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Abstract: luxS is conserved in several bacterial species, including A. hydrophila, which causes
infections in prawn, fish, and shrimp, and is consequently a great risk to the aquaculture industry
and public health. luxS plays a critical role in the biosynthesis of the autoinducer-2 (AI-2), which
performs wide-ranging functions in bacterial communication, and especially in quorum sensing
(QS). The prediction of a 3D structure of the QS-associated LuxS protein is thus essential to better
understand and control A. hydrophila pathogenecity. Here, we predicted the structure of A. hydrophila
LuxS and characterized it structurally and functionally with in silico methods. The predicted
structure of LuxS provides a framework to develop more complete structural and functional
insights and will aid the mitigation of A. hydrophila infection, and the development of novel
drugs to control infections. In addition to modeling, the suitable inhibitor was identified by high
through put screening (HTS) against drug like subset of ZINC database and inhibitor ((−)-Dimethyl
2,3-O-isopropylidene-L-tartrate) molecule was selected based on the best drug score. Molecular
docking studies were performed to find out the best binding affinity between LuxS homologous
or predicted model of LuxS protein for the ligand selection. Remarkably, this inhibitor molecule
establishes agreeable interfaces with amino acid residues LYS 23, VAL 35, ILE76, and SER 90, which
are found to play an essential role in inhibition mechanism. These predictions were suggesting that
the proposed inhibitor molecule may be considered as drug candidates against AI-2 biosynthesis
of A. hydrophila. Therefore, (−)-Dimethyl 2,3-O-isopropylidene-L-tartrate inhibitor molecule was
studied to confirm its potency of AI-2 biosynthesis inhibition. The results shows that the inhibitor
molecule had a better efficacy in AI-2 inhibition at 40 µM concentration, which was further validated
using Western blotting at a protein expression level. The AI-2 bioluminescence assay showed that the
decreased amount of AI-2 biosynthesis and downregulation of LuxS protein play an important role in
the AI-2 inhibition. Lastly, these experiments were conducted with the supplementation of antibiotics
via cocktail therapy of AI-2 inhibitor plus OXY antibiotics, in order to determine the possibility of
novel cocktail drug treatments of A. hydrophila infection.

Keywords: Aeromonas hydrophila; LuxS; quorum sensing; 3Dstructure; i-TASSER; SAVES server; AI-2;
molecular docking

1. Introduction

A. hydrophila is a prevalent and opportunistic pathogen of aquatic organisms, including fish,
shrimp, and prawns [1]. Furthermore, A. hydrophila also causes severe diseases in humans, including
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gastrointestinal illnesses, septicemia, and cellulitus [2–4]. In several bacterial species, gene expression
is controlled by the secretion, detection, and production of extracellular signaling molecules (AI-2)
that accumulate in environments in proportion to cell densities of signal molecule-producing cells.
This phenomenon is commonly referred to as ‘quorum sensing’. The S-ribosyl-homocysteinase (LuxS)
quorum-sensing (QS) system is found in several bacterial species [5] and was initially characterized as
the regulator of bioluminescence in Vibrio harveyi [6]. QS has been well-studied due to its regulation
of vital physiological mechanisms, including competence, sporulation, motility, biofilm formation,
and its critical role in determining virulence. The presence of luxS homologs in both Gram-positive and
Gram-negative bacteria suggests that AI-2 is a universal language for interspecies communication [7].
Moreover, LuxS is an integral component of the activated methyl cycle, which may also explain its
widespread conservation [8].

LuxS encodes an enzyme that aids in the metabolism of S-adenosyl-methionine
(SAM) and catalyzes the conversion of S-ribosyl-homocysteine (SRH) to homocysteine and
4,5-dihydroxy-2,3-pentanedione (4,5-DPD), in addition to several furanones [9–11]. Production of
the autoinducer (AI-2) occurs when 4,5-DPD autocatalytically hydrolyzes [12]. The LuxS protein,
S-ribosyl-homocysteinase, is associated with the synthesis of AI-2. AI-2 plays a crucial role in
intercommunication among bacterial species that possess LuxS and that are at high cell densities [7,13].
The LuxS system has been thoroughly investigated in Gram-negative bacteria, which includes
A. hydrophila and the marine γ-proteobacterium, Vibrio harveyi [14,15]. LuxP, which responds to AI-2 [16],
has also been thoroughly studied in V. harveyi. However, bacteria without LuxP can also respond
to AI-2, and other receptors can be involved in the biosynthesis of AI-2 precursors, including LsrB
(Bacillus, E. coli, and Salmonella enterica) and rbsB in H. influenza [17]. However, the AI-2 receptor gene
LuxP is prevalent in Gram-positive bacteria, although little is known regarding them. luxS is found in
Gram-positive and Gram-negative bacteria, including A. hydrophila, and performs critical transcription
functions in the regulation of genes associated with transport of nucleotides, metabolism, and the
synthesis of cell walls or membranes [18]. In contrast, the deregulation mechanisms of those genes
are still unknown. Furthermore, the LuxS system of A. hydrophila performs a vital role in in vitro
biofilm synthesis. Mutant strains of luxS fail to produce mature biofilms [19], although increased
concentrations of salinity and increased incubation periods also reduce biofilm formation, motility,
protease biogenesis, and quorum sensing [20]. Moreover, mutation of the luxS AI-2 synthase gene
decreases virulence towards hosts, although virulence can be recovered when AI-2 is added from
exogenous sources [21].

LuxS belongs to the LuxS/MPP-like metallohydrolase superfamily of enzymes, according to
the structural classification of proteins (SCOP) scheme. It is one of the few enzymes that is able to
cleave thioether bonds without using a redox cofactor [22]. Numerous studies indicate that LuxS is
highly conserved among several species, including A. hydrophila, E. coli, V.cholera, and S. typhi, but
does not share homology with other functional genes [23,24]. In addition, a number of LuxS protein
structural studies have been published. The crystal structure of LuxS indicated that it is homodimeric,
with six alpha-helices that are covered with eight stranded beta-barrels. Further, the active site
coordinates a zinc ion that binds with several highly conserved residues, including His-54, His-58,
and Cys-126 [25,26]. Furthermore, several studies have demonstrated that conformational changes in
the protein results in the participation of the 125–131 residues in the restriction active site, and which
are closely located to the N-terminus, [26]. Several crystal structures of LuxS have been solved from
various bacterial species (Deinococcus radiodurans, Helicobacter pylori, Haemophilus influenzae, Bacillus
subtilis, and streptococcus mutans) [25–27]. A. hydrophiala LuxS share sequence similarity 42, 38, 37, 37
and 79% to LuxS from D. radiodurans, H. pylori, H. influenzae, B. subtilis and S.mutans, respectively [28].

