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ABSTRACT: Documenting the occurrence of viruses on fomites is
crucial in determining the significance of fomite-mediated transmission
and the potential use of fomites for environmental disease surveillance.
We conducted a systematic review and meta-analysis to compile
information on the occurrence of human viruses on fomites in the
environment; we identified 134 peer-reviewed papers. We compiled
sampling and measurement methods, results, quality control
information, and whether virus data were compared with community
health data from the papers. We conducted univariate and multivariate
analyses to investigate if presence of virus on fomites was associated
with virus type (enveloped, nonenveloped), sampling location
(healthcare setting, nonhealthcare temporary setting, nonhealthcare
nontemporary setting), and area of fomite swabbed (<50, 50−100,
>100 cm2). Across 275 data sets from the 134 papers, there was the most data available for Coronaviridae and from fomites at
hospitals. Positivity rates, defined as the percent positive fomite samples, were low (median = 6%). Data were available on viruses
from 16 different viral families, but data on viruses from 9 families had few (n < 5) data sets. Many human virus families were not
identified in this review (11 families). Less than 15% of the data sets reported virus concentrations in externally valid units (viruses
per area of surface), and 16% provided a quantitative comparison between virus and health data. Virus type and area swabbed were
significant predictors of virus presence on fomites, and the positivity rate of data sets collected from healthcare settings and
nonhealthcare nontemporary settings (e.g., individual housing) were significantly higher than those collected in nonhealthcare
temporary settings (e.g., restaurants). Data from this review indicates that viruses may be present on fomites, that fomite-mediated
virus transmission may occur, and that fomites may provide information on circulation of infectious diseases in the community.
However, more quantitative data on diverse viruses are needed, and method reporting needs significant improvements.
KEYWORDS: fomite, viruses, environmental sampling, pathogens, surfaces, environmental surveillance, fomite-mediated transmission,
systematic review

■ INTRODUCTION
Viruses are important etiologies of infectious disease and are
responsible for many recent epidemics, including those caused
by SARS-CoV-2 (at present, >6 million deaths), influenza A
virus H1N1 (2009, >151,000 deaths), and human immuno-
deficiency virus (HIV) (at present, 40.1 million deaths).1−3

Beyond epidemics, respiratory and diarrheal diseases�often
attributed to viruses�are two of the leading causes of death
worldwide.4

Viruses are transmitted to humans via direct and indirect
routes. Direct transmission occurs through direct exposure to
viruses released by an infected individual. Alternatively,
indirect transmission occurs through an environmental
intermediary, such as inanimate objects (fomites), water, air,
or food. Indirect transmission via fomites has long been
understood to be important for respiratory viruses [influenza,
respiratory syncytial virus (RSV), human parainfluenza virus
(HPIV), severe acute respiratory syndrome coronavirus

(SARS-CoV), and rhinovirus] and enteric viruses [rotavirus,
adenovirus, norovirus, and hepatitis A virus (HAV)].5 More
recently, measurements of viruses in the environment,
including on fomites and in wastewater, have been useful for
community disease surveillance.6−9

Viruses are deposited in the environment when human
secretions, such as mucus, saliva, urine, and feces, containing
high viral titer are released from an infected individual. Once in
the environment, viruses and their components (e.g., nucleic
acids) can decay; decay rates are affected by parameters such
as light intensity, temperature, and properties of the environ-
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ment matrix (e.g., fomite composition,5 air humidity,10 and
salinity of the water11). Viruses can infect humans through
various routes, including inhalation of virus-contaminated air,
ingestion of virus-contaminated water or exposure through
recreational activities, consumption of contaminated foods, or
contact with fomites.12 The risk of infection via these
exposures depends strongly on the concentration of viruses
in the environment.13

This study focuses on virus-contaminated fomites both as
sources of viruses that may cause infections in susceptible
individuals and as sources of information regarding viral
disease dynamics in a population (Figure 1). Laboratory
studies have confirmed the transmission of different diseases
via fomite exposure using experimental and modeling
studies.5,13−15 In general, however, it is difficult to determine
the relative importance of fomite-mediated transmission on
community spread of an infectious disease.5,16,17 The
occurrence and concentration of viruses on fomites are crucial
in determining the significance of fomite-mediated trans-

mission and the potential use of fomites as an environmental
surveillance tool. Measurement of the concentrations of viruses
on fomites can be challenging because of the low
concentrations that may be present in the environment,
which makes analytical sensitivity critical. Additionally, the lack
of a standard method for measuring viruses on fomites presents
further challenges.

The goal of this study is to compile and collate information
on the occurrence of human viruses on fomites in the
environment and the relationship between virus occurrence
and health of the population in contact with the fomites. Using
the PRISMA protocol,18 we searched the literature for articles
documenting the presence of human viruses on fomites in the
environment, and collected information to allow us to
investigate how their occurrence is associated with the type
of virus, sampling location, and methods used for sampling. We
also gathered, if available, information on how fomite data
were associated with the health of people in the location where
the samples were collected. The information presented herein

Figure 1. Example of how fomites may become contaminated by viruses and how that contamination may be relevant to human health. Fomites
become contaminated when an infected host expels droplets by sneezing, coughing, or talking, which come in contact with a fomite directly or
when an infected host touches a fomite using contaminated objects or hands. A susceptible host might touch the contaminated fomite (fomite−
hand contact) and later touch their face and/or mucous membrane (e.g., hand−mouth contact) and become infected (labeled 1 in the diagram).
Measurements of viruses on the contaminated fomite may also be used to infer the health of the population that came into contact with the fomite.
The blue and red lines represent hypothetical incident cases in a population as a function of concentrations of viruses on fomite (labeled 2 in the
diagram). Note: created with BioRender.com.

