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Abstract

The gut microbiota refers to the collection of trillions of intestinal microorganisms that modulate central aspects of health and disease through

influential effects on host physiology. Recently, a connection has been made between the gut microbiota and exercise. Initial investigations dem-

onstrated the beneficial effects of exercise on the gut microbiota, with cross-sectional studies revealing positive correlations between exercise-

associated states, and healthy gut microbiota and exercise interventions showed post-intervention increases in the abundance of beneficial bacte-

rial taxa. More recent investigations have focused on exploring the reverse relationship: the influence of the gut microbiota on exercise perfor-

mance. Murine investigations have revealed that certain bacterial taxa may enhance endurance exercise performance by augmenting various

aspects of lactate metabolism. Further, short-chain fatty acids—which modulate metabolism at various organ sites, including within skeletal

muscle—have been shown to enhance endurance exercise capacity in mice. This review highlights what is currently known about the connection

between the gut microbiota and exercise, with a particular focus on the ergogenic potential of the gut microbiota and how it may be leveraged to

enhance endurance exercise performance.
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1. Introduction

Efforts to understand the key physiological determinants

contributing to elite human endurance exercise performance

has been a long-term pursuit of sports science research and

continues to be a primary focus.1 Currently, most research is

directed at understanding how cardiovascular and muscular

adaptations to exercise training, such as cardiac output, hemo-

globin concentration, and muscle capillarization, affect well-

established evaluations of endurance exercise performance,

including maximal oxygen consumption (V̇O2max) and the

boundary of sustainable V̇O2.
2 While central (i.e., cardiovas-

cular) and peripheral (i.e., musculoskeletal) factors remain key

determinants of exercise performance, recent research has

attempted to reach beyond the roles of traditional physiologi-

cal mechanisms to explore how exercise performance may be
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influenced by less well-established factors—in particular, the

gut microbiota.

Exercise bouts lasting seconds to hours require a continuous

supply of adenosine triphosphate (ATP) in order to maintain

skeletal muscle contraction.3 The ATP-phosphocreatine, gly-

colytic, and aerobic energy systems provide ATP to exercising

tissues via substrate-level phosphorylation and oxidative phos-

phorylation, with the relative contribution of each system

dependent on exercise intensity and duration.3 The gut micro-

biota influences host energy metabolism through production of

its own metabolites, which provide »10% of the daily caloric

requirements of the host,4 and via its direct and/or indirect

influence on appetite, fat storage, and glucose tolerance. Given

its diverse influence on key metabolic processes, sports science

research has begun focusing effort on better understanding

how the gut microbiota may be implicated in exercise and

exploring ways it may be leveraged to enhance exercise tole-

rance and capacity. Initial insights from animal and human

models have demonstrated improvements in exercise capacity

following interventions that target microbial optimization (i.e.,
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probiotic, prebiotic, and short-chain fatty acid (SCFA) supple-