Previous studies have indicated that LuxS has evolved since the divergence of prokaryotic
phyla, and that its evolutionary history is congruent with the ribosomal RNA tree of microorganisms.
Genome-wide studies of luxS have indicated that LuxS is commonly found within the bacterial domain.
Concomitantly, the AI-2 mediated signaling process functions as a universal mode of interspecies
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communication [29]. Accordingly, numerous reports have shown that AI-2 binds receptors, and is
a mediator of QS in several species, including those of the Vibrionales order, and pathogenic gut
bacteria [30].

Large-scale bacterial genome sequencing projects have led to increased recognition of the role
of LuxS in the growth and virulence of various bacterial pathogens. Consequently, it is necessary to
identify the structure and function of the LuxS protein in the important pathogen, A. hydrophila. Herein,
the 3D structural model of the A. hydrophila LuxS was aligned with a known homologous structure via
homology modeling and the threading method (i.e., fold recognition method). Furthermore, predictive
computational approaches were used, including sequence analyses, model building, structural
analyses, and functional annotation. The overall aim of this study is to predict the structure of
A. hydrophila LuxS and characterize its structure using bioinformatics methods. Moreover, for the
validation of the predicted LuxS model, we docked the AI-2 QS inhibitor with the LuxS model and
its homologous proteins via the Docking server and experimentally confirmed its effect over AI-2
inhibition. Our results indicate that AI-2 inhibition was decreased and Luxs downregulated at the
protein expressional level when an inhibitor molecule was used. In addition, incubation of cultures
with the AI-2 inhibitor and OXY antibiotics indicated a much-decreased growth rate of A. hydrophila
and maybe a possible cocktail treatment for pathogenic infections.

2. Results

2.1. Synthesis of AI-2 Using a LuxS Ssystem

Most bacterial species, including A. hydrophila, have conserved luxS homologs that are
responsible for the production of LuxS enzymes. The conversion of S-adenosylhomocysteine (SAH)
by detoxification with the aid of 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase
(i.e., the Pfs enzyme) results in the S-ribosyl homocysteine (SRH) substrate and the removal of
an adenine group. Only the LuxS enzyme has been predicted to cleave the substrate (SRH) into
4,5-dihydroxy-2,3-pentanedione (DPD), which is the precursor of AI-2, and homocysteine [14,31]. DPD
then spontaneously undergoes cyclization into AI-2 [32,33] (Figure 1A,B). Most bacterial species use
Pfs and LuxS to produce DPD, which is then responsible for the biosynthesis of AI-2.

Figure 1. Cont.
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Figure 1. Chemical (A) and graphical (B) pathways of AI-2 biosynthesis, showing the synthesis
of AI-2 via the QS LuxS system in A. hydrophila. luxS homologs are labeled as LuxX, LuxY, and
LuxZ. Pfs converts S-adenosylhomocysteine (SAH) into S-ribosyl homocysteine (SRH) and adenine.
LuxS converts SRH into AI-derivatives/precursors such as 4,5-dihydroxy-2,3-pentanedione (DPD)
and homocysteine, and DPD spontaneously undergoes cyclization to produce AI-2. AI-2 molecules
are emitted from bacterial cells via membrane protein channels, wherein they become active in
quorum sensing.

2.2. LuxS Sequence Analysis

LuxS sequence analysis indicated a protein length of 169 amino acids, a molecular weight of
18.79 kDa, and 2618 total atoms. The net charge and isoelectric point of the protein are provided in
Supplementary Table S1. The grand average hydrophobicity (GRAVY) index was 0.179, indicating
that the protein is hydrophilic (Figure 2A). Kyte and Doolittle hydropathy plots further confirmed the
hydrophobicity of the protein (Figure 2B). The hydrophobicity of protein helps to decrease its surface
area and reduces unfavorable interactions with water due to keeping it biologically stable and active.

Figure 2. Analysis of LuxS protein hydrophobicity. (A) the hydrophilic areas of the LuxS protein
are shown in blue, and hydrophobic regions are shown in red, while white represents areas with
hydrophobicity values of 0.0. (B) Kyte and Doolittle hydropathy plot showing that the LuxS protein is
moderately hydrophilic.
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2.3. Cellular Localization and Antigenic Site Prediction

Protein functions are mostly confined to specific locations. Hence, prediction of protein
localization allows for understanding of specific pathways and mechanisms, including the QS pathway
or other disease-relevant pathways. Localization analysis using the Predict Protein and CELLO v2.5
servers indicated that LuxS is a cytoplasmic protein, and the highest predicted cellular localization
score value was 4.504 (Supplementary Table S1). Signal peptides and internal helices or motifs were
not identified inside of the LuxS protein (Figure 3A), which has not been previously reported. Previous
analysis shows the presence of hydrophobic residues (valine, cysteine and leucine) on the surface of the
protein, which is likely to be the part of antigenic determinants. Analysis with the predicted antigenic
peptides tool indicated that LuxS contains six antigenic determinants, with an average antigenic
propensity of 1.0223 (Figure 3B). These six antigenic determinants consist of sequence fragments
that start and end at different positions: 15–21: AAPAVRV, 32–45: TITVFDLRFCVPNQ, 52–61:
GIHTLEHLFA, 87–93: FYMSLIG, 107–114: AMSDVLTV, and 136–149: LEEAHAIARHVLER (Table 1).
These predicted antigenic sequence segments may function as stimulators of antibody responses.