Table 1. Summary of the Different Categories for Datasetsa

variable categories

viral family Adenoviridae, Astroviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Hepadnaviridae, Herpesviridae, Orthomyxoviridae,
Papillomaviridae, Paramyxoviridae, Parvoviridae, Picornaviridae, Pneumoviridae, Polyomaviridae, Reoviridae

location hospital, school, residence, child care center, long-term care facility, cruise, food facility, outdoors, public building, other
implement type cotton, foam, nylon, dacron, fiber-wrapped, rayon, flocked polypropylene, flocked polyester, other, not specified
premoisturizer/
eluent

saline solution, lysis buffer, transport medium, bovine serum albumin in normal saline (BSAS), minimal essential medium (MEM), broth
medium, proteinase K solution, neutralizing solution, water, assumed dry, not specified

fomite type door, toilet, electronic accessory, public button, public touchscreen, public handle, medical equipment, table/desk, trash can, bed, toys, sink/
sink tap, water fountain, handrail, chair, light switch, floor/floor drain, food-related item, window, air vent, personal protective equipment
(PPE), disinfection equipment, wall, fabric, other, and not specified

fomite results
comparison with
health of
community

quantitative, nonquantitative, not conducted

aAn expanded list of items per category can be found in Tables S1−S4.
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provides a comprehensive summary of the occurrence of
human viruses on fomites and the factors that affect their
detection as a step toward understanding the role of fomites in
viral transmission and their potential as an environmental
surveillance tool. In addition, this work highlights key data gaps
and areas for the field to improve moving forward in terms of
clarity of method and results reporting and harmonization of
measurement approaches.

■ MATERIALS AND METHODS
Following PRISMA guidelines (Figure S1), a literature search was
conducted on September 23, 2022, using Scopus (search field =
article title, abstract, keyword) to identify articles.18 The search terms
were (fomites OR fomite OR “high-touch surfaces” OR “high touch
surfaces” OR “environmental surfaces”) AND (virus* OR viral). We
included “environmental surfaces” as a search term because we
noticed in pilot searches that some authors referred to fomites in this
way.19 The results of the searches were imported into Covidence.20

The program subsequently removed duplicated articles. The title and
abstract of the resulting articles were screened, and if the article was
deemed potentially relevant, it was advanced to full-text review. Full-
text review was conducted to identify articles that met seven inclusion
criteria: (1) conducted in real-world settings (not laboratory settings),
(2) sampled viruses from fomites (RNA or DNA viruses), (3)
measured naturally occurring (not seeded) human pathogenic
viruses21 using molecular or infectivity assays but not metagenomics
methods, (4) did not only measure the effect of fomite disinfection
(e.g., before-and-after effect of cleaning wipes), (5) presented primary
data (e.g., not a review), (6) peer-reviewed, and (7) written in the
English language. The following data were extracted from each paper:
(1) study location (e.g., hospital, child care center, etc.; see Table 1);
(2) virus name, as reported in the study; (3) sampling technique,
including implement type (e.g., cotton swab, polyester swab, etc.),
premoisturizer type, eluent type, and area sampled; (4) sample
storage conditions, including temperature and length of storage; (5)
list of fomites sampled; (6) selection criteria for fomites sampled; (7)
description, if any, of the time of sampling in relation to cleaning or
disinfection practices in the facility where the sampling took place
(e.g., sampled before or after routine disinfection); (8) nucleic acid
extraction kit (if applicable); (9) virus detection method [e.g., (RT-
)PCR, (RT-)qPCR, culture methods]; (10) format of reported results
(e.g., presence−absence, quantification); (11) reported results,
including number of positive fomite samples for virus, total number
of fomite samples, positivity rate (if reported), and lower limit of
detection of the virus detection assay, as reported in the study; (12)
list of fomites with a positive result; and (13) description, if any, of
the method of comparison between fomite data and the health of the
community interacting with fomites (e.g., statistical comparison
between fomite data and incidence in the community). The screening
of articles by title and abstract, full-text review selection, and data
extraction was conducted by a single reviewer (author, W.Z.) with the
support of a second reviewer (author, A.B.B.) for challenging
decisions.

The data analysis was preregistered at OSF Registries.22 Studies
that met the inclusion criteria were divided into data sets per location,
viral target, and analytical detection method [e.g., (RT-)qPCR,
culture methods]. For example, if one paper described the occurrence
of two different viruses on fomites collected in two different locations,
the results were split into four separate data sets (location 1 with
target 1, location 2 with target 1, location 1 with target 2, and location
2 with target 2). We found very few data sets describing
concentrations of viruses in the environment using externally valid
units (viruses per fomite surface area, described in more detail below),
so we opted to use positivity rate as the main outcome variable.

Each data set was assigned a (1) viral family (Adenoviridae,
Astroviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae,
Hepadnaviridae, Herpesviridae, Orthomyxoviridae, Papillomaviridae,
Paramyxoviridae, Parvoviridae, Picornaviridae, Pneumoviridae, Poly-
omaviridae, Reoviridae) (Table 1); a location (hospital, school,

residence, child care center, long-term care facility, cruise, food
facility, outdoors, public building, and other) (Table 1, Table S1); a
sampling implement type (cotton, foam, nylon, dacron, fiber-wrapped,
rayon, flocked polypropylene, flocked polyester, other, and not
specified); a premoisturizer (the liquid, if any, used to premoisten the
implement prior to sampling the fomite), and an eluent (the liquid, if
any, used to elute any captured virus from the implement after a
fomite was swabbed) type [saline solution, lysis buffer, transport
medium, bovine serum albumin in normal saline (BSAS), minimal
essential medium (MEM), broth medium, proteinase K solution,
neutralizing solution, water, not specified, and assumed dry (only used
for premoisturizer when the study did not explicitly state the use of a
“wet/prewetted/moist” swab prior to sampling)] (Table 1, Table S2);
fomite types sampled [door, toilet, electronic accessory, public button,
public touchscreen, public handle, medical equipment, table/desk,
trash can, bed, toys, sink/sink tap, water fountain, handrail, chair, light
switch, floor/floor drain, food-related item, window, air vent, personal
protective equipment (PPE), disinfection equipment, wall, fabric,
other, and not specified] (Table 1, Table S3); and a description, if
any, of how the data obtained from fomites was compared with the
health of the community interacting with fomites. The method of
comparison between measurements of viruses on fomites to health
observations was classified as either quantitative (if a statistical
analysis was reported), nonquantitative (if no statistical analysis was
reported), or not conducted (Table 1, Table S4). We defined health
observations, hereafter referred to as community health data, as data
related to the health status and/or characteristics of the population in
contact with the fomites sampled, e.g., disease incidence and days
since symptoms onset for a patient.