mentation), revealing the ergogenic potential of the gut micro-

biota. These findings suggest that the gut microbiota may

represent a previously unexplored determinant of exercise per-

formance, and exogenous strategies targeting the gut micro-

biota may represent a novel mechanism for enhancing human

exercise tolerance, capacity, and performance.
2. Gut microbiota

The gut microbiota—which represents a complex ecosystem

of approximately 40 trillion bacteria, viruses, archaea, and

fungi—resides predominantly in the large intestine and has a

biomass of approximately 1.5 kg.5 Bacteria represent the largest

microbial contribution to the gut microbiota, consisting of well

over 1000 unique bacterial species belonging largely to 4 domi-

nant phyla: Firmicutes, Bacteroidetes, Actinobacteria, and Pro-

teobacteria.6 The microbiota inhabits the entire gastrointestinal

tract, with the lowest abundance of bacteria in the stomach (10

bacteria/gram of content) and highest abundance in the colon

(1012 bacteria/gram of content).7 The increase in bacterial abun-

dance along the gastrointestinal tract is met with an increase in

biodiversity, with the colon harboring the most diverse bacterial

organisms.8 In comparison to the human genome, which enco-

des approximately 23,000 genes, the gut microbiome—a term

used when the genetic potential of the microbiota is referred to

alongside the microbes themselves—contains approximately

3.3 million genes that modulate several aspects of host health

and function, including energy harvest and metabolism,9 inflam-

mation,10 vitamin synthesis,11 and immunity.12

All humans share similarities in the general composition

and function of their gut microbiomes, and some evidence sug-

gests there may even be a “core microbiome” that exists

among all individuals.13 Nevertheless, variations in microbial

abundance, composition, diversity, and gene function lead to

immense interindividual differences in the gut microbiomes of

humans.14 The diversity of this community, which is believed

to be as unique as a fingerprint,15 is stark when compared to

human genomic diversity. Of the 23,000 genes that make up

our host genome, approximately 99.9% are identical among all

humans,16 whereas the genes that make up our gut microbiome

can differ substantially from one another.13 Given the

immense variability of human gut microbiomes and the signifi-

cant influence of the microbiome on host health, research in

the medical sciences is now pivoting to begin considering the

native microbiome in the development of personalized

approaches to medicine and to enhance the effectiveness of

disease treatments.17 In time, these efforts may be extended to

approaches focused on enhancing exercise performance.

The initial development of the gut microbiota occurs during

the first 3 years of life,18 and early-life exposures, such as birth

mode, infant diet, and antibiotic exposure, play a critical role

in microbial colonization.19 Once established, the gut micro-

biota composition remains stable from 3 years of age until late

adulthood;20 however, environmental factors including diet,

stress, and exercise can alter the community composition

towards a more eubiotic (balanced microbiota) or dysbiotic
(unbalanced microbiota) state, which directly influences host

functions.21 As a result, there is now intense interest in explor-

ing how various intrinsic and extrinsic factors influence the

gut microbiota (and thus host function) and how the micro-

biota can be optimized to support health status, or in the con-

text of this review, exercise performance.

3. Prebiotics, probiotics, and postbiotics

Prebiotics, probiotics, and postbiotics comprise a family of

substances that function to modulate the gut microbiota and

can be referred to collectively as “biotics”.22 The use of prebi-

otics and probiotics to increase the abundance of beneficial

bacterial species (probiotics) or fertilize existing commensal

bacterial species (prebiotics) is an exogenous approach for

improving the structure and function of the gut microbiota.23

Probiotics are “live microorganisms that confer a health bene-

fit to the host when administered in adequate amounts”,24 and

they are most often found in the form of single or consortium

blends of Lactobacillus and Bifidobacterium strains. A prebi-

otic is “a substrate that is selectively utilized by host microor-

ganisms conferring a health benefit,” and it can be found in

non-digestible oligosaccharides, fructans, and galactans.25 The

concept of postbiotics has emerged more recently and is

defined as a “preparation of inanimate microorganisms and/or

their components that confers a health benefit on the host”.26

Postbiotics contain inactivated microbial cells or cell compo-

nents, with or without metabolites such as SCFAs,27 although

commercial availability of these supplements is currently low.

4. Gut microbiota fermentation and SCFAs

Following consumption, the constituents of non-digestible

carbohydrates such as dietary fiber remain intact until they

reach the large intestine, where they become available to the

gut microbiota for fermentation and energy extraction.28 Spe-

cifically, commensal gut microbiota can ferment non-digest-

ible substrates into 3 main SCFAs—acetate, propionate, and

butyrate—which are important metabolites for maintaining

colonic health and integrity.29,30 Production of acetate, propio-

nate, and butyrate occurs at an approximate molar ratio of

60:20:20, respectively,31 although factors such as bacterial

population (type and abundance), diet, and gut transit time can

affect SCFA production.32 Concentrations of SCFA are high-

est in the proximal colon (70�140 mM) and fall to

20�70 mM in the distal colon.31 In the cecum and colon,

approximately 95% of SCFA are rapidly absorbed by the colo-

nocytes, with the remaining 5% being excreted in the feces

(this being the fraction that is measured in fecal samples).32

Butyrate is the preferred fuel for colonocytes and is exten-

sively oxidized by the intestinal epithelium to improve intesti-

nal health through various local effects.33 Acetate and

propionate are also utilized, but they are oxidized to a lesser

extent than butyrate.34 SCFA not oxidized in colonocytes

travel through the portal vein to the liver, where they can be

used as substrates for Krebs cycle or enter systemic circulation

and elicit beneficial effects in several cells and organs.35

Recent insights suggest one of these target organs is skeletal
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muscle containing G-protein-coupled receptors GPR41 and