Sequence analysis of LuxS indicates that it contains a single metalloenzyme LuxS/M16
peptidase-like domain comprising amino acids in positions 4–162. Metalloenzyme domains
exhibit two-layer alpha/beta structures, as in LuxS (S-ribosyl homocysteine; EC: 4.4.1.21),
while metallopeptidases share high similarity with the M16 family. These domains share identical active
site motifs of HxxEH within the core helix, but differ in one of the metal-binding residues. In contrast,
LuxS is an iron-dependent homodimer metalloenzyme that holds two tetrahedral metal-binding
sites that are identical to peptidases and amidases, and also has an extra N-terminal strand [26,34]
(Supplementary Figure S1).

Figure 3. Cont.
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Figure 3. Signal peptides and antigenic determinants. (A) prediction of LuxS signal peptides by the
Signal peptide server. Signal cleavage sites, internal helices, and associated motifs were not present in
the sequence. (B) antigenicity profile and antigenic determinants of LuxS. Grey lines show the positions
of six antigenic determinants within the LuxS protein.

Table 1. Antigenic determinants within LuxS.

n Start Position Sequence End Position

1 15 AAPAVRV 21
2 32 TITVFDLRFCVPNQ 45
3 52 GIHTLEHLFA 61
4 87 FYMSLIG 93
5 107 AMSDVLTV 114
6 136 LEEAHAIARHVLER 149

2.4. LuxS Structural Analysis

The homology modeling of LuxS was performed based on known crystal structures of Salmonella
typhi (PDB ID: 56e8), Deinococcus radiodurans, (PDB ID: 1VJE) and Streptococcus suis (PDB ID: 4XCH)
and the template (PDB ID: 56e8) was selected with highest 78% structural similarity (Figure 4A).
Furthermore, to better understanding the details of LuxS structure in A. hydrophila and its differences
with template, the structure prediction indicates that LuxS is comprised of 31.36% loops, 41.42% helices,
and 17.16% strands. Further differences between model and template are shown in (Figure 4A,B).
The tertiary structure of LuxS was accurately predicted using threading methods in the i-TASSER and
Phyre2 servers [35–37]. Quality analysis of the predicted model was conducted using several SAVES
(Procheck, Errat, Prove and Verify-3D) servers [38–40]. The QMEAN4 server was used to validate the
results, evaluate the Psi/Phi values of the Ramachandran plot, and other quality-filtration analyses
against non-redundant sets of proteins from data banks. These analyses indicated that the i-TASSER’s
predicted 3D model (Figure 4B) exhibited higher accuracy than the Phyre2 predicted 3D-model.

The model was selected based on the i-TASSER results and higher QMEAN4 scores.
The SWISS-PDB viewer was used to model energy minimization and refine the model. The LuxS
‘Model1’ with a QMEAN4 value of −3.17 and z-score value of −6.53 was selected for energy
minimization. PROCHECK was then used to analyze the structural and stereochemical properties of
the protein by recognizing overall and residue-by-residue geometry. A Psi/Phi Ramachandran plot
was used to assess the quality of the model, and indicated that 86.2% of the residues were observed in
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the most favored regions, 8.4% were within additionally allowed regions, and 5.4% were in outlier
regions, while none of the residues were observed in disallowed regions (Supplemental Information
S1). The reliability of the model was assessed via ERRAT, which examines the statistics of non-bonded
interfaces between diverse atom types. The value of error functions versus positions in a nine-residue
sliding window was calculated by comparing statistics against highly refined structures [41]. Quality
assessment via ERRAT and PROVE indicated that the model statistics were appropriate, consequently
validating the build models (Supplemental Information S2 and S3). Thus, model validation suggested
that the model adequately represented the native protein.

Figure 4. (A) LuxS homology model and (B) predicted 3D-structural model of the LuxS protein.
Red indicates alpha helices, yellow indicates sheets, and green indicates loops. The difference between
template and predicted model is found. The template contains one extra beta sheet shown within the
black circle (about two residues long) and has long alpha helices. The predicted model at C-terminus
alpha helix has short, long loops and one residue found is the loop at C-terminus, while the template
does not contain any loop residue at the C-terminus.

2.5. Functional Annotation of LuxS

Functional annotations of the hypothetically predicted proteins were conducted using the Predict
and ProFunc servers. These analyses suggested that the protein was involved in various biological
and biochemical functions. Specifically, LuxS is involved in quorum sensing, biosynthetic processes,
catalytic activities, metal ion binding, cation binding processes and lyase activity, and S-ribosyl
homoserine lyase activities. Moreover, LuxS was also predicted to have iron ion binding activities.

2.6. Natural Ligand, Its Binding Sites and Analysis of Topological Features

A zinc (Zn) ion ligand was predicted based on maximum MAMMOTH scores values. In particular,
the Zn ion binds via the four amino acids HIS-54, HIS-58, CYS-128, and HIS-134 (Figure 5). Furthermore,
the same Zn ligand was predicted to bind to HIS-54, HIS-58, and CYS-128 using the COACH-meta
server, as determined with high scores (Figure 5).

The active site center of LuxS is formed by conserved residues, as determined via sequence
alignment analysis. Nearly 30 residues were identified in the conserved region (Supplementary
Figure S2B). The metal cofactor is found in the center of the conserved cluster (Supplementary Figure
S2A), which is consistent with the identification of its active site. The initial identification of the
metal cofactor was predicted using the COACH-meta server, as described above. The HIS-54, HIS-58,
and CYS-128 residues are coordinated with the metal ligand by single monomer chains. HIS-54 and
HIS-58 are found in the central region of α1, and harmonize with the metal via N-terminal atoms.
In contrast, CYS-128 is present in the extended loop. These residues and water molecules complete
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the formation of the coordinated sphere, and zinc binding takes place with a tetrahedral geometry
of residues. The relevant interatomic distances were: HIS 58 NE-Zn, 1.902 Å; HIS 54-NE Zn 2.821 Å,
CYS 128 Sg-Zn, 2.611 Å; and O (HOH)-Zn, 1.82 Å (Supplementary Figure S2A). The geometry and the
presence of the solvent ligand indicate that the metal molecule plays more of a catalytic role rather than
a structural one. In addition, the above-mentioned sequences and motifs are similar to those of metal
binding sites and conserved sequences also observed in peptidases and amidases. In contrast to those
enzymes, LuxS may function in the biosynthesis of autoinducer-2 (AI-2) by acting as a hydrolase [26].
Regardless, these data provide the framework for experimental analysis of interatomic molecular
interfaces in order to investigate the production of AI-2, and its effects on quorum sensing.