The primary outcome variable in this study is the percent of
fomites sampled that are positive (positivity rate). However, we also
recorded which fomite types were sampled within each data set and
whether at least one of those fomite types was positive for the virus
under study. We did this to provide an inventory of commonly
sampled fomite types and a description of the probability that at least
one of them was positive for viruses.
Meta-analysis
Viral family, location, and area-swabbed observations were categorized
into broad groups to investigate their association with virus detection
on fomites (Table 2). We hypothesized that virus structure

(enveloped versus nonenveloped) impacts detection during fomite
sampling. The presence/absence of a lipid envelope may affect virus
decay rates on inanimate objects and hand-to-fomite transfer
rates.23,24 We, therefore, created a variable indicating whether the
study detected enveloped or nonenveloped viruses. We also
hypothesized that viruses may be more common on fomites in
locations where sick individuals congregate (healthcare settings) than
in nonhealthcare settings regardless of the length of time that
individuals spend in these settings (nonhealthcare temporary settings
and nonhealthcare nontemporary settings). We, therefore, created a
variable indicating whether the sampling location was classified as a
healthcare setting, nonhealthcare temporary settings (e.g., conven-

Table 2. Broad Categories for the Virus Type, Location, and
Area of Fomite-Swabbed Variables Used for the Meta-
analysesa

virus type
(n = 275) location (n = 275)

area swabbed
(n = 169)

enveloped healthcare setting <50 cm2

nonenveloped nonhealthcare temporary setting 50−100 cm2

nonhealthcare nontemporary
setting

>100 cm2

aFor the location variable, nonhealthcare residential setting includes
single residential setting and congregate residential settings. An
expanded list of items for the categories in the location variable can be
found in Table S5.
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ience store or restaurant), or nonhealthcare nontemporary settings
(e.g., individual housing, nursing homes). Lastly, we hypothesized that
a larger fomite surface area swabbed would be associated with a higher
positivity rate. We, therefore, created a variable indicating whether the
fomite surface area sampled in the study was <50, 50−100, or >100
cm2.

Positivity rates were combined across data sets and the resultant
data was found to be not normally distributed (W = 0.76, p = 2.20 ×
10−16) using a Shapiro−Wilk test, which suggests that nonparametric
methods would be appropriate to test associations between positivity
rates and other categorical factors.

We tested the null hypothesis that positivity rate was not associated
with the virus type (enveloped versus nonenveloped), sampling
location, or area of fomite swabbed using one-way nonparametric
Kruskal−Wallis tests. We used Conover−Iman post hoc tests to
compare positivity rates between the categories of independent
variables.

We also used a multivariate model to investigate how virus type,
sampling location, and area swabbed were associated with the
presence of virus on fomites. We transformed the positivity rate of
each data set into a binary variable. If positivity rate = 0 then the data
set was assigned a 0 (virus absent), and if positivity rate > 0, then the
data set was assigned a 1 (virus present). Twenty-eight percent (28%,
n = 47/169) of the data sets were categorized with 0, and the
remainder with 1. A multivariate logistic regression model was used to
model the presence of virus (virus present, virus absent) as a function
of virus type (enveloped, nonenveloped), location (healthcare setting,
nonhealthcare residential setting, and healthcare other setting), and
area swabbed (<50, 50−100, and >100 cm2):

p (presence of virus) 1/ 1 e ( x )0 i
n

i i= + +
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

Variable p (presence of virus) is the probability of a virus being
present in fomite samples; β0 is the intercept term, which represents
the log odds of a virus being present in a fomite given that all the
predictor variables equal zero; βi represents the coefficients for each of
the predictor variables xi (virus type, location, and area); n represents

the number of observations (data sets) included in the model; and i
represents a specific observation.

We conducted a total of nine hypothesis tests. For the univariate
analysis, two hypotheses were tested (two tests: Kruskal−Wallis test
and post hoc test) for each independent variable [=(virus type,
sampling location, or area of fomite swabbed)] for a total of six
hypothesis tests. For the multivariate model, a hypothesis was tested
for each independent variable [=(virus type, sampling location, or area
of fomite swabbed)] for a total of three hypothesis tests. We used a p
value of 0.006 (0.05/9) for α = 0.05 to adjust for multiple
comparisons (Bonferroni correction).

Although we collected data on implement type, premoisturizer
type, and eluent across studies, it was not possible to test if they were
associated with positivity rates or presence of virus because of the
large number of missing observations, interdependence between these
three variables, and the limited number of replicates between studies
with respect to the combinations of methods (described further in the
Results). Data analysis was completed using R version 4.1.2 within
RStudio version 2021.09.1. The data used for this review and meta-
analysis is available at the Stanford Data Repository.25

Quality Assessment
Quality Score. We evaluated the quality of each data set using 12

different criteria related to the reporting of methods (e.g., if the type
of implement was reported). The full list of criteria can be found in
the Supporting Information. A quality score ranging from 0 to 100%
was assigned to each data set on the basis of the proportion of
reported criteria items to the total number of applicable criteria items.
A data set was classified as low quality if it only reported 0−33% of
the applicable criteria items, as moderate quality if it reported 34−
66%, and as high quality if it reported 67−100%. This follows a similar
approach used by Huang et al.26

Publication Bias. It would be inadequate to complete standard
publication bias assessment tests (e.g., funnel plot asymmetry test)
with the data sets from this review given that the main outcome
(positivity rate) does not measure the difference or association
between two or more groups (e.g., the effect size of a treatment).

Figure 2. Results of the systematic review process in a process flow diagram as recommended by PRISMA guidelines.18
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Thus, to evaluate publication bias, we compared findings from studies
that had multiple data sets (multiple locations, targets, or detection
methods) to those that had a single data set (one location, target, and
detection method). We hypothesized that if there were a tendency to
publish a positive result (positivity rate > 0), we would find a greater
number of negative results (positivity rate = 0) in studies that
published multiple data sets than those that published a single data
set. This hypothesis was evaluated by using the following equation:

n n

n n
publication bias

/

/proportion
negative,single single

negative,multiple multiple
=

where nnegative,single is the number of negative results in studies with a
single data set, nsingle is the number of studies with a single data set,
nnegative,multiple is the number of negative results in studies with multiple
data sets, and nmultiple is the number of studies with multiple data sets.
A publication bias proportion between 0 and 0.33 would indicate high
bias because it would show that there is a substantially greater
proportion of negative results in studies that published multiple data
sets than those that published a single data set, 0.33−0.66 would
indicate moderate bias, and 0.66−1 would indicate low bias because
the studies that published multiple and single data sets have a similar
or equal proportion of negative results.

