interactively selects each component of reconstructed 3D
geometry and places it on the real object finely while seeing both virtual and real geometries through
the holographic glasses. In this way, the user can utilize the mixed-reality technology to convert the real
world into geometric models, which can in turn be used effectively to develop various mixed-reality
applications (see Figure 11 for an example 3D scene modeling).

(a)A user in action (b)View through the HoloLens glasses

Figure 10. 3D world modeling using the mixed-reality technology. By placing each part of the scanned
geometry on the real object in a mixed-reality environment, we could effectively build 3D models for
the real-world scene.
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(a)Manual assembly of the five components produced by the presented similarity graph technique. Here, the entire
input RGB-D frames were neither necessarily contiguous nor taken at once. In this scan-and-assemble approach,
either independent or supplementary 3D scanning was possible, from all of which the best sets of frames were
automatically selected for 3D reconstruction. The figure in parentheses is the total number of points created for the
corresponding component.

(b)Alignment of components A and B.

(c)Alignment of components C and D. Again, the artifacts from the point clouds, marked in ellipse, mainly
arose from the intensity/depth pixel mismatches often incurred by the mobile sensor of the tested smartphone
and are irrelevant to our method.

Figure 11. Indoor scanning of an office space using a Google Tango-enabled smartphone. In (a), we
directly placed each of the five components from the similarity graph method on the real objects using
the described experimental mixed-reality technique. As revealed in (b) and (c), the manual positioning
of the parts through the HoloLens display, whose holographic image was sometimes ambiguous
depending on lighting condition, achieved a nice alignment of the point clouds. Consequently, this
led to a quite satisfactory 3D reconstruction result using the rather old smartphone equipped with a
low-end RGB-D sensor of resolution 320× 180 pixels. Note that the rigid transformation found in the
global space for each component may also be used as a good initial value for further fine-tuning the
relative geometric relations between the components, enhancing the 3D reconstruction quality further.
An effective method for this remains to be devised.
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6.6. Towards Progressive 3D Reconstruction from a Live RGB-D Stream

The presented method is basically an offline approach, which requires all RGB-D frames to
be available for 3D reconstruction. As shown in Table 1 in Section 6.1, the method spends most
of its computation time on building the similarity graph. However, the graph construction can be
done incrementally in parallel with the image acquisition process so that, for every incoming frame,
the similarity measure is evaluated for each of the preceding frames, adding the respective weighed
edge to the graph. Figure 12 proposes a computational pipeline, in which the user would be able
to check the progressively growing 3D geometry on the fly and accordingly decide which region
to scan further for more effective 3D reconstruction. In this scenario, an independent CPU thread
iteratively takes each incoming frame and updates the similarity graph ( Incremental similarity graph
update), which can be easily accelerated on the GPU. At every given time interval (e.g., at every 30
frames), as soon as the graph update is over, another CPU thread starts finding a maximum spanning
tree (Maximum spanning tree construction), and performs the frame-to-frame pose estimation indicated
by the tree (Pose estimation).

RGB-D stream

Incremental similarity graph update

Maximum spanning tree construction

Pose estimation

Point cloud generation Display refresh

Figure 12. Progressive 3D reconstruction from live RGB-D streams. When a mobile device with limited
computational capability is used to scan a scene, the proposed computation may be performed on PCs
that are remotely connected through a communication network.

The new tree usually shares many edges with the earlier tree built in the previous round. Thus,
it is sufficient to carry out the registration task only for the newly found tree edges, whose computation
can also be parallelized on multithreaded CPU hardware. When the camera pose for a frame has been
modified or newly generated, a per-frame point set is created for 3D reconstruction from its RGB-D
image using yet another CPU thread ( Point cloud generation). Once all the needed point sets are
collected for display, the screen is refreshed (Display refresh).

7. Conclusions

In this paper, we proposed a novel approach that reconstructs 3D geometry from a stream of
RGB-D images taken by a consumer-grade mobile RGB-D camera. Although our method is not
confined to low-cost mobile sensors, such as the one on the tested smartphone, its low pixel resolution
and limited depth precision often hindered high-quality 3D reconstruction. Therefore, the presented
similarity graph technique was designed to carefully select only the frames and their registration order
from the input sequence that would produce accurate pose estimation and robust 3D reconstruction.

The proposed method sometimes produced multiple separate components of 3D reconstruction
in spite of the effort to automatically merge them via the component-wise camera tracking
technique (Section 5.2). This was often due to the fact that there were not RGB-D frames which
would help connect the disconnected components with sufficient precision using our, basically local,
pose estimation technique. One solution to this would be to apply a state-of-the-art global optimization
method for the pose graph constructed over the set of well-built point clouds. On the other hand,
another effective solution was, as proposed in Section 6.5, to allow the user to interactively put the
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point cloud of each component in place with real objects for guidance in the mixed-reality environment.
As the mobile RGB-D sensors and the mixed-reality devices are evolving rapidly, we believe that the
3D modeling method based on the latter approach is prospective, which will enable a smartphone user
to scan his/her environments easily with the help of mixed-reality technology.
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