GPR43, which are SCFA-specific receptors believed to play a

role in skeletal muscle metabolism.36 Given the fundamental

role of energy metabolism during exercise, the influence that

SCFA may have on metabolic processes within skeletal muscle

is of particular interest. However, more research is needed to

discern the underlying direct or indirect mechanisms and

potential interaction that gut-derived SCFA may have on exer-

cise performance.

5. Effects of exercise on the gut microbiota

Efforts to understand the relationship between exercise and

the gut microbiota have emerged largely over the past decade.

In 2014, Clarke and colleagues37 published a landmark study in

exercise and gut microbiota research showing that professional

rugby athletes had higher alpha diversity and a greater relative

abundance of the health-associated genus Akkermansia com-

pared to high- and low-body mass index sedentary controls.

These findings prompted several subsequent investigations

focused on better understanding the relationship between exer-

cise and the gut microbiota. Several observational studies have

revealed that exercise-associated states are correlated with

higher alpha diversity,38,39 an enrichment of beneficial

taxa,38,40�42 and a higher abundance of fecal SCFA.43 Alterna-

tively, exercise training intervention studies in healthy and clini-

cal populations have only seldomly revealed post-intervention

increases in alpha diversity,44,45 although increases in the rela-

tive abundance of health-associated taxa have been consistently

demonstrated.46�49 While observational and intervention investi-

gations have revealed the influential effects of exercise on the

gut microbiota, less described is the reverse relationship: the

influential effects of the gut microbiota on exercise. The remain-

der of this paper will focus on reviewing the current evidence

demonstrating the influential effects of the gut microbiota and

its metabolites on proxy measures of endurance exercise perfor-

mance—mainly time to exhaustion (TTE) tasks—in human and

murine models, and it will describe the potential physiological

mechanisms underlying this unique relationship.

6. Effects of the gut microbiota on endurance exercise

capacity: Human to mouse experiments

In 2019, Scheiman and colleagues50 were the first to dem-

onstrate that endurance exercise capacity may be influenced

by a microbially mediated mechanism. In this multi-part

study, 16S rDNA analyses of daily stool samples provided by

Boston marathoners approximately 5 days prior to and fol-

lowing the marathon revealed a significant increase in the rel-

ative abundance of the genus Veillonella in the athletes post-

marathon. Veillonella is a gram-negative bacterium that uti-

lizes lactate as its primary source of carbon energy.51 Given

that marathon running is characterized by marked increases

in lactate production (and removal) by skeletal muscle fibers,

consequent of high rates of glycolysis to meet the ATP

demands,3 researchers isolated a human strain of Veillonella

atypica to explore the potential ergogenic effects of this bac-

terium during high-intensity endurance exercise. Inoculation
experiments in mice revealed that compared to a control bac-

terium that does not catabolize lactate, Veillonella atypica

increased treadmill run times during a TTE task, suggesting

improvements due to a mechanism that augments lactate

metabolism. Follow-up experiments revealed that systemic

lactate can enter the gut, where it is catabolized by Veillo-

nella atypica and subsequently metabolically converted to

the SCFA propionate.51 Propionate can then leave the gut to

be metabolized by hepatocytes52 or enter systemic circulation

and elicit effects on peripheral tissues and organs expressing

SCFA receptors, such as skeletal muscle.53 To explore the

potential ergogenic effects of propionate, a final experiment

completed by Scheiman and colleagues50 revealed that mice

receiving a rectal infusion of propionate demonstrated longer

treadmill run times during exhaustive running when com-

pared to mice receiving saline.