Figure 3. Number of data sets by viral target per family (A), sampling location (B), area swabbed (C), implement type (D), premoisturizer type
(E), and eluent type (F). Tables S1 and S2 include the expanded list of items per category. (D) Other = Whatman paper, sponges, wipes; Fl =
flocked; not specified = specified as a “swab” but did not report material. (E,F) Assumed dry = did not specify “wet/pre-wetted/moist” swab;
nonspecified premoisturizer (PM) = specified “wet/pre-wetted/moist” swab but did not report the solution; MEM = minimal essential medium;
BSAS = bovine serum albumin in normal saline.
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■ RESULTS

Systematic Review
The review identified a total of 134 papers that met the
inclusion criteria.27−160 These papers were published between
1976 and 2022 (until the date of the literature search). The
PRISMA diagram is shown in Figure 2.18 We divided studies
into data sets per location, viral family, and analytical detection
method [e.g., (RT-)qPCR, culture methods], which resulted in
275 data sets. Each data set included results from 2 to 22 643
fomite samples and resultant virus positivity rates between 0
and 100% (median = 6%, interquartile range = 19%). Each
data set had results from a median of six different fomite types
(interquartile range = eight types).

Viral Families. The data sets described positivity rates for
viruses from 16 different virus families. The largest number of
data sets measured viruses in Coronaviridae (57%, n = 157),
followed by Caliciviridae (9%, n = 25), Orthomyxoviridae (7%,
n = 18), and Picornaviridae (6%, n = 16). The remainder of the
data sets (21%, n = 59) included viruses belonging to 12 other
virus families (Figure 3, Table 1). For 3 of the 16 virus families
for which data sets were identified (Papillomaviridae,
Flaviviridae, Herpesviridae), there were just one or two data
sets per family. Seventy-three percent (73%, n = 201) of data
sets came from studies that measured enveloped viruses, while

27% (n = 74) came from studies that measured nonenveloped
viruses.

Of all the 275 data sets, the majority (90%, n = 248) were
acquired using molecular methods, such as quantitative
polymerase chain reaction (qPCR) and droplet digital PCR
(ddPCR) to measure viruses, 9% (n = 24) using infectivity
assays, and 1% (n = 3) using antigen assays. Sixty-two percent
(62%, n = 171) of the results included in the data sets were
reported exclusively in a presence/absence format; 15% (n =
41) in Ct or Cq values exclusively, which are outputs from a
qPCR machine that are not externally valid as quantitative
metrics, or in presence/absence and Ct or Cq values; and 23%
(n = 63) in concentration formats [n = 38 in genetic material
per fomite area, and n = 25 in other formats, such as gene
copies/swab (gc/swab), gc/mL, log10 copies]. As only 38 of
275 data sets (less than 15%) included results reporting
concentration data using externally valid units (viruses per area
of surface), we opted to use positivity rate as the main outcome
variable for the project.

Sampling Locations. Investigating sampling locations and
their association with virus presence can help to identify high-
risk areas and to understand the importance of environmental
surveillance at certain sampling sites. Most data sets described
the occurrence of viruses collected from fomites in hospital

Figure 4. Number of data sets where a fomite type was sampled at least once (A), number of data sets where a fomite type was found positive at
least once (B), and the positive ratio between these two numbers (C). Note: some examples of “Other” include exercise equipment, mirror, and
steering wheel. Table S3 includes the expanded list of items per category, including the “Other” category. e-accessory = electronic accessory; eq =
equipment; PPE = personal protective equipment.
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settings (35%, n = 95), followed by public building settings
(15%, n = 42) and residences (9%, n = 26). The remainder of
data sets (41%, n = 112) described occurrence of viruses on
fomites in other locations, like long-term care facilities and
outdoors (Figure 3, Table 1). We collapsed the location
classification of the data sets into broader categories, including
healthcare settings (35%, n = 96) from hospitals to
examination rooms in clinics, nonhealthcare temporary settings
(51%, n = 139) from workplaces to day care centers, and
nonhealthcare nontemporary settings (15%, n = 40) from
individual apartments to nursing homes.

Sampling Methods. Methods for sampling fomites for
viruses typically require four steps: (1) premoisten a swablike
implement with a liquid, (2) swab an area of the fomite or
record the final area swabbed, (3) immerse the implement in a
liquid to elute any captured virus from the implement, and (4)
store the sample for future analysis. These four crucial steps
during sampling can vary significantly between studies.

Premoisten Step. A large number of data sets came from
studies in which there was no mention of wetting the
implement prior to sampling, and we, therefore, assumed
those data set methods used dry implements (37%, n = 103).

Figure 5. Positivity rate by viral family (A), sampling location (B), implement type (C), premoisturizer type (D), and eluent type (E). Each box
plot is made up of the 25th quartile, median, and 75th quartile positivity rates for each category, and the length of each whisker is 1.5 times the
interquartile range (IQR). Each box plot is overlaid with jittered data points from individual data sets for each category. Tables S1−S2 include the
expanded list of items per category. (C) Other = Whatman paper, sponges, wipes; Fl = Flocked; not specified = specified as a “swab” but did not
report material. (D,E) Assumed dry = did not specify “wet/pre-wetted/moist” swab; nonspecified premoisturizer (PM) = specified “wet/pre-
wetted/moist” swab but did not report the solution; MEM = minimal essential medium; BSAS = bovine serum albumin in normal saline.
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Another group of data sets were collected by wetting the
implement prior to sampling but did not report the type of
premoisturizer used (12%, n = 34). The remainder of data sets
were obtained using transport medium (20%, n = 54), a saline
solution (16%, n = 45), and other types (14%, n = 39) as their
premoisturizer (Figure 3, Table 1).
Implement. Nineteen percent (19%, n = 53) of data sets

were collected using a dacron implement, 12% (n = 34) using a
nylon implement, 10% (n = 28) using a foam implement, 10%
(n = 27) using a cotton implement, and 16% (n = 45) using
another implement type (Figure 3, Table 1). However, 32% (n
= 88) of the data sets came from studies that did not report the
type of implement used to sample.
Area of Fomite Swabbed. Twenty-six percent (26%, n =

72) of data sets were obtained by swabbing an area of fomite of
less than 50 cm2, 23% (n = 63) by swabbing between 50 and
100 cm2, and 12% (n = 34) by swabbing greater than 100 cm2

(Figure 3). Thirty-nine percent (39%, n = 106) of the data sets
came from studies that did not report the area of fomite
swabbed.
Eluent. The largest group of data sets, from studies that

specified the type of eluent used, were collected using transport
medium (33%, n = 92), followed by those using a saline
solution (9%, n = 25), lysis buffer (9%, n = 24), and broth
medium (5%, n = 14) as eluent. The remainder of data sets
(6%, n = 17) were obtained using other eluent types (Figure 3,
Table 1). However, 37% (n = 103) of data sets came from
studies that did not specify the type of eluent used after
sampling.
Storage Conditions. Only 40% (n = 109) of data sets did

not report their sample storage conditions, but 60% (n = 166)
of data sets reported storing their samples between 2 and 8 °C
from 2 to 24 h during sampling and/or storing them at −20 or
−80 °C until further analysis could be completed.