Figure 5. Predicted natural ligand and its binding sites in the predicted model of LuxS. A ZINC-ligand
(sphere) was predicted using the COACH sever, as based on high MAMMOTH scores. Binding sites
are designated with amino acid numbers.

2.7. Virtual Screening and Toxicity Studies

The structure-based ligand search was done using a DOCK blaster against drug like subset
molecules of the ZINC database. The server predicted a possible ligand binding sites in the structure
of the protein. The ligand binding sites were chosen for the HTS against subset of molecules. Based on
ligand binding, descending affinity with protein 180 HTS was generated. Furthermore, for the
subsequent study, the top nine ligands were selected.

The OSIRIS property calculator used to study the toxic effect of the selected seven-ligands
molecules. Out of the seven compounds, six were found to be non-toxic (Table 2). The compound
‘3-(1,2-diazabicyclo[2.2.2]oct-2-yl)-1-phenylpropyl acetate’ had its toxicity as a mild irritant and also
had medium reproductive effects. Therefore, this molecule was removed for docking. The remaining
six molecules were screened on the basis of a Clogp value, solubility, molecular weight, drug-likeness
and the drug score. For further docking analysis, a molecule with the highest drug score was selected.
(Table 3).

2.8. Molecular Docking

Docking Server is a protein-ligand docking online program that uses the Lamarckian genetic
algorithm (LGA) programming. The docking of selected ligand (dimethyl (−)-2,3-O-isopropylidene-
L-tartrate) was performed with all homologous proteins. The docked protein-ligand complexes were
analysed based on the best binding affinity. It was found that a LuxS predicted model of had a best binding
affinity (−3.06 Kcal/mol) with dimethyl (−)-2,3-O-isopropylidene-L-tartrate’ (Table 4; Figure 6A,B), and
the docking of homolog proteins with ligand is shown (Supplementary Figures S3–S5).
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Table 2. Toxicity study of the top seven ligands produced by Dock Blaster after HTS against a drug like
subset of ZINC database. Due to the toxicity effect, the removed molecules are in bold.

Molecules Chemical Structure Mutageic Tumorigenic Irritant Reproductive
Effects

N-(4-Methyl-2-
pyridinyl)-2-(1-

naphthyl)acetamide
Non Non Non No

3-(1,2-Diazabicyclo[2.2.2]oct-
2-yl)-1-phenylpropyl acetate Non Non Medium risk of

irritation

Mediumrisk of
Reproductive

effect

N-(3,5-Dimethylphenyl)-
2-{4-hydroxy- 2-[(1-

methylethylidene)hydrazono]-
2,5- dihydro-1,3-thiazol-

5-yl}acetamide

Non Non Non No

(−)-Dimethyl (−)-2,3-O-
isopropylidene-L-tartrate Non Non Non No

1-(3-Methylphenyl)-2,5-
dioxo-3-pyrrolidinyl N’-

phenylimidothiocarbamate
Non Non Non No

Methyl (4R,5R)-5-
Bromomethyl-2,2- dimethyl
[1,3]dioxolane4- carboxylate

Non Non Non No

tert-Butyl(2S)-2-tert-
Butoxycarbonylamino-

6-[3-(4-meth
oxyphenyl)oxaziridin-

2-yl] hexanoate

Non Non Non No

Table 3. The drug score and very significant parameters study of the six non-toxic ligand molecules.
The molecule has been chosen for docking indicated in bold.

Name of Drug Chemical Structure cLogP Solubility Mol.Wt TPSA Drug
Likeliness

Drug
Score

N-(4-methyl-2-
pyridinyl)-2-(1-

naphthyl)acetamide
−0.54 −4.04 276 89.42 2.61 0.90

N-(3,5-dimethylphenyl)-
2-{4-hydroxy-2-[(1-

methylethylidene)hydrazono]-
2,5-dihydro-1,3-thiazol-

5-yl}acetamide

−1.27 −0.42 332 93.06 −5.79 0.67
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Table 3. Cont.

Name of Drug Chemical Structure cLogP Solubility Mol.Wt TPSA Drug
Likeliness

Drug
Score

(−)-dimethyl(−)-2,3-O-
isopropylidene-L-tartrate −1.68 −0.14 219 113.9 1.16 0.97

1-(3-methylphenyl)-
2,5-dioxo-3-pyrrolidinyl N’-
phenylimidothiocarbamate

0.45 −1.28 339 93.78 1.06 0.89

Methyl (4R,5R)-5-
Bromomethyl-2,2-dimethyl

[1,3]dioxolane4-
carboxylate

−3.02 −0.41 245 119.5 −10.75 0.39

tert-Butyl(2S)-2-tert-
Butoxycarbonylamino-6-

[3-(4-meth
oxyphenyl)oxaziridin- 2-yl]

hexanoate

−2.17 −0.58 211 105.4 2.52 0.87

Table 4. The calculation of energy binding affinity and intermolecular energy of LuxS proteins with
ligand by docking server.