While the precise mechanisms underlying the performance

improvements resulting from Veillonella atypica colonization

and propionate infusion remain unclear, it is possible that

endurance exercise performance may be enhanced thorough

microbiota targeted interventions that increase the abundance

of lactate catabolizing bacterial species and/or increase the

production and bioavailability of propionate.

Other studies exploring the ergogenic effects of microbial-

based interventions using “human to murine” inoculation experi-

ments have produced similar results. After isolating a strain of

Bifidobacterium longum from the feces of a 2008 Olympic

weightlifting gold medalist, Lee and colleagues54 introduced a

once daily, 4-week oral gavage intervention into 4 groups of spe-

cific pathogen-free mice in the following human-equivalent dos-

ages: 0 colony forming units (CFU)/kg (vehicle), 2.05£ 109

CFU/kg, 4.10£ 109 CFU/kg, and 1.03£ 1010 CFU/kg. After the

4-week intervention, significant dose-dependent effects were

observed in several outcome measures, including endurance

exercise capacity, fatigue-related biochemical variables, and his-

tological analyses. Compared to control animals, mice receiving

the Bifidobacterium longum intervention demonstrated improve-

ments in exhaustive swim times and grip strength, reduced serum

lactate levels immediately after and 20 min following an acute

exercise challenge, and increased muscle and liver glycogen con-

tent. A follow-up investigation completed by the same group

using a similar methodology but different bacterial strain (Lacto-

bacillus salivarius) replicated these findings. Lee and col-

leagues55 demonstrated that in a dose-dependent manner, a once

daily, 4-week Lactobacillus salivarius intervention improved

endurance exercise capacity, increased muscle strength and gly-

cogen storage in liver and muscle, and decreased serum lactate

immediately after and 20 min following an acute exercise bout.

The studies completed by Lee et al.54,55 provide evidence that

markers related to physical performance, fatigue, and energy

availability are improved in mice in a dose-dependent manner

following a probiotic intervention.
6.1. Microbial effects on lactate metabolism

Results from the investigations completed by Scheiman

et al. 50 and Lee et al. 54,55 provide promising evidence that
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the gut microbiome has the capacity to positively influence

exercise performance. However, the mechanisms underlying

the ergogenic effects of the gut microbiota and its metabolites

remain unclear.50,54,55 Findings from the investigation done by

Scheiman et al.50 suggest that some observed improvements in

exercise capacity may result from a microbially mediated

mechanism that augments lactate metabolism. Lactate is a

metabolic by-product produced by muscle fibers during aero-

bic and anaerobic energy provision.56 Historically, lactate has

been unfairly labeled as a fatigue-causing waste product; how-

ever, it is now more correctly recognized as a major fuel

source and gluconeogenic precursor.57 While lactate is pro-

duced by nearly all cells in the body, skeletal muscle is both a

major producer and utilizer of lactate, particularly during exer-

cise.58 During exercise, the majority of lactate produced by

skeletal muscle fibers is consumed by oxidizing tissues to pro-

duce ATP (mainly red oxidative skeletal muscle fibers), while

the remainder is transported to the liver and converted to glu-

cose via the Cori cycle.56,59 The newly formed glucose can

then enter systemic circulation and becomes available as a gly-

colytic substrate for exercising skeletal muscle. Given the

metabolic importance of lactate uptake and utilization by

consumer tissues during exercise, a mechanism that enhances

lactate disposal and clearance is likely to have beneficial

effects on exercise capacity and performance. Therefore, the

gut microbiota (in the presence of Veillonella atypica) could

theoretically act as an additional consumer site for lactate,

alongside the liver and skeletal muscle, which may optimize

energy provision during exercise.