Fomite Types. Understanding which fomite types are most
commonly sampled and found positive could help identify the
fomite types that are most likely to be contaminated with
viruses and guide the selection of fomites during environ-
mental sampling. For each data set, we recorded whether or

not a fomite type was sampled at least once and whether or not
it was found positive at least once. Each data set included
samples from a median of six different fomite types
(interquartile range = eight types). Doors were sampled at
least once in the majority of data sets (61%, n = 169), followed
by table/desks (50%, n = 137), and electronic accessories
(41%, n = 114) (Figure 4). For these most commonly sampled
fomite types, at least one sample was positive for a virus in 81
of 169 (ratio = 48%) data sets that had samples from doors, 61
of 137 (ratio = 45%) data sets that had samples from tables/
desks, and 56 of 114 (ratio = 49%) data sets that had samples
from electronic accessories (Figure 4).
Comparison of Fomite Data with Community Health Data

Even though comparing fomite data with community health
data could validate the use of fomite sampling as an
environmental surveillance tool and provide insight on risk
of transmission, we found that only a small percentage of data
sets conducted a statistical analysis of this comparison. We
found that 16% (n = 43) of data sets came from studies that
performed a quantitative comparison between fomite data and
the health of the community interacting with fomites, 36% (n =
100) performed a nonquantitative comparison, and 48% (n =
132) of data sets came from studies that did not conduct a
comparison.
Meta-analysis

Overall, 45% of the data sets (n = 125) had a very low
positivity rate (<5%), 23% (n = 63) had a low positivity rate
(5−15%), 26% (n = 71) had a moderate positivity rate (15−
50%), and 6% (n = 16) had a high positivity rate (>50%). We
categorized the data sets on the basis of whether they
measured enveloped or nonenveloped virus; whether they
sampled in a healthcare setting, nonhealthcare temporary
setting, or nonhealthcare nontemporary setting; and whether
they sampled <50, 50−100, or >100 cm2. Using positivity rate
as the main outcome variable and the three aforementioned
independent variables, we conducted univariate analyses. We
found significant differences in positivity rate between the
categories for each variable tested (Kruskal−Wallis, p < 10−2;

Table 3. Total Number of Datasets Collected (N) per Location per Virus Target Family and the Median and Standard
Deviation (SD) of the Positivity Rate (PR)a

virus family
median

PR
SD
PR total N

child
care cruise

food
facility hospital

LT
care outdoors

public
building residence school workplace other

Adenoviridae 9% 21% 9 2 0 1 3 0 0 0 0 2 0 1
Astroviridae 4% 5% 3 2 0 0 1 0 0 0 0 0 0 0
Caliciviridae 15% 20% 25 3 2 2 1 5 0 2 2 5 1 2
Coronaviridae 5% 16% 157 1 1 6 66 1 15 32 18 5 3 9
Filoviridae 12% 14% 4 0 0 0 4 0 0 0 0 0 0 0
Flaviviridae 7% 1 0 0 0 1 0 0 0 0 0 0 0
Hepadnaviridae 6% 17% 3 0 0 0 1 0 0 0 1 1 0 0
Herpesviridae 43% 1 1 0 0 0 0 0 0 0 0 0 0
Orthomyxoviridae 2% 15% 18 2 0 1 2 0 1 4 2 5 0 1
Papillomaviridae 33% 4% 2 0 0 0 2 0 0 0 0 0 0 0
Paramyxoviridae 0% 17% 13 1 0 l 3 0 1 2 1 1 2 1
Parvoviridae 50% 38% 3 1 0 0 1 0 0 0 0 1 0 0
Picornaviridae 13% 12% 16 4 0 1 2 1 1 2 1 3 0 1
Pneumoviridae 0% 1% 4 1 0 0 1 0 0 0 0 2 0 0
Polyomaviridae 81% 17% 3 0 0 0 0 0 1 0 1 0 0 1
Reoviridae 14% 14% 13 4 0 0 7 1 0 0 0 1 0 0

aLT care = long-term care facilities. Examples of “other” locations include public transportation buses and food processing plants. An expanded list
of items per location can be found in Table S1.
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exact p-values shown in Table S6), and a post hoc test
identified the significant differences between the categories of
each variable (described further below).

We also converted the positivity rate of each data set into a
binary variable to indicate presence or absence of a virus on
fomite samples. We modeled the binary variable as a function
of the three variables described previously in a multivariate
logistic regression model. The model results indicated that
virus type and the area of fomite swabbed are significant
predictors of the presence of virus in fomite samples. Goodness
of fit was confirmed using a Hosmer and Lemeshow test (p =
0.94), which failed to reject the null hypothesis that the model
fits the data well, and a receiver operating characteristic (ROC)
curve (AUC = 0.76), which indicated that the model is
correctly classifying the observations into positive and negative
cases with an accuracy better than random guessing (Figure S2,
Table S9).

Viral Families. The highest median positivity rate was
reported for Polyomaviridae (median = 80.1%, n = 3), while
the lowest was reported for Paramyxoviridae (median = 0%, n
= 13) (Figure 5, Table 3). Nonenveloped viruses had a higher
median positivity rate (median = 13.9%, n = 74) than
enveloped viruses (median = 4.4%, n = 201) (Figure 6, Table
S6). A post hoc test confirmed that the positivity rate for
nonenveloped viruses was significantly higher than for
enveloped viruses (Conover−Iman test, p = 3.98 × 10−7). In
agreement with the univariate analysis, the multivariate model
confirmed that virus type is a significant predictor of presence
of virus on fomites (p = 3.40 × 10−4) and indicated that the
odds of finding a virus present on fomite samples increased by

10.1 times (95% CI [3.3, 44.8]) for data sets with a
nonenveloped virus target compared with data sets with an
enveloped virus target.