Protein PDB: ID and Species Name Energy Binding Affinity Total Intermolecular Energy

LuxS (predicted model) A. hydrophila −3.06 (Kcal/mol) −4.26 kcal/mol
LuxS (5e68) Salmonella typhi −2.50 (Kcal/mol) −3.63 kcal/mol

LuxS (4XCH) Streptococcus suis −1.76 (Kcal/mol) −2.90 kcal/mol
LuxS (1VJE) Deinococcus radiodurans −2.55 (Kcal/mol) −3.69 kcal/mol

Figure 6. (A) ligand-protein complex docked by dock server (B) the schematic illustration interaction
of dimethyl (−)-2,3-O-isopropylidene-L-tartrate ligand molecule with predicted LuxS protein model.
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2.9. LuxS AI-2 Biosynthesis Inhibition Using a (−)-Dimethyl 2,3-O-isopropylidene-L-tartrate
Inhibitory Compound

The effect of LuxS AI-2 QS inhibition was assessed using bioluminescence assays of V. harveyi
BB170 and A. hydrophila supernatant in order to determine LuxS AI-2 activity. The (−)-Dimethyl
2,3-O-isopropylidene-L-tartrate inhibitory compound was applied at various concentrations, and
the consequent inhibitory effects were observed (Figure 7). AI-2 inhibition with the inhibitor at a
40 µM concentration was significantly reduced compared to the control, while the 10 and 20 µM
treatments also exhibited correspondingly lowered activities of LuxS and this experiment was repeated
three times.

Figure 7. Detection of AI-2 activity via bioluminescence assay of V. harveyi BB170 incubated with
culture supernatant of A. hydrophila in the absence (control) and presence of the inhibitor (−)-Dimethyl
2,3-O-isopropylidene-L-tartrate. The bioluminescence measurement was performed seven hours after
the addition of the inhibitor. Bioluminescence was lower than that of the untreated control (p < 0.001 ***
and p < 0.05 *). The error bars were calculated using a standard error of mean (SEM). A.h (A. hydrophila
wild type).

2.10. Validation of AI-2 Inhibition via Analysis of Protein Expression Levels

Further validation of AI-2 inhibition was conducted at the protein expression level via
Western blotting with the anti-LuxS antibody. The sample treated with the (−)-Dimethyl
2,3-O-isopropylidene-L-tartrate inhibitor compound at 40 µM exhibited downregulation of LuxS
protein expression compared to expression with inhibitor at 10 and 20 µM concentrations (Figure 8).
These results are consistent with the observed AI-2 biosynthesis inhibition, further validating our
biochemical model.

Figure 8. Cont.
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Figure 8. Validation of LuxS protein expression levels with Western blotting using increasing
concentrations of a LuxS inhibitor compound. A. hydrophila was treated and untreated (A.h, wild
type used as a control) with increasing inhibitor concentrations of 10, 20, and 40 µM (lower panel).
Coomassie R-350 staining of the membrane shows equal loading of the protein sample (upper panel).

2.11. The Mixture of OXY and AI-2 Inhibitor Is a Potentially Synergistic Strategy for Bacteriostasis

To further validate the effect of AI-2 inhibitor on AI-2 biosynthesis and bacteriostasis when
synergisted with antibiotics, (−)-Dimethyl 2,3-O-isopropylidene-L-tartrate was used to assess
differential responses in A. hydrophila strain under AI-2 biosynthesis inhibition. Cell growth was
first measured (as an optical density (OD) values) and were compared between treated and untreated
strains incubated with various concentrations of the inhibitory compound. Incubation with 40 µM
inhibitor resulted in clearly lowered growth compared to incubations with either 10 or 20 µM of the
inhibitory compound (Figure 9A). The growth curve of A. hydrophila presented not different when
treated with low dose concentration OXY antibiotics alone. We then evaluated the survival rate of
A. hydrophila strain when exposed to 1 µg/mL OXY and the inhibitory compound. A very slow growth
rate was observed in the treated strains compared to the untreated strains. Incubation with the AI-2
inhibitor and 1 µg/mL OXY resulted in a much lower survival rate at a 40 µM concentration of inhibitor
compared to that of the incubations with 10 and 20 µM inhibitor (Figure 9B). The results clearly showed
that the mixture of OXY and AI-2 inhibitor should be a potentially synergistic strategy for bacteriostasis
in A. hydrophila. For further confirmation, we have performed experiments by using a knocked out
∆luxS strain. Results showed that there is not a significant difference among A. hydrophila wild-type,
∆luxS treated with serials of inhibitor ((−)-Dimethyl 2,3-O-isopropylidene-L-tartrate) concentrations
alone although the growth curve with 40 µM treatment showed slightly decreased. Moreover, the
growth rate of A. hydrophila treated with 1µg/mL OXY antibiotics plus inhibitors showed a more
significant decrease than ∆luxS. These results showed their consistency with docking results, as the
luxS mutant strain has a significant growth difference while compared with the luxS coding strain of
A. hydrophila (Figure 9C,D).
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Figure 9. Effects of incubation with the (−)-Dimethyl 2,3-O-isopropylidene-L-tartrate LuxS inhibitor
compound on growth of A. hydrophila. (A) growth of A. hydrophila when treated without or with
(−)-Dimethyl 2,3-O-isopropylidene-L-tartrate inhibitor compounds at increasing concentrations; (B) the
effect of cocktail therapy on A.hyrophila growth, when treated with increasing concentrations of the
LuxS inhibitor and 1 µg/mL OXY (C,D) luxs knocked out (∆luxS) strain treated versus untreated with
inhibitor plus cocktail therapy with 1 µg/mL OXY respectively are shown here. The error bars were
calculated using standard error of mean (SEM).