To explore whether Veillonella atypica colonization enhances

lactate clearance, Scheiman and colleagues50 injected mice with

a standardized dose of sodium lactate and measured capillary

blood lactate concentrations at select time points during rested

conditions using a lactate analyzer. No differences in lactate

clearance were observed in the Veillonella atypica treated versus

control mice. While lactate analyzers are practical, inexpensive,

and widely used, they are unable to distinguish precise lactate

kinetics and may lack a level of sensitivity in determining lactate

flux.60,61 In addition, measuring blood lactate concentrations

at various time points following exogenous lactate infusion

during rested conditions may not be an appropriate proxy for

characterizing endogenous skeletal muscle lactate production

and removal as it would naturally occur during exercise.

Given that the lactate catabolizing characteristics of Veillo-

nella atypica make this bacterial species an intriguing potential

player in lactate metabolism, it is possible the condition (i.e.,

rested) and methodology (i.e., capillary blood lactate measure-

ments) were simply insufficient to observe whether lactate

removal is enhanced in the presence of Veillonella atypica.

Therefore, future investigations should (a) assess lactate kinetics

during exercising states, and (b) employ isotope tracer techniques

to identify specific characteristics of lactate metabolism, includ-

ing the rate of lactate appearance, lactate disposal, and metabolic

clearance rate,62 in order to better understand the relationship

between the gut microbiota and lactate during exercise. Lastly,

the prospect of the gut as a metabolic sink for lactate is an inter-

esting possibility; however, despite the ability of lactate produced
by skeletal muscle fibers during exercise to enter the gut,50 it is

unknown how much circulating lactate is diverted to the large

intestine during exercise states characterized by marked lactate

production. Given that skeletal muscle accounts for the over-

whelming majority of lactate removal and oxidation during exer-

cise,59 it is likely that a large amount of lactate would have to be

diverted to the gut and subsequently catabolized by Veillonella

atypica in order to produce observable exercise improvements.

Similar to the Scheiman and colleagues’ investigation,50 a

limitation of both studies completed by Lee and colleagues is

that blood lactate concentration was not evaluated during exer-

cise tasks.54,55 However, researchers did measure and observe a

decrease in blood lactate concentration immediately after and

20 min following an acute endurance exercise challenge in both

intervention groups (i.e., Bifidobacterium and Lactobacillus

groups), suggesting a possible probiotic-mediated influence on

lactate removal and utilization. The researchers propose that

probiotic inoculation may augment exercise performance

through a physiological mechanism that exerts anti-fatigue

effects and/or bolsters energy provision. Lactobacillus and Bifi-

dobacterium are 2 main genera of the heterogenous group of

lactic acid bacteria (LAB) that ferment non-digestible carbohy-

drates to produce lactate.63 The microbially produced lactate

can then be consumed by lactate-utilizing bacteria such as Anae-

rostipes caccae and Eubacterium halli to produce acetyl CoA

and eventually butyrate, with the concomitant production of

ATP.64 Therefore, increasing the abundance of lactate produc-

ing bacteria in the gut may increase substrate availability for

butyrate- (and thus ATP-) producing bacteria, thus increasing

energy availability and delaying fatigue. While increasing lac-

tate availability and thus ATP production could theoretically

influence energy provision, it is more likely that the downstream

ATP produced in this process would be utilized for local pro-

cesses within the gut. Therefore, it remains unclear how this

process could contribute to delayed fatigue within in the

exercising skeletal muscle itself.

An alternative hypothesis for the ergogenic effects observed

following probiotic supplementation is that increasing the

amount of LAB in the gut may increase the production of

microbial lactate (assuming sufficient dietary fiber consump-

tion), which can then be utilized by consumer tissues such as

skeletal muscle. Specifically, lactate produced by LAB in the

gut can be transported from the large intestine into systemic

circulation via sodium-coupled monocarboxylate transporters

and then taken up and oxidized by skeletal muscle during exer-

cise.65 Given the value of lactate as a fuel source, increasing

the bioavailability of lactate via a Lactobacillus or Bifidobacte-

rium intervention could theoretically optimize energy metabo-

lism and augment endurance exercise capacity. However, it is

currently unknown how much lactate leaves the gut during

exercise and whether the quantity produced by LAB would be

sufficient to influence skeletal muscle metabolism and improve

endurance exercise capacity.