Sampling Locations. The highest median positivity rate
was reported for long-term care facilities (median = 22.5%, n =
8), while the lowest was reported for public buildings (median
= 0%, n = 42) (Figure 5). Once classified into broader
categories, nonhealthcare nontemporary settings had the
highest median positivity rate (median = 13.1%, n = 40),
followed by healthcare settings (median = 11.3%, n = 96) and
nonhealthcare temporary settings (median = 4.4%, n = 139)
(Figure 6, Table S6). We found that the positivity rate in
healthcare settings, as well as in nonhealthcare nontemporary
settings was significantly higher than in nonhealthcare
temporary settings (Conover−Iman test, exact p-values
shown in Table S7), but we did not find a significant
difference in positivity rate between healthcare settings and
nonhealthcare nontemporary settings (Conover−Iman test,
exact p-values shown in Table S7). However, the multivariate
model found that sampling location is not a significant
predictor of presence of virus on fomites (p > 0.06, exact p-
values shown in Table S8).

Sampling Methods. Area of fomite swabbed was the only
variable from the sampling method steps described previously
that was included in the statistical analyses. A statistical analysis
was not conducted for the other sampling methods steps
(premoisten, implement, and eluent) because of the amount of
missing information and interdependence between these
variables. Therefore, our ability to interpret those results is

Figure 6. Positivity rate per each independent variable included in the meta-analysis: virus type (A), location (B), and area (C). Each box plot is
made up of the 25th quartile, median, and 75th quartile positivity rates for each category, and the length of each whisker is 1.5 times the
interquartile range (IQR). Each box plot is overlaid with jittered data points from individual data sets for each category. * = Statistically significant
per the post hoc (Conover−Iman) test with a significance level of p = 0.006 accounting for the Bonferroni correction. Non-HC Temp =
nonhealthcare temporary settings; Non-HC non-Temp = nonhealthcare nontemporary settings.
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limited, which highlights the need for additional research when
selecting the appropriate sampling methods for a specific study.
Premoisten Step. Among the premoisturizers reported, the

highest positivity rate was reported from studies using minimal
essential medium (MEM) (median = 30%, n = 9), and the
lowest was reported from studies using neutralizing solution as
their premoisturizer (median = 1%, n = 1) (Figure 5).
Implement. Among the data sets from studies that reported

the type of implement used, the highest median positivity rate
was reported from studies using cotton swabs (median =
13.9%, n = 27), while the lowest was reported from studies
using fiber-wrapped swabs (median = 0%, n = 1) (Figure 5).
Eluent. The highest median positivity rate was reported

from studies using minimal essential medium (MEM) (median
= 19.6%, n = 8), while the lowest was reported from studies
using a neutralizing solution (median = 1%, n = 1) (Figure 5).
Area of Fomite Swabbed. Data sets that were obtained by

swabbing an area of fomite greater than 100 cm2 had the
highest median positivity rate (median = 14.2%, n = 34),
followed by those swabbing between 50 and 100 cm2 (median
= 8.7%, n = 63) and those swabbing less than 50 cm2 (median
= 4.6%, n = 72) (Figure 6, Table S6). We found that the
positivity rate was significantly higher in fomite samples
collected by swabbing an area of >100 and 50−100 cm2 than
those collected by swabbing an area of <50 cm2 (Conover−
Iman test, exact p-values shown on Table S7). Consistent with
the univariate analysis, the multivariate model indicated that
area of fomite swabbed is a significant predictor of presence of
virus in fomites (p = 4.55 × 10−3) and that the odds of finding
a virus present on fomites by swabbing an area >100 cm2

increased by 4.5 times (95% CI [1.7, 13.7]) compared with
swabbing an area of <50 cm2.
Quality Assessment

Quality Score. Out of 275 data sets, 68% (n = 187)
reported the implement type used, 63% (n = 172) reported the
premoisturizer and eluent used, 61% (n = 169) reported the
area of sample swabbed, 60% (n = 166) reported their
sampling storage conditions, 55% (n = 150) reported the
cleaning practices accounted for during sampling (e.g., sampled
before routine disinfection), 25% (n = 70) reported the
selection criteria for the fomites selected, 14% (n = 39)
reported their sampling controls, 21% (n = 58) reported their
limit of detection, 71% (n = 177/248) of those using molecular
methods reported their extraction method, and 37% (n = 38/
104) of those reporting their results using a format other than
presence/absence used an externally valid unit (viruses per
area of surface). On the basis of our quality score criteria, we
classified 22% (n = 61) of the data sets as high quality, 72% (n
= 197) as moderate quality, and 6% (n = 17) as low quality.
The median quality score was 55% (interquartile range =
21%).

Publication Bias. We found a publication bias proportion
of 0.59, which indicated that there was a larger percentage of
negative results among studies with multiple data sets than in
studies with a single data set. On the basis of our hypothesis,
the publication bias proportion found moderate publication
bias, which signals that there is a tendency to publish positive
results for the data sets in this review.

■ DISCUSSION
We identified 275 data sets that document the presence or
absence of different viruses on fomites in the environment,

with most of them reporting at least one positive detection of
viruses in their samples. These studies document a variety of
viral targets, sampling locations, and fomite types. These data
indicate that viruses are present on fomites in the environment
and their presence represents a potential risk of infection and a
potential to serve as a tool for environmental surveillance. It is
important to note that most studies used nucleic acid
amplification methods to detect viruses; these approaches do
not discern between infectious and noninfectious viruses.161

Only 9% of the data sets measured viruses using culture-based
infectivity assays; more work to understand the presence of
infectious viruses on fomites may be needed.