3. Discussion

A. hydrophila causes a fulminant epidemic in aquatic organisms, including other severe bacterial
diseases, like hemolytic ascetic disease, fulminant hemorrhagic and bacterial septicemia [42].
AI-2 synthesis has been thoroughly documented in various bacterial species over the last several
decades, although it was originally described in V. harveyi. AI-2 functions as a general communication
signal in bacteria and several studies have demonstrated that Gram-negative and Gram-positive
bacteria sense and respond to AI-2. Thus, the enzyme responsible for producing AI-2, LuxS, is an
essential contributor to quorum sensing for inter-species communication at high cell densities [7,13,43].
AI-2 can also provide information on additional cellular physiological information more than other
autoinducers, because its biosynthesis is directly linked to cell growth, and consequently provides
information on the fitness of bacterial populations [7]. In the aquaculture industry, conventional
strategies were used for the inhibition of QS. Several antimicrobial compounds have been applied
to kill or inhibit the bacterial by means of interfering with important activities like DNA synthesis,
membranes, and other proteins. By the rapid use of antibiotics for the control of bacterial disease
aquaculture has posed threat to public health as well as antibiotics resistance. It very essential for
aquaculture industry to develop novel antibacterial drugs to face the emerging resistant strains
for the control of the bacterial disease. QS inhibition is a possible strategy to combat resistant
strains [44]. Therefore, various natural products, enzymes, and chemicals interfere with QS have
been identified. The luxS-based AI-2 QS system was found in A. hydrophila its mutant showed the
alteration in biofilm synthesis, increased virulence observed in a mouse model, and a decrease in
motility [45]. Alfaro et al. has synthesized two substrate analogs of intermediates of the first and
last steps in AI-2 synthesis and QS inhibition has observed [46]. In P. aeruginosa AHL synthesis was
decreased using sodium houttuyfonate [47], and it also indicated sodium houttuyfonate inhibits
QS in A. hydrophila. Halogenated furanones disturbs the non-AHL-based QS, including AI-2 and
Gram-positive systems [48]. Untill today, a few studies have been pointed out the possibility of the
potential resistance to QS inhibitors and in some situations, quorum sensing inhibition has been
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considered it does not kill bacteria [49,50]. After that, at the time of administration, these inhibitory
compounds’ dose have increased, which inhibits growth [51,52]. However, quorum sensing inhibition
has a significant strategy to control fish disease. Here, we investigated the biosynthesis of the AI-2
QS-associated LuxS protein using in silico methods, followed by experimental validation of the
predicted model via using (−)-Dimethyl 2,3-O-isopropylidene-L-tartrate inhibitor. Our results indicate
that AI-2 is a potential target for the inhibition of bacterial communication [53].

A detailed understanding of the physicochemical properties of the LuxS protein, including its
quaternary structure, antigenicity, and structural and functional properties, would be helpful for
identifying its role in quorum sensing. In silico modeling of several unknown protein structures using
bioinformatics tools has been particularly useful in inferring these properties. Little information was
previously available for the crystal structure of the LuxS protein. Consequently, we predicted its
structure using in silico methods to aid in its exploration and identify drug targets and diagnostic
markers for hosts infected with the aquatic pathogen A. hydrophila. A. hydrophila LuxS possesses
essential communication characteristics but is unique compared to other S-ribosyl homocysteine
lyases due to its metal binding, ion binding, and quorum sensing activity [54]. LuxS is predicted
to be a cytoplasmic protein, wherein it can readily produce AI-2. The protein contains six antigenic
determinants and a metalloenzyme domain, suggesting the presence of important metal binding sites,
similar to peptidases and amidases [55,56]. The LuxS cytoplasmic protein exhibited low QMEAN4
score and Z-score values for the reconstructed structure. Furthermore, structure validation was
confirmed by Psi/Phi Ramachandran plots. Hence, the model appears to be of high quality, and suitable
alternative drug targets may be identified based on the protein structure reported herein. The successful
prediction and validation of the LuxS structure indicated greater than 95% accuracy, suggesting a high
likelihood that the predicted structure is accurate compared to the native protein. Accurate torsion
angle conventions were observed in the structure and improper dihydral angles that normally are
present, were also observed. No atoms were missing from the structure and improper dihydral angles
RMS-scores were within normal ranges. Further, all of the necessary oxygen atoms were present at
the C-terminus.

QS is an essential regulator of bacterial virulence, and its inhibition has high potential as an
alternative strategy for the treatment of bacterial infections. luxS is responsible for the production of
AI-2 QS signal molecules, commonly referred to as AI-2 molecules [57]. As previous studies revealed
that the luxS isogenic mutant of A. hydrophila altered biofilm formation dynamics and its architecture,
bacterial motility reduced and virulence has been enhanced observed in a mouse model [58] and
luxS mutant strain failed to produce AI-2 as studied in Aeromonas salmonicida [59] Another report
shows that tannic acid is also a potential QS inhibitor, which reduces biofilm formation, swarming
motility and blood haemolysis activity of fish pathogenic bacteria [60,61]. Moreover, 5906 a small
peptide binds with Luxs and prevents the synthesis of functional LuxS homodimer of Edwersilla
tarada [62]. For the study of AI-2 inhibition of A. hydrophila, a suitable inhibitor was found by HTS
against a drug-like subset Zinc database via an online Dock blaster program and finally docked with a
LuxS predicted protein model and its homologous proteins using a docking server online server [63].
The 180 hits were generated based on ligand binding descending affinity with a target protein and the
top seven molecules have been selected for toxic studies. From toxic studies, six molecules were found
to be non-toxic and were screened further for docking analysis. Based on the best drug score (0.97),
(−)-Dimethyl 2,3-O-isopropylidene-L-tartrate molecule was selected for docking purposes. Molecular
docking studies show that this inhibitor has a very best binding affinity with the LuxS predicted model
(−3.06kcal/mol) as compared to its homologous proteins (Table 4). Therefore, the results reported here
confirm the QS inhibitory activity of the AI-2 inhibitor (−)-Dimethyl 2,3-O-isopropylidene-L-tartrate.
AI-2 bioluminescence synthesis was inhibited, and our data indicate that it exerts an inhibitory effect
on the production of AI-2. Moreover, AI-2 inhibition was confirmed at the protein expression level,
with down regulation of LuxS expression, thereby inhibiting AI-2 QS signaling molecule production
when cells were incubated with the inhibitor at a 40-µM concentration. The LuxS did show lower
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expression in the treatment of inhibitor in this study. The real reason of this phenomenon is still
unknown, however, it is possible this small molecule does not only bind with LuxS but may bind
to other proteins and has off-target effect, resulting in downregulation of LuxS expression level.
As shown in previous studies, several DNA-binding regulatory proteins are allosteric in nature,
change their activities at the time of binding to small metabolic intermediates or inhibitors or ligands
and responds to physiological changes via the pattern of gene expression. For example, a known
E. coli tryptophan aporepressor (TrpR) binds to the operator region and represses the expression
of trp gene. While tryptophan exogenously provided to ∆trp mutants has shown overexpression
and is the positive regulator [64,65]. The lower expression of LuxS may trigger a negative regulator
during (−)-Dimethyl 2,3-O-isopropylidene-L-tartrate treatment in this study. Finally, the growth
and survival of A. hydrophila was analyzed with various concentrations of the AI-2 inhibitor, and in
the presence of OXY. AI-2 biosynthesis decreased considerably upon treatment with the cocktail,
including 1 µg/mL OXY. There are many of researchers that havedocumented the effect of LuxS
on bacterial antibiotics resistance, which may be in part because LuxS relates to quorum sensing
and biofilm formation and finally affect bacterial antibiotics resistance [66,67]. Besides this, it was
reported that LuxS was also involved in metabolic pathways such as activeated methyl cycyle and
sulfur metabolism and may finally lead to the fluctuation of intracellular metabolic flows. Recently,
Peng et al. reported that antibiotics resistance relates to several metabolic pathways and exogenous
metabolites plus antibiotics would be boosted to kill antibiotics resistant bacteria [68]. Thus, LuxS may
affect bacterial multi-drugs resistance via complicated regulation mechanisms. In this study, we used
oxytetracycline whose resistance was reported to be affected by LuxS, to combine with inhibitor
(−)-dimethyl (−)-2,3-O-isopropylidene-L-tartrate and to value its bacteria-killing activity [69]. Thus,
a cocktail of OXY and the inhibitor may be an efficient strategy for antimicrobial therapy and blocking
AI-2 biosynthesis. These results are consistent with previous studies indicating that cocktail analogous
therapy efficiently decreases AI-2 biosynthesis in P. aeruginosa [70].