In summary, a gut microbiota-mediated mechanism that tar-

gets specific aspects of lactate metabolism may in part be

responsible for the observed improvements in endurance exer-

cise capacity following inoculation with Veillonella atypica or
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LAB. Specifically, the ergogenic effects of Veillonella atypica

and LAB may result from the action of the bacteria itself on

lactate produced by skeletal muscle fibers that then enters the

gut or a mechanism that targets lactate produced by LAB and

provides additional fuel to the host, respectively. Future stud-

ies should focus on distinguishing the microbially mediated

influences on lactate metabolism during endurance exercise

using more sensitive methodological approaches in the effort

to better understand this relationship.
6.2. Gut microbiota, glycogen storage, and skeletal muscle

metabolism

The investigations completed by Lee and colleagues54,55 also

demonstrated enhancements in glycogen storage capacity fol-

lowing inoculation with a probiotic microorganism. Muscle gly-

cogen depletion is one of the primary factors limiting exercise

performance during prolonged strenuous exercise bouts. Accord-

ingly, a considerable amount of research has focused on under-

standing best practices for maximizing glycogen storage

and optimizing fuel availability during exercise. Perhaps the

most popular method for maximizing glycogen storage is

“carbohydrate loading”, which involves targeted exercise to

deplete glycogen stores followed by the consumption of a

high carbohydrate diet in an effort to achieve a super-compen-

satory response. While carbohydrate loading is a widely used

technique among endurance athletes, high carbohydrate

intakes can result in debilitating gastrointestinal distress,66 and

some studies suggest carbohydrate loading may not be as

effective in women.67,68 As such, interventions that increase

glycogen storage capacity, replenish glycogen stores, and

spare glycogen without reliance on carbohydrate-targeted

approaches are attractive.

Microbially mediated influences on glycogen storage capac-

ity and skeletal muscle metabolism have been demonstrated in

murine models and appear to result from the metabolic actions

of SCFA. Strains within the Lactobacillus and Bifidobacterium

genera are well-established probiotics that ferment non-digest-

ible carbohydrates to produce SCFA.69 Current research in ani-

mal models and cell lines demonstrates that SCFA may enhance

glycogen storage capacity by increasing the expression of glu-

cose transporter type 4 (GLUT4) in skeletal muscle, thus

increasing glucose uptake and glycogen repletion.70,71 In addi-

tion, SCFA have been shown to influence lipid and carbohydrate

metabolism in the liver and skeletal muscle.72 After being pro-

duced in the gut, SCFA can leave the gut via the portal vein and

be taken up in varying amounts by the liver, where they can be

used as substrates for lipid or carbohydrate synthesis.72 Accord-

ingly, SCFA—particularly propionate, which can be used as a

precursor for gluconeogenesis—can support energy demands

during exercise by providing an additional substrate for exercis-

ing skeletal muscle. Interestingly, SCFA have been shown to

modulate skeletal muscle metabolism toward a phenotype simi-

lar to that induced by chronic aerobic exercise training. Specifi-

cally, in animal models and cell lines, SCFA have been shown
to enhance lipid uptake70 and oxidation,73 increase glucose

uptake,74 and increase the rate of glycogen synthesis.75

Given that both Scheiman et al.50 and Lee et al.54,55

employed interventions capable of directly or indirectly

enhancing SCFA production and/or bioavailability, it is possi-

ble these interventions increased SCFA availability, resulting

in one or more of the following effects: enhanced glycogen

storage, increased glucose availability, greater fatty acid oxi-

dation, and endogenous glucose sparing. Accordingly, any one

or a combination of these factors could have augmented

endurance exercise capacity. Unfortunately, colonic SCFA

abundance was not measured in either investigation done by

Lee et al.,54,55 and Scheiman and colleagues50 failed to detect

labeled propionate in the colons or ceca of Veilonella atypica-

inoculated mice following lactate infusion (although the

researchers suggested this may have been because the time

period between inoculation and sacrifice was too short for Vei-

lonella atypica to convert lactate to propionate). Therefore, it

is possible that propionate would have been detected in these

tissues if longer time frames were used.