Data availability for viruses on fomites in the environment
varied greatly. While there was a wealth of information
available for some viral families, there was limited information
for others. We identified data sets on 16 different viral families.
Among those families, Coronaviridae, Caliciviridae, Orthomyx-
oviridae, Picornaviridae, Paramyxoviridae, Reoviridae, and
Adenoviridae were well represented. Their high representation
is likely because they contain viruses of high-interest, such as
SARS-CoV-2 (Coronaviridae), as well as viruses for which
there is experimental evidence of transmission via fomites, such
as norovirus (Caliciviridae), influenza (Orthomyxoviridae),
rhinovirus (Picornaviridae), parainfluenza virus (Paramyxovir-
idae), rotavirus (Reoviridae), and adenovirus (Adenoviri-
dae).5,162,163 There were only a few data sets for each of the
other nine viral families. Some of those nine families also
include viruses that are known to transmit through
contaminated fomites [e.g., respiratory syncytial virus (RSV,
Pneumoviridae)] or viruses that have been shown to persist for
long periods of time on fomites [e.g., astrovirus (Astrovir-
idae)].5,164,165 Other viral families associated with human
disease for which we did not identify data in this review include
Anelloviridae, Arenaviridae, Bornaviridae, Bunyaviridae, Hepe-
viridae, Picobirnaviridae, Poxviridae, Retroviridae, Rhabdovir-
idae, Togaviridae, and Deltah.21 Overall, our findings suggest
that while progress has been made in researching viruses on
fomites in the environment, there are important knowledge
gaps on the presence of human viruses on fomites.

Many diverse locations were represented in the papers
included in this study; however, we did note that there were
some important locations for which there were no data. For
example, we did not identify papers that sampled fomites in
places of worship; entertainment venues (e.g., movie theaters);
sport stadiums and concert venues; inside certain trans-
portation systems, such as trains and airplanes; and nightlife
venues (e.g., bars, nightclubs), even though these include
important social and cultural locations where people
congregate. Future studies should consider investigating
fomites in these locations as they may serve as sentinel sites
for environmental surveillance or important sites where fomite-
mediated virus transmission could occur.

Data on viruses on fomites are critical for understanding
indirect transmission of human diseases via fomites and could
potentially be utilized for understanding levels of community
infection. Unfortunately, we found that less than 15% of all
data sets provided quantitative data on virus concentrations
using externally valid units (viruses per area of surface),
thereby limiting broad insights to be made regarding the
importance of fomite-mediated transmission of viral diseases
and the potential for fomites to inform community infectious
disease surveillance. Our findings also showed a diversity in
sampling methods, including a variety of materials used for
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implements, solutions used for premoisturizer and eluent, and
areas of fomite swabbed. In addition, studies usually did not
describe the materials that composed the surfaces sampled
(e.g., metal, glass, porous vs nonporous), which is why we did
not extract those data from the papers. The study highlights an
opportunity to improve reporting practices, as many studies
did not fully report their sampling methods. While sampling
method harmonization across studies would be ideal, as a
standard, future studies of viruses on fomites in the
environment should provide comprehensive reporting of
their sampling methods (e.g., reporting of implement type,
premoisturizer type, eluent type, area of fomite swabbed,
sample storage conditions) to ensure that our studies can be
replicated by other researchers in the future and to understand
what factors might have affected the positivity rate reported. It
is also crucial for future studies to report concentration data in
externally valid units (viruses per area of surface), as this is
essential data for risk assessments. The environmental
microbiology minimum information (EMMI) guidelines166

can serve to guide reporting of methods and results in this area
in the future.

Overall, the positivity rate found across data sets was low,
with the majority of data sets having a positivity rate of less
than 15%. The positivity rate of a data set can depend on the
lower detection limit of the virus measurement method,
including both the sampling technique and the analytical
approach. A positivity rate of a data set collected using a
method with a relatively high lower detection limit could be
biased downward, whereas the positivity rate of a data set
collected using a method with a relatively low lower detection
limit could be biased upward. Only 21% of the data sets came
from studies that reported lower detection limits. In our work,
we showed that studies that sampled larger areas resulted in
data sets with higher positivity rates than those that sampled
smaller areas, thereby supporting the idea that measurement
methods can influence positivity rates and highlighting that
care should be taken in comparing results directly across
studies.

Positivity rate is also influenced by the presence and strength
of viral sources in the fomites, as well as factors that affect the
persistence and removal of viruses from fomites. These in turn,
depend on the specific setting and virus. We found that
positivity rates of enveloped viruses were lower than
nonenveloped viruses, which is consistent with studies that
suggest enveloped virus persistence on fomites is reduced
relative to nonenveloped viruses24 and that nonenveloped
viruses may be more readily transferred from hands to
surfaces.23 The location where the fomite was sampled also
had a significant influence on positivity rate and suggested
fomites in healthcare and in nonhealthcare nontemporary
settings (e.g., residences of individuals) had the highest
positivity rates, perhaps because of high probabilities that
infected individuals are present in those environments or
spend more time in contact with fomites there compared with
nonhealthcare temporary settings (e.g., workplaces). Concen-
trations of different viruses in excretions, like mucus, saliva, and
feces, also potentially influences their likelihood to be present
on fomites; unfortunately, there is very limited data on
concentrations of virus in different excretions.167

This review has a number of limitations that should be
considered. First, we were only able to use the positivity rate as
an outcome given the limited amount of data reporting
concentration in externally valid units. Our statistical analyses,

univariate and multivariate analyses, assume that the outcome
of each data set is mutually independent, including those that
came from the same study. One additional constraint to
consider is the limited data availability for some virus families.
The disproportional representation of viral families in the data
sets may potentially influence some of the conclusions of the
study. Another limitation is that our quality score only speaks
to the level of reporting and does not indicate the proper
execution of a study, as it was based on data that could be of
less relevance to certain studies (e.g., reporting of area of
fomite swabbed in a study looking for the presence/absence of
a virus in a certain type of fomite). We were also not able to
use standard publication bias assessment tools, given that our
main outcome (positivity rate) was not compatible with these
types of assessments. We also did not take a quantifiable
approach for the fomite type variable, which makes our
interpretation of those results limited. Lastly, the findings of
this study are also bound by our specific search criteria terms
and the inclusion of studies written in the English language,
which could have excluded relevant studies.

■ IMPLICATIONS FOR FUTURE WORK
In this Perspective, several viral families were identified as areas
for future investigation of fomites in the environment. Among
those underrepresented families, Papillomaviridae, Flaviviridae,
and Herpesviridae only had one or two data sets each, while
Anelloviridae, Arenaviridae, Bornaviridae, Bunyaviridae, Hepe-
viridae, Picobirnaviridae, Poxviridae, Retroviridae, Rhabdovir-
idae, Togaviridae, and Deltah were not represented at all in
this review. Additionally, several sampling locations were not
identified in this review, including places of worship;
entertainment venues (e.g., movie theaters); sport stadiums
and concert venues; inside certain transportation systems, such
as trains and airplanes; and nightlife venues (e.g., bars,
nightclubs). To improve clarity of methods and results
reporting, comprehensive reporting of sampling methods
(e.g., reporting of implement type, premoisturizer type, eluent
type, area of fomite swabbed, sample storage conditions) and
the use of externally valid units (viruses per area of surface)
when reporting concentration results are recommended.
Future studies should also understand the factors that affect
the positivity rate of their studies, including sampling methods
(e.g., area of fomite swabbed), type of sampling location
(healthcare setting, nonhealthcare temporary setting, or
nonhealthcare nontemporary setting), and type of virus studied
(enveloped, nonenveloped).