The results described here provide a foundation for understanding the structure and function of
the LuxS protein that is critically involved in the quorum sensing. The use of numerous computational
and bioinformatics tools has proven useful in the reduction of costly experiments for drug or vaccine
discovery. Comprehensive analysis of the post-translational modification of the protein is required
in order to gain insight into the conformational changes of proteins, and is thus a potential target for
future studies. Lastly, protein protein interactions, protein-ligand interactions, and binding efficacy of
co-factors via docking studies are made possible by structural modeling analyses, as are described
here for LuxS. These analyses provide a framework for identifying novel drug molecules that can aid
in the treatment of diseases caused by A. hydrophila.

4. Methodology

4.1. Bioinformatics Analyses

4.1.1. Retrieval of Protein Sequences and Analysis

The LuxS amino acid sequence was retrieved from the Uniprot database (A0kG57) and the
ClustalW aligner was used to align the sequence and assess its appropriateness for protein structure
prediction. The LuxS protein contained the intact sequence of amino acids comprising the N-terminal
and C-terminal ends, and was thus suitable for structural prediction. Structurally homologous
sequences were retrieved from the protein data bank (PDB) after comparison using a sequence
similarity model.

4.1.2. Assessing Physicochemical Properties

The target LuxS protein sequence was used as the template in determining its molecular profile
using the Portparam tool of ExPASy. In addition, the predict protein server was used to determine



Molecules 2018, 23, 2627 16 of 22

the solubility of the protein. The SOPMA, SAPS, and FindMod software packages were used to
analyze the structural properties of the protein. Subcellular localization predictions were performed
using PSortB and CELLOv2.5. The presence of signal peptides within the amino acid sequence was
determined using the SignalP 4.1 server. Lastly, the Antigenic Peptides program was used to predict
the antigenicity of the protein.

4.1.3. Structural Modeling

Similarity of the LuxS protein with other publically available homologs was assessed by searching
against non-redundant databases including NCBI and PDB. The amino acid similarity between the
target (query) and the template was observed as 78%. Prediction of structural folds was conducted
with structure fold recognition techniques, as implemented in the i-TASSER and Phyre2 perdition
servers. The presence of additional functional domains was determined using the InterPro protein
family database and the Evolutionary classification of protein domains (ECOD) database.

4.1.4. Structure Validation and Refinement

The protein structure was generated using the i-TASSER and Phyre2 servers and validation was
conducted using the SAVes server. The QMEAN6 program within the SWISS-MODEL workspace
was then used to determine the quality of the structure. The energy levels were minimized, and the
structure was improved based on a Ramachandran plot. Lastly, the modeled structure was visualized
using the PyMOL v1.7.4.5 program.

4.1.5. Active Site, Ligand, and Ligand Binding Sites Evaluation

The computed atlas of surface topography of proteins (CASTp) server was used to identify the
active sites. The server locates and measures concave surface regions of modeled proteins. In addition,
the 3D ligand binding site prediction server was used to investigate ligand characteristics and potential
binding sites. Further binding site verification was conducted using the COACH server.

4.1.6. High Throughput Virtual Screening and Toxicity Analysis

High throughput (HTS) was done by using of DOCK blaster [71], which is a structure based
ligand discovery online server of University of California, San Francisco, CA, USA. The protein and
the active sites were submitted to the server and suitable ligand binding sites shown by DOCK blaster.
That active site of the protein was docked against the drug like subset of the ZINC database.

The toxicity of the ligand molecules was analysed via OSIRIS property calculator. This online
server reveals the several properties of ligand molecules such as Mutagenic, Tumorigenic, and Irritant,
Reproductive effective, Clogp value, Solubility, Molecular weight, Drug-likeness and finally the
Drug score.

4.1.7. Ligand Preparation and Molecular Docking of the Receptors to Ligands

The (−)-Dimethyl 2,3-O-isopropylidene-L-tartrate inhibitor was selected based on the best drug
score for further study. The ligand was retrieved in smiles file (ZINC: 00056779) as (−)-Dimethyl
2,3-O-isopropylidene-L-tartrate. Then, docking calculations were carried out using Docking Server [72].
Gasteiger partial charges were added to the ligand atoms. Non-polar hydrogen atoms were merged,
and rotatable bonds were defined. Docking calculations were carried out on zinc_56779 protein
model. Essential hydrogen atoms, Kollman united atom type charges, and solvation parameters
were added with the aid of Auto Dock tools [73]. Affinity grid (Box size: 20 × 20 × 20 Å and box
center: 58.88 × 58.99 × 58.64 for x, y, and z, respectively) and 0.375 Å spacing were generated using
the Autogrid program [74]. Auto Dock parameter set- and distance-dependent dielectric functions
were used in the calculation of the van der Waals and the electrostatic terms, respectively. Docking
simulations were performed using the Lamarckian genetic algorithm (LGA) and the Solis and Wets
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local search method [75]. Initial position, orientation, and torsions of the ligand molecules were set
randomly. All rotatable torsions were released during docking. Each docking experiment was derived
from 10 different runs that were set to terminate after a maximum of 250,000 energy evaluations.
The population size was set to 150. During the search, a translational step of 0.2 Å, and quaternion and
torsion steps of 5 were applied.