In summary, the available evidence suggests that SCFA

may have performance-enhancing effects through their influ-

ence on glycogen storage and skeletal muscle metabolism;

however, the precise mechanisms underlying their ergogenic

potential remain unclear. To complement gut microbiome

analyses, future studies should also include metabolomic anal-

yses (host and microbial metabolites) to better understand the

relationship between bacterial interventions, SCFA, and exer-

cise performance.

6.3. Improved intestinal barrier integrity

Lastly, it is possible that endurance exercise capacity was

indirectly improved in the Lee et al. investigations54,55 due to

the beneficial effects of probiotics on the intestinal barrier.

Through a variety of mechanisms—including enhanced capa-

city for butyrate production via cross-feeding—Lactobacillus

and Bifidobacterium have been shown repeatedly to enhance

intestinal barrier function.76,77 This reduces the translocation

of bacteria and endotoxins from the intestinal lumen into sys-

temic circulation, thus reducing inflammation and improving

immunity.78 As a result, it is possible the Lactobacillus and

Bifidobacterium interventions indirectly improved endurance

exercise capacity by enhancing intestinal barrier integrity and

improving aspects of host health that have been repeatedly

implicated in various disease states.79 Ultimately, evidence

demonstrating the ergogenic effects of probiotics is lacking,

and more research is needed to substantiate the indirect effects

of probiotics on exercise performance.

7. Microbial perturbations and endurance exercise

capacity: Mice

Perturbations in the gut microbial community have been shown

to have significant consequences on skeletal muscle function and

exercise capacity. For example, germ-free mice (i.e., those lacking
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a gut microbiota) display impairments in mitochondrial function

and reduced skeletal muscle mass and strength,80 and mice receiv-

ing broad spectrum antibiotics demonstrate significantly shorter

treadmill run times during TTE trials.81 However, restorative

interventions that rescue the gut microbiota have been shown to

reverse these impairments and normalize endurance exercise

capacity in microbiota-perturbed mice.
7.1. Dietary interventions

Food-based interventions targeting the gut microbiota

have been shown to have a significant influence on exercise

capacity. In a recent study completed by Okamoto et al.,82

mice were administered a high microbiome-accessible car-

bohydrate diet or low microbiome- accessible carbohydrate

diet for 6 weeks. Following the dietary intervention, mice

receiving the diet containing a non-fermentable, microbiota-

inaccessible fiber source displayed significantly shorter

treadmill run times during a TTE trial and lower overall

muscle mass compared to mice receiving the diet with

microbiota-accessible fiber sources. Interestingly, impair-

ments in exercise capacity in the low microbiome- accessible

carbohydrate diet group were reversed following administra-

tion of an oral prebiotic and fecal microbiota transplantation

from the high microbiome-accessible carbohydrate diet

group, with the 2 groups displaying no differences in TTE

following the intervention. While diet has a well-established

influence on the gut microbiota, these findings highlight the

downstream effects of this relationship and the magnitude

by which dietary components may influence exercise perfor-

mance by way of the gut microbiota.
7.2. SCFA interventions: Acetate

To further highlight the influence of the gut microbiota on

exercise performance, researchers subcutaneously infused ace-

tate into microbiota-depleted mice for 1 week, demonstrating

that acetate but not saline normalized treadmill run times in a

TTE trial.82 These findings suggest that acetate has restorative

and possibly ergogenic effects and may be a key substrate for

skeletal muscle metabolism. The metabolic importance of ace-

tate has also been highlighted by Sakakibara et al.,83 who

observed that mice lacking Acetyl-CoA synthetase 2—the

sole enzyme responsible for converting acetate to acetyl-

CoA—display low endurance exercise tolerance under fast-

ing conditions. This finding confirms that acetate generated

by the gut microbiota is an important substrate for skeletal

muscle metabolism and possibly influences exercise perfor-

mance. Of all SCFA produced through microbial fermenta-

tion, acetate is produced in the largest molar quantities and

is the least oxidized by colonic cells.34 The combination of

these factors makes acetate the most detectable SCFA in

peripheral blood and, therefore, most available to tissues

expressing SCFA receptors. Given the expression of GPR41

and GPR43 in skeletal muscle, interventions that directly
(by administering acetate) or indirectly (by increasing

metabolite production) increase the bioavailability of acetate

are likely to improve exercise tolerance, although it is

unclear whether this is specific to certain pre-exercise feed-

ing conditions.