Future studies could explore additional factors that might
affect the positivity rate, such as geographic location and
climate conditions, to gain further insight into the environ-
mental dynamics and factors influencing the occurrence of
viruses. However, note that the data required for such analysis
might be limited, as many authors do not provide information
on climatic conditions. Additionally, viral metagenomics
applied to fomite samples is likely to improve our under-
standing of fomite viromes,168 so consideration of those data
may be warranted in future systematic reviews. Lastly,
expanding systematic reviews to include studies that conduct
sampling in environments other than fomites, such as air and
environmental waters, could deepen our understanding of virus
occurrence in the environment.
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Guix, S.; Domínguez, À.; Soldevila, N.; The Working Group for the
Study of Outbreaks of Acute Gastroenteritis in Catalonia (PI16/
02005). Norovirus Detection in Environmental Samples in Norovirus
Outbreaks in Closed and Semi-Closed Settings. J. Hosp. Infect. 2020,
105 (1), 3−9.
(111) Diggs, R.; Diallo, A.; Kan, H.; Glymph, C.; Furness, B. W.;

Chai, S. J. Norovirus Outbreak in an Elementary School - District of
Columbia, February 2007. Morb. Mortal. Wkly. Rep. 2008, 56 (51−
52), 1340−1343.
(112) Bright, K. R.; Boone, S. A.; Gerba, C. P. Occurrence of

Bacteria and Viruses on Elementary Classroom Surfaces and the
Potential Role of Classroom Hygiene in the Spread of Infectious
Diseases. J. Sch. Nurs. 2010, 26 (1), 33−41.
(113) Zulli, A.; Bakker, A.; Racharaks, R.; Nieto-Caballero, M.;

Hernandez, M.; Shaughnessy, R.; Haverinen-Shaughnessy, U.; Ijaz, M.
K.; Rubino, J.; Peccia, J. Occurrence of Respiratory Viruses on School
Desks. Am. J. Infect. Control 2021, 49 (4), 464−468.
(114) Dziedzinska, R.; Kralik, P.; Šery,́ O. Occurrence of SARS-
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Widespread Contamination of SARS-CoV-2 on Highly Touched
Surfaces in Brazil during the Second Wave of the COVID-19
Pandemic. Environ. Microbiol. 2021, 23 (12), 7382−7395.
(161) Zhang, Y.; Qu, S.; Xu, L. Progress in the Study of Virus

Detection Methods: The Possibility of Alternative Methods to
Validate Virus Inactivation. Biotechnol. Bioeng. 2019, 116 (8),
2095−2102.
(162) CDC. About Norovirus; Centers for Disease Control and

Prevention. https://www.cdc.gov/norovirus/about/index.html (ac-
cessed 2023-04-19).
(163) CDC. Key Facts About Influenza (Flu); Centers for Disease

Control and Prevention. https://www.cdc.gov/flu/about/keyfacts.
htm (accessed 2023-04-19).
(164) Kramer, A.; Schwebke, I.; Kampf, G. How Long Do

Nosocomial Pathogens Persist on Inanimate Surfaces? A Systematic
Review. BMC Infect. Dis. 2006, 6 (1), 130.
(165) CDC. RSV Transmission; Centers for Disease Control and

Prevention. https://www.cdc.gov/rsv/about/transmission.html (ac-
cessed 2023-04-19).
(166) Borchardt, M. A.; Boehm, A. B.; Salit, M.; Spencer, S. K.;

Wigginton, K. R.; Noble, R. T. The Environmental Microbiology
Minimum Information (EMMI) Guidelines: QPCR and DPCR
Quality and Reporting for Environmental Microbiology. Environ. Sci.
Technol. 2021, 55 (15), 10210−10223.
(167) Lowry, S. A.; Wolfe, M. K.; Boehm, A. B. Respiratory Virus

Concentrations in Human Excretions That Contribute to Wastewater:
A Systematic Review and Meta-Analysis. J. Water Health 2023, 21 (6),
831−848.
(168) Santiago-Rodriguez, T. M.; Hollister, E. B. Potential

Applications of Human Viral Metagenomics and Reference Materials:
Considerations for Current and Future Viruses. Appl. Environ.
Microbiol. 2020, 86 (22), e01794−20.

ACS Environmental Au pubs.acs.org/environau Review

https://doi.org/10.1021/acsenvironau.3c00025
ACS Environ. Au 2023, 3, 277−294

294

https://doi.org/10.1016/j.envres.2021.111809
https://doi.org/10.1093/infdis/140.4.513
https://doi.org/10.1002/jmv.23907
https://doi.org/10.1002/jmv.23907
https://doi.org/10.1007/BF01719313
https://doi.org/10.1007/BF01719313
https://doi.org/10.1007/BF01719313
https://doi.org/10.1111/1462-2920.15855
https://doi.org/10.1111/1462-2920.15855
https://doi.org/10.1111/1462-2920.15855
https://doi.org/10.1002/bit.27003
https://doi.org/10.1002/bit.27003
https://doi.org/10.1002/bit.27003
https://www.cdc.gov/norovirus/about/index.html
https://www.cdc.gov/flu/about/keyfacts.htm
https://www.cdc.gov/flu/about/keyfacts.htm
https://doi.org/10.1186/1471-2334-6-130
https://doi.org/10.1186/1471-2334-6-130
https://doi.org/10.1186/1471-2334-6-130
https://www.cdc.gov/rsv/about/transmission.html
https://doi.org/10.1021/acs.est.1c01767?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.1c01767?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.1c01767?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.2166/wh.2023.057
https://doi.org/10.2166/wh.2023.057
https://doi.org/10.2166/wh.2023.057
https://doi.org/10.1128/AEM.01794-20
https://doi.org/10.1128/AEM.01794-20
https://doi.org/10.1128/AEM.01794-20
pubs.acs.org/environau?ref=pdf
https://doi.org/10.1021/acsenvironau.3c00025?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