4.2. In Vitro Methods

4.2.1. Bacterial Strains and Growth Conditions

A. hydrophila ATCC 7966 was stored in our laboratory at −80 ◦C and ∆luxS strain was constructed
using two strains of E. coli MC1061 (λpir) and S17-1 (λpir) with suicide vector pRE112 was used to
construct mutant by sacBsuicide gene-based allelic exchange as previously described [1]. The culture
was streaked on Luria–Bertani (LB) agar plates, and a single colony was selected the next day and
inoculated in 5 mL LB medium for overnight incubation. The culture was then diluted in 100 mL
LB at a 1:100 ratio and grown until the OD600 reached ~1.0. The Vibrio harveyi strain was grown
in AB medium for 8–10 h at 30 ◦C with shaking at 200 rpm. The ligand identified from the ZINC
database, (−)-Dimethyl 2,3-O-isopropylidene-L-tartrate, was purchased from Sigma-Aldrich (Spruce
Street, St. Louis, MO, USA).

4.2.2. AI-2 Inhibition Bioluminescence Assay

A. hydrophila was cultured overnight at 30 ◦C with and without (−)-Dimethyl 2,3-O-
isopropylidene-L-tartrate at various concentrations: 10, 20, and 40 µM. The culture supernatant
was separated using centrifugation at 10,000× g for 10 min at 4 ◦C and then stored at −20 ◦C.
The V. harveyi reporter strain was grown in AB media until the optimum OD600 was 1.0–1.1,
as previously described [76]. V. harveyi cultures were diluted 1:5000 in fresh AB medium. Sterile
CD medium was then added to the dilution up to 10 mL and 180 µL of the mixture was loaded into
the wells of a 96-well plate [43,77]. Finally, 20 µL of the A. hydrophila supernatant incubated with
and without (−)-Dimethyl 2,3-O-isopropylidene-L-tartrate was added, and the stimulation of AI-2
biosynthesis intensity was measured using a SpectraMax®i3 Molecular (Molecular Devices, Sunnydale,
CA, USA).

4.2.3. Western Blotting

Western blotting was performed as previously described, with slight modifications [78]. Briefly,
about 20 µg of A. hydrophila ATCC 7966 sample treated with or without 10, 20, and 40 µM (−)-Dimethyl
2,3-O-isopropylidene-L-tartrate was resolved on a 12% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE). The samples were then electrotransferred to a polyvinylidene difluoride
(PVDF) membrane using the Trans-Blot Turbo Transfer System (Bio-Rad, Hercules, CA, USA) at 1.3 A
for 20 min. They were then blocked with 5% (w/v) skim milk for 1 h, and the membrane was incubated
in a 1:5000 dilution of primary (LuxS) antibody overnight at 4 ◦C. Following incubation, the membranes
were washed five times in phosphate saline buffer (pH 8.0) containing 0.1% (v/v) Tween (PBS-T).
The washed membrane was incubated with horseradish peroxidase-conjugated goat anti-rabbit
secondary antibody at a 1:5000 dilution in PBS-T at room temperature for 1.5 h. The immunostained
protein was then detected using the Clarity™ Western ECL Substrate (Bio-Rad, Hercules, CA, USA)
and scanned with the ChemiDoc MP imaging system using the Image Lab software (Bio-Rad, Hercules,
CA, USA).

4.2.4. Antimicrobial Survival after Cocktail Therapy

An antimicrobial survival assay was performed as previously described [1,78]. Wild-type
A. hydrophila, and ∆luxS strains were incubated at 30 ◦C in 5 mL LB medium overnight.
The overnight grown bacterial cultures were then diluted at 1:100 with freshly prepared LB medium
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in a HONEYCOMB® sterile 100 well plate. The sample was treated with (−)-Dimethyl2,3-O-
isopropylidene-L-tartrate inhibitor at increasing concentrations of 10, 20, and 40 µM. In addition,
diluted concentrations of the antibiotic inhibitor oxytetracycline (OXY) were added at a 1 µg/mL
concentration and OD values for growth were measured [79,80]. The OD600 were measured for 16 h
using a Bioscreen C system (Lab Systems, Helsinki, Finland). Absorbance values were then compared
between treated and untreated cultures.

4.2.5. Statistical Analysis

Every experiment was carried out independently three times and values are presented as the
standard error of the mean (SEM). The data were evaluated using one way analysis of variance tests.
A p value < 0.001 was considered to be statistically significant.

5. Conclusions

Taken together, LuxS produces AI-2, which is responsible for quorum sensing signaling
in the intercommunication of A. hyhrophila ATCC7966. In silico threading methods were used
to predict the LuxS protein structure, which revealed a similar theoretical structure as other
homologous proteins. Furthermore, we predicted and refined the LuxS model and its ligand binding
sites/residues LYS 23, VAL 35, PRO 2, and ASP 79 within the LuxS. Additionally, (−)-Dimethyl
2,3-O-isopropylidene-L-tartrate inhibitor molecule was identified via HTS and selected based on
the best drug score. Then it docked with the LuxS model and its homologous proteins and, finally,
the inhibitor was evaluated experimentally by inhibition of AI-2 biosynthesis. AI-2 biosynthesis was
inhibited at a 40 µM concentration and the inhibitor shows a potent synergistic effect of bacteriosis and
thus substantiated themselves as a therapeutic on A. hydrophila. These results provide a framework to
further develop a complete understanding of LuxS, and implicate the need for additional structure-level
experimental investigations.In addition, this information should assist in the discovery of a high
potential antibacterial drug against A. hydrophila as well other microbes.
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