While commercial availability of SCFA-based supplements

is low, inulin and oligofructose, which are naturally occurring

prebiotic fibers, have been shown to significantly increase

SCFA production and may be an effective alternative approach

for increasing the bioavailability of SCFA. Specifically, a

study assessing SCFA production after various dietary fiber

interventions found that replacing wheat starch with 10% inu-

lin increased SCFA production by 85% in the rat cecum.84 In

human studies, a 12-week, 10 g/day oligofructose-enriched

inulin supplement increased fecal SCFA concentrations by

31%, with the most significant increase observed in acetate

production.85 These findings suggest that supplementing the

diet with inulin-type fructans is an effective method for stimu-

lating SCFA production and may be an appropriate method for

increasing SCFA bioavailability without the use of SCFA sup-

plements. Therefore, increasing the systemic availability of

SCFA may represent a novel strategy for supporting exercise

capacity by providing an additional substrate to exercising

tissues.
8. Conclusion

The evidence presented in this review highlights the influ-

ence of the gut microbiota on endurance exercise capacity and

tolerance. While more research is needed to further substanti-

ate its ergogenic potential, the gut microbiota and its metabo-

lites may enhance exercise capacity through mechanisms that

augment lactate metabolism, increase glycogen storage capac-

ity, or influence substrate metabolism in skeletal muscle

(Fig. 1). The possibility of leveraging a previously unsuspect-

ing “organ” to enhance performance is intriguing, but ulti-

mately the gut microbiota/exercise research area is still in its

infancy, and more rigorous scientific studies are needed to bet-

ter understand the gut microbiota�exercise connection and

determine whether there is a causal link between the gut

microbiota and exercise performance. Future investigations

should employ more sensitive methodological approaches,

such as tracer technologies and metabolomics, to better under-

stand the precise mechanisms underlying the proposed ergo-

genic effects of the gut microbiota. Further, there currently

exists a general lack of gut microbiota and exercise research in

humans, and more “biotic” interventions in humans are needed

to better understand their effectiveness on exercise perfor-

mance. Lastly, it is important this research area expands

beyond interventions limited to laboratory settings and aims,

in time, to explore the effectiveness of “biotics” and other

microbiota-modulating therapies in real-life competition sce-

narios. By seeking to further understand and explore how the

microbiota and its associated metabolites can influence and



Fig. 1. Summary of the proposed microbially mediated mechanisms contributing to improvements in endurance exercise performance. Non-digestible carbohy-

drates are fermented by the commensal gut microbiota (including probiotic microorganisms) to produce SCFA. SCFA influence skeletal muscle substrate metabo-

lism and promote glycogen sparing effects, leading to enhanced energy utilization. Probiotic microorganisms produce lactate as a by-product of fermentation.

Microbially produced lactate can be transported into systemic circulation to become available to oxidizing skeletal muscle fibers, or it can be consumed by lactate-

utilizing bacteria that concomitantly produce butyrate and ATP. Butyrate fuels colonocytes, which enhances the intestinal barrier. Lactate produced by muscle

fibers during exercise enters the gut (an additional removal site for lactate) and is metabolically converted by Veillonella atypica into propionate, which enters sys-

temic circulation and is available to SCFA receptor expressing tissues, including skeletal muscle. (Created with BioRender.com). ATP = adenosine triphosphate;

SCFA = short-chain fatty acid.
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optimize performance, researchers may initiate an exciting

new frontier in exercise science.
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